Uniqueness of Center Manifold Dynamics

Let \bar{q} be a nonhyperbolic fixed point of a diffeomorphism f in \mathbb{R}^d . Let $J = Df(\bar{q})$, and denote

$$\sigma^s = \sigma(J) \cap \{|z| < 1\}, \ \sigma^c = \sigma(J) \cap \{|z| = 1\}, \ \text{ and } \ \sigma^u = \sigma(J) \cap \{|z| > 1\}$$

the set of stable eigenvalues, center eigenvalues, unstable eigenvalues, respectively, of the linearizatoin $Df(\bar{q})$. Let

$$\sigma^{cs} = \sigma^s \cup \sigma^c$$
, and $\sigma^{cu} = \sigma^c \cup \sigma^u$.

Let $\mathbb{R}^d \cong \mathbb{E}^s \times \mathbb{E}^c \times \mathbb{E}^u = \mathbb{E}^c \times \mathbb{E}^{su}$ with $\mathbb{E}^{su} \cong \mathbb{E}^s \times \mathbb{E}^u$ based at the fixed point. For r > 0, denote by $\mathbb{E}^c_r = \{\{\bar{q}\} \oplus \mathbb{E}^c\} \cap \{\|p - \bar{q}\| < r\}$ the r-neighborhood of \bar{q} on its center eigenspace and similarly, $\mathbb{E}^{su}_r = \{\{\bar{q}\} \oplus \mathbb{E}^{su}\} \cap \{\|p - \bar{q}\| < r\}$.

Definition 1. A set $W^{\rm c}_{\rm loc}$ in $N_r(\bar{q})$ is called a local center-manifold of \bar{q} if (a) it is invariant under $f\colon f(W^{\rm c}_{\rm loc})\cap N_r(\bar{q})\subset W^{\rm c}_{\rm loc}$, (b) it is the graph of a C^1 function $\phi_{su}:\mathbb{E}^c_r\to\mathbb{E}^{su}_r$, and (c) $W^{\rm c}_{\rm loc}$ is tangent to \mathbb{E}^c at \bar{q}

$$\mathbb{T}_{\bar{q}}W_{\mathrm{loc}}^{\mathrm{c}} \cong \mathbb{E}^{c},$$

i.e., $D\phi_{su}(\bar{q}) \cong 0$.

Theorem 1 (Uniqueness of Center Manifold Dynamics). Let \bar{q} be a nonhyperbolic fixed point of a $C^{1,1}$ diffeomorphism f in \mathbb{R}^d . Let $W^c_{\mathrm{loc},1}$, $W^c_{\mathrm{loc},2}$ be two $C^{1,1}$ local center manifolds of \bar{q} . Then there is an open neighborhood V of \bar{q} and a C^1 invertible map $\kappa: W^c_{\mathrm{loc},1} \cap V \to W^c_{\mathrm{loc},2} \cap V$ so that

$$f\circ\kappa(p)=\kappa\circ f(p)$$

for all $p \in W^c_{\text{loc},1} \cap V$ so long as $f(p) \in W^c_{\text{loc},1} \cap V$. Furthermore, if f is a $C^{k,1}, k \geq 1$ diffeomorphism and $W^c_{\text{loc},1}$, $W^c_{\text{loc},2}$ are $C^{k,1}$ manifolds, then the conjugacy κ is of C^k .

Lemma 1. Let W^c_{loc} be a local center manifold of a fixed point \bar{q} of a $C^{k,1}$, $k \geq 1$ diffeomorphism f in $N_{r_0}(\bar{q})$. If $W^c_{loc} = \{\bar{q}\} \oplus \mathbb{E}^c_{r_0}$, then for sufficiently small $0 < r < r_0/2$, there is a $C^{k,1}$ diffeomorphism \tilde{f} in \mathbb{R}^d such that the following properties hold: (i) $\tilde{f}|_U = f$ with $U = N_r(\bar{q})$; (ii) $\tilde{f}|_{\{\|p-\bar{q}\| \geq 2r\}} = Df(\bar{q})$; (iii) the whole center eigenspace $\{\bar{q}\} \oplus \mathbb{E}^c$ is invariant under \tilde{f} ; and (iv) $\|\tilde{f} - D\tilde{f}(\bar{q})\|_1 \to 0$ as $r \to 0$.

Proof. Without loss of generality we assume the fixed \bar{q} is translated to the origin and identify $\mathbb{R}^d \cong \mathbb{E}^c \times \mathbb{E}^{su}$ with $\mathbb{R}^d = \mathbb{E}^c \times \mathbb{E}^{su}$. Let $x = (x_c, x_{su}) \in \mathbb{R}^d = \mathbb{E}^c \times \mathbb{E}^{su}$ be the coordinate system for the eigenspaces splitting for which $J := Df(\bar{q}) = \operatorname{diag}(A_c, A_{su}), \ f = (f_c, f_{su}), \ f_i(x) = A_i x_i + h_i(x)$ where h(x) = f(x) - Jx, and $||x|| = ||x_c|| + ||x_{su}||$. Because $W_{\text{loc}}^c = \mathbb{E}_{r_0}^c$, we have $x \in W_{\text{loc}}^c$

iff $x_{su} = 0$ and $||x_c|| < r_0$. Because W_{loc}^c is invariant, $f(W_{loc}^c) \cap N_{r_0} = W_{loc}^c$, we have $f_{su}(x_c, 0) = 0$ for $||x_c|| < r_0$. That is,

$$0 = f_{su}(x_c, 0) = A_{su}0 + h_{su}(x_c, 0) = h_{su}(x_c, 0).$$

Conversely, if $h_{su}(x_c, 0) = 0$ for all $x_c \in V \subset \mathbb{E}^c$ for an open set V containing 0, then V must be invariant for f, and is contained in a center-manifold of f.

Let ρ_r be a C^{∞} cut-off function with $\rho_r(x) = 1$ if $||x|| \leq r$ and $\rho_r(x) = 0$ if $||x|| \geq 2r$. Define $\tilde{f} = (\tilde{f}_c, \tilde{f}_{su})$ as

$$\tilde{f}(x) = Jx + \tilde{h}(x)$$
, with $\tilde{h}(x) = \rho_r(x)h(x)$.

Then for $0 < r < r_0/2$, we first have $\tilde{f}|_U = f$ for $U = N_r$, i.e. \tilde{f} is a global extension of f on U and $\tilde{f}|_{\{\|p-\bar{q}\| \geq 2r\}} = J$.

Next for $x = (x_c, 0) \in \widetilde{W}_{\text{loc}}^c$, $||x_c|| < 2r < r_0$ we have

$$\tilde{f}_{su}(x_c, 0) = A_{su}0 + \rho_r(x_c, 0)h_{su}(x_c, 0) = \rho_r(x_c, 0) \cdot 0 = 0.$$

In addition, for $x = (x_c, 0)$ and $||x_c|| \ge 2r$, we have

$$\tilde{f}_{su}(x_c, 0) = A_{su}0 + \rho_r(x_c, 0)h_{su}(x_c, 0) = 0 \cdot h_{su}(x_c, 0) = 0.$$

This implies the whole center eigenspace \mathbb{E}^c is invariant for \tilde{f} .

Last, because $\tilde{f}|_U = f$, we have $D\tilde{f}(0) = Df(0) = J$ and $\tilde{f}(x) - D\tilde{f}(0)x = \rho_r(x)(f(x) - Df(0)x)$, implying $\|\tilde{f} - D\tilde{f}(\bar{q})\|_1 \to 0$ if $r \to 0$, which also implies \tilde{f} is globally invertible for small r.

Lemma 2. Let $W^{\rm c}_{\rm loc}$ be a $C^{k,1}, k \geq 1$ local center manifold of a fixed point \bar{q} of a $C^{k,1}$ diffeomorphism f in $N_{r_0}(\bar{q})$. Then for sufficiently small $0 < r < r_0/2$, there is a $C^{k,1}$ local center-stable manifold $W^{\rm cs}_{\rm loc}$ and a $C^{k,1}$ local center-unstable manifold $W^{\rm cu}_{\rm loc}$ in $N_r(\bar{q})$ so that $W^{\rm c}_{\rm loc} \cap N_r(\bar{q}) = W^{\rm cs}_{\rm loc} \cap W^{\rm cu}_{\rm loc} \cap N_r(\bar{q})$. Moreover, $W^{\rm cs}_{\rm loc}$ is equipped with a C^k unstable foliation.

Proof. Use the same coordinate system setup as in the proof of Lemma 1 above. Let ρ_r be the same type of cut-off function as well. Let $x_{su} = \phi_{su}(x_c), x_c \in \mathbb{E}^c_{r_0}$ be the $C^{k,1}$ function for W^c_{loc} . Define a change of variables in \mathbb{R}^d , y = g(x) as below

$$\begin{cases} y_c = x_c \\ y_{su} = x_{su} - \rho_{r_0}(x_c)\phi_{su}(x_c), \end{cases}$$

whose inverse, $x = g^{-1}(y)$ is explicitly

$$\begin{cases} x_c = y_c \\ x_{su} = y_{su} + \rho_{r_0}(y_c)\phi_{su}(y_c). \end{cases}$$

Because ϕ_{su} is $C^{k,1}$, so is g and g^{-1} . Let $\bar{f}(y) = g \circ f \circ g^{-1}$, which is $C^{k,1}$ as well. Then, g transforms f's local center manifold $W_{loc}^c = \operatorname{graph}(\phi_{su})$ to the

flat local center manifold $\mathbb{E}^c_{r_0} = \{y_{su} = 0\} \cap N_{r_0} \text{ for } \bar{f}$. By Lemma 1, let \tilde{f} be the extension of \bar{f} . Since $\|\tilde{f} - D\tilde{f}(\bar{q})\|_1 \to 0$ as $r \to 0$, the Center-Stable Manifold Theorem, the Center-Unstable Manifold Theorem, the Stable-Foliation Theorem, and the Unstable-Foliation Theorem all apply. Let W^{cs} , W^{cu} denote the center-stable manifold, the center-unstable manifold, respectively. Because \mathbb{E}^c is invariant for \tilde{f} whose restricted dynamics on it and outside the unbounded region $\{\|p - \bar{q}\| \geq 2r\}$ is the linear map A_c , \tilde{f} cannot grow in either directions of iteration faster than any geometric rate. Therefore, by the definition and uniqueness of both W^{cs} and W^{cu} for \tilde{f} , \mathbb{E}^c must be contained by both manifolds. Transform back these manifolds by g^{-1} and restrict the map $\bar{f} = g^{-1} \circ \tilde{f} \circ g$ in a small neighborhood $N_r(\bar{q})$ to recover the required structures for $f = \bar{f}|_U$ with $U = N_r(\bar{q})$. In particular, W^{cs}_{loc} , W^{cu}_{loc} are $C^{k,1}$, both containing W^{c}_{loc} , and their foliations, \mathcal{F}^s , \mathcal{F}^u are C^k . This completes the proof.

Proof of Theorem 1. We prove first a special case for which $W_{\text{loc},1}^c$, $W_{\text{loc},2}^c$ both lie on one local center-stable manifold $W_{\text{loc}}^{\text{cs}}$ equipped with a C^k stable foliation \mathcal{F}^s , or on one local center-unstable manifold $W_{\text{loc}}^{\text{cu}}$ equipped with a C^k unstable foliation \mathcal{F}^u . Since the proof for the latter is the same as for the former, differing only by considering the inverse of f, we only consider the $W_{\text{loc}}^{\text{cs}}$ case.

Because both $W^c_{\mathrm{loc},1}$ and $W^c_{\mathrm{loc},2}$ are tangent to \mathbb{E}^c at \bar{q} , and the stable foliation $\mathcal{F}^s(\bar{q})$ is tangent to \mathbb{E}^s at \bar{q} , for small enough neighborhood $N_r(\bar{q})$, the foliation fibers $\mathcal{F}^s(p)$ intersect both $W^c_{\mathrm{loc},1}$ and $W^c_{\mathrm{loc},2}$ transversely. The conjugacy κ is defined as follows. For any point $p \in W^c_{\mathrm{loc},1}$, the foliation $\mathcal{F}^s(p)$ through p has a unique intersection with $q \in W^c_{\mathrm{loc},2}$, denote it by $q = \kappa(p)$. Because the foliation is C^k and the intersection is transversal, κ is C^k as well. Moreover, it can be seen easily that κ is invertible because \mathcal{F}^s defines an equivalence relation on $W^{\mathrm{cs}}_{\mathrm{loc}}$ and its intersections with both local center manifolds are unique and transversal. Furthermore, κ commutes with f because whenever it is defined, wherever $\mathcal{F}^s(f(p))$ or $\mathcal{F}^s(f^{-1}(p))$ intersects $W^c_{\mathrm{loc},2}$ is wherever $f(\mathcal{F}^s(p))$ or $f^{-1}(\mathcal{F}^s(p))$ intersects $W^c_{\mathrm{loc},2}$ by the invariance of \mathcal{F}^s under f, showing $\kappa \circ f(p) = f \circ \kappa(p)$. This proves the special case.

Next, let $W^c_{\mathrm{loc},1}$, $W^c_{\mathrm{loc},2}$ be any two $C^{k,1}$ local center manifolds of \bar{q} . Apply Lemma 2 to obtain a $C^{k,1}$ local center-stable manifold $W^{\mathrm{cs}}_{\mathrm{loc},1}$ containing $W^c_{\mathrm{loc},1}$, together with a C^k stable foliation for $W^{\mathrm{cs}}_{\mathrm{loc},1}$. Similarly, apply Lemma 2 to obtain a $C^{k,1}$ local center-unstable manifold $W^{\mathrm{cu}}_{\mathrm{loc},2}$ containing $W^c_{\mathrm{loc},2}$, together with a C^k unstable foliation for $W^{\mathrm{cu}}_{\mathrm{loc},2}$. Let

$$W_{\mathrm{loc},3}^c = W_{\mathrm{loc},1}^{\mathrm{cs}} \cap W_{\mathrm{loc},2}^{\mathrm{cu}} \cap N_r(\bar{q}).$$

Then by the Local Center Manifold Theorem, it is a $C^{k,1}$ local center manifold. Since the dynamics of f on $W^c_{\mathrm{loc},1}$ is C^k conjugate to $W^c_{\mathrm{loc},3}$ for both being on $W^{\mathrm{cs}}_{\mathrm{loc},1}$ by the special case, and similarly, f on $W^c_{\mathrm{loc},2}$ is C^k conjugate to $W^c_{\mathrm{loc},3}$ for both being on $W^{\mathrm{cu}}_{\mathrm{loc},2}$, f on $W^c_{\mathrm{loc},1}$ is hence C^k conjugate to $W^c_{\mathrm{loc},2}$ by conjugacy's transitivity. This proves the theorem.