
[Lecture Note 6]

Center Manifold Theorem
Let q̄ be a nonhyperbolic fixed point of a diffeomorphism f in Rd. Let J =

Df(q̄), and denote

σs = σ(J) ∩ {|z| < 1}, σc = σ(J) ∩ {|z| = 1}, and σu = σ(J) ∩ {|z| > 1}

the set of stable eigenvalues, center eigenvalues, unstable eigenvalues, respec-
tively, of the linearizatoin Df(q̄). Let

σcs = σs ∪ σc, and σcu = σc ∪ σu.

Definition 1. Let q̄ be a nonhyperbolic fixed point of a diffeomorphism f in Rd

and β be any constant satisfying

1 < β < min{|σu|}.

The center-stable manifold of the fixed point q̄ for f is

W cs = {p : {β−n[fn(p)− q̄]}∞n=0 is a bounded sequence}.

Theorem 1 (Center-Stable Manifold Theorem). Let q̄ be a nonhyperbolic fixed
point of a diffeomorphism f in Rd with splitting Rd ∼= Ecs×Eu. Then a sufficiently
small ‖f −Df(q̄)‖1 implies W cs is independent of any two different choices in β.
Also, W cs is the graph of a C1 function φu : Ecs → Eu

W cs = graph(φu),

and the tangent space of W cs at the fixed point is the center-stable eigenspace

Tq̄W
cs ∼= Ecs.

Furthermore, if f ∈ Ck(Rd), 1 ≤ k < ∞, then φu ∈ Ck(Ecs,Eu), and if f ∈
Ck,1(Rd), then φu ∈ Ck,1(Ecs,Eu).

Proof. Let λ1 = max{|σcs|} = 1 and λ2 = min{|σu|} > 1. Then [λ1, λ2] is
a pseudo-hyperbolic split for J . In addition, the condition λ1

k = 1 < λ2 holds
automatically for any k ≥ 1. Hence, the result follows from the λ-Left Manifold
Theorem.

Definition 2. Let q̄ be a nonhyperbolic fixed point of a diffeomorphism f in Rd

and α be any constant satisfying

max{|σs|} < α < 1.

The center-unstable manifold of the fixed point q̄ is

W cu = {p : {αn[f−n(p)− q̄]}∞n=0 is a bounded sequence}.
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By applying Theorem 1 to f−1 we obtain the following result.

Theorem 2 (Center-Unstable Manifold Theorem). Let q̄ be a nonhyperbolic fixed
point of a diffeomorphism f in Rd with splitting Rd ∼= Es×Ecu. Then a sufficiently
small ‖f −Df(q̄)‖1 implies W cu is independent of any two different choices in
α. Also, W cu is the graph of a C1 function φs : Ecu → Es

W cu = graph(φs),

and the tangent space of W cu at the fixed point is the center-unstable eigenspace

Tq̄W
cu ∼= Ecu.

Furthermore, if f ∈ Ck(Rd), 1 ≤ k < ∞, then φs ∈ Ck(Ecu,Es), and if f ∈
Ck,1(Rd), then φs ∈ Ck,1(Ecu,Es).

Theorem 3 (Local Center-stable and Local Center-unstable Manifold Theorem).
Let q̄ be a nonhyperbolic fixed point of a diffeomorphism f in Rd and let Ecs,
Ecu, Es, Eu be the center-stable, center-unstable, stable, unstable eigenspace,
respectively, at q̄ for the linearization Df(q̄). Then there is a small neighborhood
Nr(q̄) and two differentiable functions φu : Nr(q̄)∩Ecs → Eu, φs : Nr(q̄)∩Ecu →
Es, so that the local center-stable and local center-unstable manifolds

W cs
loc(q̄) := graph(φu), W cu

loc(q̄) := graph(φs)

satisfy the following properties

(i) W cs
loc contains all bounded forward orbits in Nr.

(ii) W cu
loc contains all bounded backward orbits in Nr.

(iii) They are locally invariant, i.e., f(W i
loc) ∩ Nr ⊆ W i

loc, f
−1(W i

loc) ∩ Nr ⊆
W i

loc , i = cs, cu

(iv) Tq̄W
cs
loc
∼= Ecs, Tq̄W

cu
loc
∼= Ecu.

Moreover, if f is Ck, 1 ≤ k < ∞, then both φu and φs are Ck, and if f is Ck,1,
then both φu and φs are Ck,1.

Proof. Modify the map f by a C∞ cut-off function ρr(p − q̄) to f → f(p) =
Df(q̄)p + ρr(p− q̄)(f(p)−Df(q̄)p). Then for sufficiently small r, Theorems 1
and 2 can be applied to the modified map to obtain the maps φu, φs. Restrict both
to the neighborhood Nr(q̄), then the results follow from the theorems.

By applying the theorem above we obtain

Theorem 4 (Local Center Manifold Theorem). Let q̄ be a nonsingular fixed point
of a continuously differentiable map f in Rd and let Es, Ec, Eu be the stable,
center, unstable eigenspace, respectively, at q̄ for the linearization Df(q̄). Then
there is a small neighborhood Nr(q̄) and a differentiable function φsu : Nr(q̄) ∩
Ec → Es × Eu, so that the local center manifold

W c
loc(q̄) := graph(φsu)

satisfies the following properties
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(i) W c
loc contains all orbits bounded in both forward and backward directions

in Nr.

(ii) Every point not from W c
loc escapes Nr(q̄) in either forward or backward

iteration.

(iii) It is locally invariant, f(W c
loc) ∩Nr ⊆ W c

loc , f−1(W c
loc) ∩Nr ⊆ W c

loc .

(iv) Tq̄W
c
loc
∼= Ec.

Moreover, if f is Ck, 1 ≤ k <∞, then φsu is Ck, and if f is Ck,1, then φsu is Ck,1.

Proof. LetW cs
loc = graph(φu) andW cu

loc = graph(φs) be a local center-stable man-
ifold and a local center-unstable manifold, respectively, by the previous theorem.
Define

W c
loc = W cs

loc ∩W cu
loc.

Then property (i) through (iii) follow immediately. To show the existence of φsu

and (iv), let p = (x, y, z) be a coordinate system for the splitting Rd = Es ×Ec ×
Eu. Then a point (x, y, z) ∈ W c

loc iff it satisfies the equations below{
x = φs(y, z)
z = φu(x, y)

(1)

which in turn is equivalent to F (x, y, z) = (F1, F2)(x, y, z) = 0 with

F1(x, y, z) = x− φs(y, z), and F2(x, y, z) = z − φu(x, y).

Obviously, the fixed point, q̄ ∼ (0, 0, 0), is a solution, F (0, 0, 0) = 0. Also,

D(x,z)F (0, 0, 0) = I

the identity matrix in Rds+du ∼= Es×Eu, because Dφu(0, 0) = 0 and Dφs(0, 0) =
0. Therefore, by the Implicit Function Theorem, equation (1), i.e. F (x, y, z) = 0,
can be solved locally as a function φsu : Nr ∩Ec → Es ×Eu, making r smaller if
necessary, so that (x, z) = φsu(y) and

W c
loc = graph(φsu)

follows. It can be directly checked that φsu(0) = (0, 0) and

Dφsu(0) = 0

by IFT since DyF (0, 0, 0) = 0, showing property (iv). Last, that f is Ck, or
Ck,1, 1 ≤ k < ∞, implies φu, φs are Ck, or Ck,1, which in turn by IFT implies
φsu is Ck, or Ck,1. This completes the proof.

The conclusion is all interesting dynamics near a nonhyperbolic fixed point of
a diffeomorphism takes place on a center manifold.

Local center manifolds are not unique in general (see Fig.1), but the center
manifold dynamics is in the sense that the dynamics on any two local center man-
ifolds are smoothly conjugate. Specifically, we have the following theorem.
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Theorem 5 (Uniqueness of Center Manifold Dynamics for Flow 1). Let q̄ = 0 be
a nonhyperbolic equilibrium point of the differential equation

ẋ = Ax+ h(x)

where x ∈ Rd, h(0) = 0, Dh(0) = 0, and h is Ck+1,1, k ≥ 0. Let f be the
time-1 map of the solution, f(x) = ϕ(1, x) where ϕ(t, x0) is the solution of the
equation with initial condition ϕ(0, x0) = x0. Let W c

loc,1, W c
loc,2 be two local

center manifolds of q̄ for f . Then there is an open neighborhood V of q̄ and a Ck

invertible map κ : W c
loc,1 ∩ V → W c

loc,2 ∩ V so that

f ◦ κ(p) = κ ◦ f(p)

for all p ∈ W c
loc,1 ∩ V so long as f(p) ∈ W c

loc,1 ∩ V .

Figure 1. The phase diagram for the system
of differential equations x′ = x2, y′ = −y.
Every red curve on the left coupled with the
right x-axis is a local center manifold of the
time-1 map of the solution operator at the
fixed point 0. There are infinitely many lo-
cal center manifolds of the origin.

Reference: 1. A. Burchard, B. Deng, and K. Lu, Smooth conjugacy of centre
manifolds, Procedings of the Royal Society of Edingurgh, 120A, pp.61–77, 1992.
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