[Lecture Note 6]
Stable and Unstable Manifolds |

This notes is about stable and unstable manifolds for hyperbolic fixed points
of diffeomorphisms.
Let g be a hyperbolic fixed point of a diffeomorphism f in R?. Denote

0* = o(Df(q) N{lz[ <1} and 0" = o(Df(q)) N {[2] > 1}

the set of stable eigenvalues and, respectively, the set of unstable eigenvalues of
the linearizatoin D f(q).

Definition 1. Let f : R? — R? be a diffeomorphism and q be a nonsingular fixed
point. The stable manifold of the fixed point q for f is

W ={p:{f"(p)}:2, is a bounded sequence.}
The unstable manifold of the fixed point is
Wt ={p:{f"(p)};, is abounded sequence.}

Theorem 1 (Stable Manifold Theorem). Let § be a hyperbolic fixed point of a dif-
feomorphism f in R? with hyperbolic splitting R? = E* @ E¥ for the linearization
Df(q). Then a sufficiently small || f — D f(q)||, implies W* is the graph of a C*
function ¢, : E° — E"

W* = graph(g,),

and the tangent space of W* at the fixed point is the stable eigenspace
T;W*® = E°.

Moreover, f is a uniform contraction on W*. In addition, let o be any constant

satisfying
max{|c’|} < a <1,

then for any p € W there is a constant R so that
lf™(p) — q|| < Ra™, foralln > 0.

Furthermore, if f is C*, k > 1, and all its derivatives D' f, 1 < j < k, are
bounded, then ¢, is also C* with bounded derivatives.

Let A\; = max{|o®|} < 1 and Ay = min{|c"*|} > 1. Then [\, \y] is a pseudo-
hyperbolic split for J. In addition, the condition \;* < \; < 1 < A, holds
automatically for any &£ > 1. Hence, the result follows from the \-Left Manifold
Theorem. Here in this note, we provide a direct proof which is an application of
the Uniform Contraction Principle. The main idea is to construct the center-stable
manifold function ¢, as part of a fixed point of a uniform contraction map. We
will break it up into a few lemmas.



Before doing so, we recall a few facts for the system. We first choose a coor-
dinate system (x, y) for the hyperbolic splitting in which D f(q) = diag(As, A.).
An adapted norm is also chosen so that for any constant o from the statement of
the theorem we can fix two more constants  and & so that the following inequal-
ities hold

Al <v<a<1and |A, 7Y <a< 1. (1)

Second, by the Variation of Parameters Formula Theorem, for sufficiently small
|f — Df(q)],, the map (Z,y) = f(x,y) is equivalent to

{ T = Az + hs(x,y) 2)
y = A+ h(7,7),
and for any orbit, p, = (2, yn) = f(Tn-1,Yn-1), n >0,
{ Ty = Asn_éxg + Z?:Z+l Asn_ihs(a?z‘fl? y’ifl) (3)
Yn = Aun_mym + E:'in+1 Aun—H_lhu(zia yz)

We only need orbits from the stable manifold, (z,yo) € W*, and fix £ = 0 from
now on. Also, by the variation of parameter formula theorem, the functions Ay, h,,
are all C'! satisfying

hs(0,0) =0, Dhs(0,0) =0, h,(0,0) =0, Dh,(0,0) =0 4)

and they are globally Lipschitz with Lipschitz constants satisfying
L = max{Lip(hy, h)} = 0 as |[f = DF(@)], = 0. )
We will repeatedly use this formula for geometric sequences
a+ar+ar’+---+ar" = %,forr;é 1
and its differentiation formulas in 7.
Lemma 1. Let
0 ={y = {pu)ro : Do = (Tn,yn) € RY sup{|[pall : n > 0} < o0}

be the Banach space of bounded infinite sequences with the supreme norm

17l = sup{lipall : n > 0}.

For any v € (>, v = {pn}>2,, let ¥ = T(7y) be defined by the equations below

{ Ty = Asnx() + Zzlzl Asniihs(pi—ﬁ (6)
In = 2t A" ha (i)

Then T : (> — (>°. More importantly, p € W? if and only if the orbit y, =
{f™(p)}e, is a fixed point of T with

p = (0,90) = (20, Ypoy A" hu(pi)) - (7
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Proof. Because h;(0) = 0, |hi(p)|| < L||p||. Since ||A7]| < v, ||A, || < & for
any 7 > 0, we have

= n - n—i L
1l < v loll + > v Lllpiall < (v + )

=1

and
— - ~i—n—1 L
7]l < D @ L pi]| < EH’VH,
i=n-+1
implying
_ L L
7 < (v + + ),

1-v 1-a
and 7" : (>° — (*° follows.

Now for every p = (x¢,yo) € W?, because of vy, = {p, = f"(p)}>2, € (>,
the first term of the y,,-equation in (3) tends to 0 as m — oo. The partial sum
term of the y,-equation converges because of the convergence of the series by the
estimate for ,, above. Hence, by taking m — oo in (3) we obtain

{ Ty = AsnxO + Z:L:ll Asn_ihs<pi—1)
Yn = Z;.Zn.H Aun+ _Zhu(pi)y

showing , is a fixed point of 7. Conversely, let v = {p,,}°>, € (> be a fixed
point 7', satisfying (8). Then it is straightforward to check

®)

Tpr1 = Astp + hs(xy,y,) and y, = Au’lynﬂ + ho(Tnat1, Yns1)

hold for all n > 0, and by (2) the sequence must be an orbit of f, namely, p, =
f(pn—1) forall n > 1. As a result, the initial point p = (¢, yo) must be given by
(7). O]

Lemma 2. There is a Lipschitz continuous function ¢, € C(E* EY) so that
¢(0) = 0 and
W?* = graph(¢,). 9

Proof. By Lemma 1, we know that p € W*® if and only if p is the initial point
of a sequence v € (> which is a fixed point of the map 7" defined by (6) and
(7) holds. To show the existence of such a fixed point, we will consider 7" as a
parameterized map by xy € E® and show that T'(-, zg) : £ — (>, z7 € E*,is a
uniform contraction. Specifically, let v,~ and ¥ = T'(~, z0),5 = T'(v/, zo). We

have ,
120 — 25,0 < 3oy 1A [hs (pim1) — hs(pi_y)]]
<D VL piea — Pl |l (10)
< v =9l

and ,
190 = Tl < 300 1A [hu(pi) — R (P))]]]
<> @ L ps — Pl (11)
< Y =Yoo
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Hence
1Ty, 20) = TV, 20)loe < L5 + 2217 = 7'l
Therefore, for sufficiently small || f — D f(g)||, we can assume by (5)

0:=L(=+ =) <1 (12)

i-a
and T'(-, zo) has a unique fixed point
v (@0) = {Pn(®0) }nlo: Pn(w0) = (#n(20), Yn(20)), n >0 (13)

for each zy € E°. Furthermore, since ||A,"|| < v™ < 1,n > 1, it is straightfor-
ward to show T'(vy, z¢) is Lipschitz continuous in xy with

17 (v, 20) = T (7, 20) [l < llzo — 20|

Thus by the Uniform Contraction Principle I, v* () is Lipschitz continuous with

17" (z0) = ¥* (20 )l oo < 5ll20 — 2l (14)

Define .
du(0) = yo(wo) = 202, Au' ™ hu(pi(20)), (15)
the y-coordinate of the initial point of the fixed point v*(z). Then by (14),

I¢u(w0) = dulaa)ll < 5 llwo — 20,

proving ¢, : E®* — E" is Lipschitz continuous. Because every orbit from (g, yo) =
(x0,yo) € W* is the fixed point of T'(-, z¢) for which (o, yo) = (20, Pu(z0)), the

graph identity (9) holds. Also, since the zero sequence vy = {0} corresponds to

the fixed point ¢ which is obviously in W*, we have from (15) and the property

h(0) = 0 that ¢,,(0) = 0. O

Lemma 3. If f € C*(RY), then ¢, € C*(E*, EY), and T,W* = E* .

Proof. To show ¢,(+) is as smooth as f, it suffices to show the fixed point v*(-) is

as smooth as f. By the Uniform Contraction Principle II, we only need to show

T € Ck> x E*, () and ||D,T(v, x0)| is uniformly bounded by a constant

smaller than 1.
To show T is C* in z, we note first that

Dy T(7, 20)|n,s = As", and [Dy T(7,x0)]n,« = 0.

This implies any mixed derivative in vy and x are the zero operators, hence well-
defined and exists. So, we only need to show 7" is C* separately in v and . For
the latter, the identity above shows

11Dz T (7, o) Il < | A" <" <1

and || Dy, T'(7, 20]|| o < 1 follows. Also, DI T'(7y,xo) = 0, for 2 < j < k. Hence,
T is C* in xy.



T is C* in v because all derivatives of f to order k are uniformly bounded.
This can be seen from the first derivative of 7. In fact, for v = {p,},v = {v,} €
(>, D, T(v, xo)v is given as below in components:

(DT (7, 0)0]n,s = D iy Asn_iDhs(pi—l)Ui—l
(DT, o)), ,, = 2o A Dhu(pi)vi

i=n+1

(16)

The derivative exists because the infinite series converges uniformly for bounded
D(hs, h,,) because f € C*(R?). Similarly, D77 exists for any 1 < j < k because
D (hy, h,,) are bounded for all j < k since (hs, h,,) € C*(R?). Furthermore, from
the equations above we have the following estimates

1D, T (v, 20)v]n,sll < 75 V)l and (D5 T(y, zo)vn,ull < 5110l

by the same arguments for the uniform contraction of 7" in the proof of Lemme 2.
Hence,
IDAT (v, 20)llo < LS + 125) < 1

for the same contraction constant of 7" as in (12).
Finally, for the derivative of ¢, as the fixed point for 7', we have from the
second equation of (16) with n =0

Déu(wo) = 32721 Au' " Dhu(pi(wo)) Dpi(z0).
Because in addition Dh,(0) = 0, p;(0) = (0, 0) for all i > 0, we have
D¢,(0) =0,

showing that the tangent space of W* at the fixed point is the stable eigenspace
R% = [*. This completes the proof. [

Lemma 4. f is a uniform contraction on W*.

Proof. Let py = (x¢, ¢u(z0)),py = (0 ,gbu(xo )) be two points from W*, and
consider their images under f, p1 = f(po), Py = f(py). Because they are fixed
points of 7', by (8) we have

1 — 24| < Y Asllllzo — 20l + [[2s(po) — hs ()]
< vllzo — o'l + Lilpo — pol
< (v + L)llpo = poll
and by (14)
lyr = il < 325, 1A (ha(pilao)) = hu(pi(o )|
< S, L — ol
< LY, a2y (wo) — v (@0 )l
< %rlgnito — 0’|
< =15 po — vy
implying
1£(po) = fpo)ll < (v + L+ tE5. 55 lpo — po
which is a uniform contraction for small L, i.e., for small || f — D f(q)||, - O
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Lemma 5. Let o be a fixed constant satisfying,
max{|c’|} < a < 1.
Then for any p € W? there is a constant R so that
If"(p) —qll < Ra™, foralln = 0.
Proof. For the parameter a assume the adapted norm satisfies (1). Let
S = {7 ={pn}>2 : pn € R% sup{a™||p,|| : n > 0} < o0}, (17)
Obviously, S, is a closed subspace of ¢>°. So if we can show 7'(-, z) maps S,
into itself, then the property that lim,, ., f™(p) = ¢ at the required geometric rate
of o for any p € W* follows.
For any v € S,, denote it by
171l = supfa™"{|pall - n = 0}
Then for any v = {p,,}>°, € S, we have for ¥ = T'(v, z) the following
1Zall < A 20l + 35, ||A87?_%||1L||pi—1” .,
< v"lwoll + L3 v o Iyl < (ol + 255 H11L,) @
and similarly,

S LZi:n+1 armn aZHrYHa S 173@”7”&&”‘

Therefore

(@, )|l < Ra™ = [llzoll + (75 + =55 LilyllJo™

a—v T 1—aa
as required. [
By applying the theorem above to f~! we can prove the following theorem.
Theorem 2 (Unstable Manifold Theorem). Let § be a hyperbolic fixed point of a
diffeomorphism f in R Then a sufficiently small || f — D f(q)||, implies W" is
the graph of a C! function ¢, : E* — E?
W* = graph(¢;),
and the tangent space of W" at the fixed point is the unstable eigenspace
T;W" =E".
Moreover, =1 is a uniform contraction on W". In addition, let 3 be any constant

satisfying
1 < < min{|c"|},

then for any p € W™ there is a constant R so that
1f"(p) —aqll < RB™", foralln > 0.
Furthermore, if f is C*, k > 1, and all its derivatives D' f, 1 < j < k, are

bounded, then ¢ is also C* with bounded derivatives.
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Theorem 3 (Local Stable and Local Unstable Manifold Theorem). Let ¢ be a
hyperbolic fixed point of a diffeomorphism f in R and let E*, E" be the stable,
respectively, the unstable eigenspace at q for the linearization D f(q). Let o, (5 be
any constants satisfying max{|o*|} < a <1 < < min{|c"|}. Then there is a
small neighborhood N, (q) and two differentiable functions ¢,, : N,(7)NE* — E¥,
¢s + N.(q) NE* — E?, so that the local stable and local unstable manifolds

W (@) := graph(¢.,), W.(q) := graph(¢s) satisfy the following properties

(i) We.={p € N, : lim, o, f"(p) = q}, and lim,,_,. [™(p) = G at rate "
forp € W .. fis auniform contraction on W, f(WS.) C WS .. And
T, Wi, = E°.

(ii) Wi, = {p € N, : lim, o, f"(p) = G}, and lim,_,, f"(p) = q at rate
7" forp € W, . f~Vis auniform contractionon W, f~1(W2,) C WE.
And T,W} = E" .

Moreover, if f is C*, k > 1, then both W§,. and W2 are C* manifolds.

Proof. Modify the map f by a C*° cut-off function p.(p — q) to f — f(p) =
Df(@)p+p-(p—q)(f(p) — Df(q)(p)). Then for sufficiently small r, Theorems 1
and 2 can be applied to the modified map to obtain the maps ¢,,, ¢,. Restrict both
to the neighborhood N,.(g), then the results follow from the theorems. ]

Definition 2. Let G be a hyperbolic fixed point of a diffeomorphism f in RY. The
global stable manifold of the fixed point is defined as

Wen(@) = U f " (Wiee(@))
and the global unstable manifold is defined as
Wein(@) = U f" (Wi (2)).

A point p is called a homoclinic point of a hyperbolic fixed point g of f if p
is an intersection of W), (¢) and W, (7). We note that if the global stable and
unstable manifolds intersect transversely, then a horseshoe dynamics arises, and
hence f is expected to be chaotic in a neighborhood of the homoclinic orbit.
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