
[Lecture Note 6∗]

Stable and Unstable Manifolds I
This notes is about stable and unstable manifolds for hyperbolic fixed points

of diffeomorphisms.
Let q̄ be a hyperbolic fixed point of a diffeomorphism f in Rd. Denote

σs = σ(Df(q̄)) ∩ {|z| < 1} and σu = σ(Df(q̄)) ∩ {|z| > 1}

the set of stable eigenvalues and, respectively, the set of unstable eigenvalues of
the linearizatoin Df(q̄).

Definition 1. Let f : Rd → Rd be a diffeomorphism and q̄ be a nonsingular fixed
point. The stable manifold of the fixed point q̄ for f is

W s = {p : {fn(p)}∞n=0 is a bounded sequence.}

The unstable manifold of the fixed point is

W u = {p : {f−n(p)}∞n=0 is a bounded sequence.}

Theorem 1 (Stable Manifold Theorem). Let q̄ be a hyperbolic fixed point of a dif-
feomorphism f in Rd with hyperbolic splitting Rd ∼= Es⊕Eu for the linearization
Df(q̄). Then a sufficiently small ‖f −Df(q̄)‖1 implies W s is the graph of a C1

function φu : Es → Eu
W s = graph(φu),

and the tangent space of W s at the fixed point is the stable eigenspace

Tq̄W s = Es.

Moreover, f is a uniform contraction on W s. In addition, let α be any constant
satisfying

max{|σs|} < α < 1,

then for any p ∈ W s there is a constant R so that

‖fn(p)− q̄‖ ≤ Rαn, for all n ≥ 0.

Furthermore, if f is Ck, k ≥ 1, and all its derivatives Djf , 1 ≤ j ≤ k, are
bounded, then φu is also Ck with bounded derivatives.

Let λ1 = max{|σs|} < 1 and λ2 = min{|σu|} > 1. Then [λ1, λ2] is a pseudo-
hyperbolic split for J . In addition, the condition λ1

k ≤ λ1 < 1 < λ2 holds
automatically for any k ≥ 1. Hence, the result follows from the λ-Left Manifold
Theorem. Here in this note, we provide a direct proof which is an application of
the Uniform Contraction Principle. The main idea is to construct the center-stable
manifold function φu as part of a fixed point of a uniform contraction map. We
will break it up into a few lemmas.
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Before doing so, we recall a few facts for the system. We first choose a coor-
dinate system (x, y) for the hyperbolic splitting in which Df(q̄) ∼= diag(As, Au).
An adapted norm is also chosen so that for any constant α from the statement of
the theorem we can fix two more constants ν and ᾱ so that the following inequal-
ities hold

‖As‖ < ν < α < 1 and ‖Au−1‖ < ᾱ < 1. (1)

Second, by the Variation of Parameters Formula Theorem, for sufficiently small
‖f −Df(q̄)‖1, the map (x̄, ȳ) = f(x, y) is equivalent to{

x̄ = Asx+ hs(x, y)
y = Au

−1ȳ + hu(x̄, ȳ),
(2)

and for any orbit, pn = (xn, yn) = f(xn−1, yn−1), n ≥ 0,{
xn = As

n−`x` +
∑n

i=`+1As
n−ihs(xi−1, yi−1)

yn = Au
n−mym +

∑m
i=n+1 Au

n+1−ihu(xi, yi).
(3)

We only need orbits from the stable manifold, (x0, y0) ∈ W s, and fix ` = 0 from
now on. Also, by the variation of parameter formula theorem, the functions hs, hu
are all C1 satisfying

hs(0, 0) = 0, Dhs(0, 0) = 0, hu(0, 0) = 0, Dhu(0, 0) = 0 (4)

and they are globally Lipschitz with Lipschitz constants satisfying

L = max{Lip(hs, hu)} → 0 as ‖f −Df(q̄)‖1 → 0. (5)

We will repeatedly use this formula for geometric sequences

a+ ar + ar2 + · · ·+ arn−1 = a(1−rn)
1−r , for r 6= 1

and its differentiation formulas in r.

Lemma 1. Let

`∞ = {γ = {pn}∞n=0 : pn = (xn, yn) ∈ Rd, sup{‖pn‖ : n ≥ 0} < +∞}

be the Banach space of bounded infinite sequences with the supreme norm

‖γ‖∞ = sup{‖pn‖ : n ≥ 0}.

For any γ ∈ `∞, γ = {pn}∞n=0, let γ̄ = T (γ) be defined by the equations below{
x̄n = As

nx0 +
∑n

i=1 As
n−ihs(pi−1)

ȳn =
∑∞

i=n+1Au
n+1−ihu(pi).

(6)

Then T : `∞ → `∞. More importantly, p ∈ W s if and only if the orbit γp =
{fn(p)}∞n=0 is a fixed point of T with

p = (x0, y0) = (x0,
∑∞

i=1Au
1−ihu(pi)) . (7)
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Proof. Because hi(0) = 0, ‖hi(p)‖ ≤ L‖p‖. Since ‖Aj‖ < νj, ‖Au−j‖ < ᾱj for
any j ≥ 0, we have

‖x̄n‖ ≤ νn‖x0‖+
n∑
i=1

νn−iL‖pi−1‖ ≤ (ν +
L

1− ν
)‖γ‖,

and

‖ȳn‖ ≤
∞∑

i=n+1

ᾱi−n−1L‖pi‖ ≤
L

1− ᾱ
‖γ‖,

implying

‖γ̄‖ ≤ (ν +
L

1− ν
+

L

1− ᾱ
)‖γ‖,

and T : `∞ → `∞ follows.
Now for every p = (x0, y0) ∈ W s, because of γp = {pn = fn(p)}∞n=1 ∈ `∞,

the first term of the yn-equation in (3) tends to 0 as m → ∞. The partial sum
term of the yn-equation converges because of the convergence of the series by the
estimate for ȳn above. Hence, by taking m→∞ in (3) we obtain{

xn = As
nx0 +

∑n
i=1 As

n−ihs(pi−1)
yn =

∑∞
i=n+1Au

n+1−ihu(pi),
(8)

showing γp is a fixed point of T . Conversely, let γ = {pn}∞n=1 ∈ `∞ be a fixed
point T , satisfying (8). Then it is straightforward to check

xn+1 = Asxn + hs(xn, yn) and yn = Au
−1yn+1 + hu(xn+1, yn+1)

hold for all n ≥ 0, and by (2) the sequence must be an orbit of f , namely, pn =
f(pn−1) for all n ≥ 1. As a result, the initial point p = (x0, y0) must be given by
(7).

Lemma 2. There is a Lipschitz continuous function φu ∈ C0,1(Es,Eu) so that
φu(0) = 0 and

W s = graph(φu). (9)

Proof. By Lemma 1, we know that p ∈ W s if and only if p is the initial point
of a sequence γ ∈ `∞ which is a fixed point of the map T defined by (6) and
(7) holds. To show the existence of such a fixed point, we will consider T as a
parameterized map by x0 ∈ Es and show that T (·, x0) : `∞ → `∞, x0 ∈ Es, is a
uniform contraction. Specifically, let γ, γ′ and γ̄ = T (γ, x0), γ̄′ = T (γ′, x0). We
have

‖x̄n − x̄′n‖ ≤
∑n

i=1 ‖As
n−i[hs(pi−1)− hs(p′i−1)]‖

≤
∑n

i=1 ν
n−iL‖pi−1 − p′i−1‖

≤ L
1−ν‖γ − γ

′‖∞
(10)

and
‖ȳn − ȳ′n‖ ≤

∑∞
i=n+1 ‖Au

n+1−i[hu(pi)− hu(p′i)]‖
≤
∑∞

i=n+1 ᾱ
i−n−1L‖pi − p′i‖

≤ L
1−ᾱ‖γ − γ

′‖∞.
(11)
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Hence
‖T (γ, x0)− T (γ′, x0)‖∞ ≤ L( 1

1−ν + 1
1−ᾱ)‖γ − γ′‖∞.

Therefore, for sufficiently small ‖f −Df(q̄)‖1 we can assume by (5)

θ := L( 1
1−ν + 1

1−ᾱ) < 1 (12)

and T (·, x0) has a unique fixed point

γ∗(x0) = {pn(x0)}∞n=0, pn(x0) = (xn(x0), yn(x0)), n ≥ 0 (13)

for each x0 ∈ Es. Furthermore, since ‖Asn‖ < νn < 1, n ≥ 1, it is straightfor-
ward to show T (γ, x0) is Lipschitz continuous in x0 with

‖T (γ, x0)− T (γ, x0
′)‖∞ ≤ ‖x0 − x0

′‖.

Thus by the Uniform Contraction Principle I, γ∗(x0) is Lipschitz continuous with

‖γ∗(x0)− γ∗(x0
′)‖∞ ≤

1
1−θ‖x0 − x0

′‖. (14)

Define
φu(x0) = y0(x0) =

∑∞
i=1Au

1−ihu(pi(x0)), (15)

the y-coordinate of the initial point of the fixed point γ∗(x0). Then by (14),

‖φu(x0)− φu(x0
′)‖ ≤ 1

1−θ‖x0 − x0
′‖,

proving φu : Es → Eu is Lipschitz continuous. Because every orbit from (x0, y0) =
(x0, y0) ∈ W s is the fixed point of T (·, x0) for which (x0, y0) = (x0, φu(x0)), the
graph identity (9) holds. Also, since the zero sequence γ0 = {0} corresponds to
the fixed point q̄ which is obviously in W s, we have from (15) and the property
h(0) = 0 that φu(0) = 0.

Lemma 3. If f ∈ Ck(Rd), then φu ∈ Ck(Es,Eu), and Tq̄W s = Es .

Proof. To show φu(·) is as smooth as f , it suffices to show the fixed point γ∗(·) is
as smooth as f . By the Uniform Contraction Principle II, we only need to show
T ∈ Ck(`∞ × Es, `∞) and ‖DγT (γ, x0)‖ is uniformly bounded by a constant
smaller than 1.

To show T is Ck in x0, we note first that

[Dx0T (γ, x0)]n, s = As
n, and [Dx0T (γ, x0)]n, u = 0.

This implies any mixed derivative in γ and x0 are the zero operators, hence well-
defined and exists. So, we only need to show T is Ck separately in γ and x0. For
the latter, the identity above shows

‖[Dx0T (γ, x0)]n‖ ≤ ‖Asn‖ ≤ νn < 1

and ‖Dx0T (γ, x0]‖∞ ≤ 1 follows. Also, Dj
x0
T (γ, x0) = 0, for 2 ≤ j ≤ k. Hence,

T is Ck in x0.
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T is Ck in γ because all derivatives of f to order k are uniformly bounded.
This can be seen from the first derivative of T . In fact, for γ = {pn}, v = {vn} ∈
`∞, DγT (γ, x0)v is given as below in components:{

[DγT (γ, x0)v]n, s =
∑n

i=1As
n−iDhs(pi−1)vi−1

[DγT (γ, x0)v]n, u =
∑∞

i=n+1 Au
n+1−iDhu(pi)vi.

(16)

The derivative exists because the infinite series converges uniformly for bounded
D(hs, hu) because f ∈ Ck(Rd). Similarly, DjT exists for any 1 ≤ j ≤ k because
Dj(hs, hu) are bounded for all j ≤ k since (hs, hu) ∈ Ck(Rd). Furthermore, from
the equations above we have the following estimates

‖[DγT (γ, x0)v]n, s‖ ≤ L
1−ν‖v‖∞ and ‖[DγT (γ, x0)v]n, u‖ ≤ L

1−ᾱ‖v‖∞
by the same arguments for the uniform contraction of T in the proof of Lemme 2.
Hence,

‖DγT (γ, x0)‖∞ ≤ L( 1
1−ν + 1

1−ᾱ) < 1

for the same contraction constant of T as in (12).
Finally, for the derivative of φu as the fixed point for T , we have from the

second equation of (16) with n = 0

Dφu(x0) =
∑∞

i=1Au
1−iDhu(pi(x0))Dpi(x0).

Because in addition Dhu(0) = 0, pi(0) = (0, 0) for all i ≥ 0, we have

Dφu(0) = 0,

showing that the tangent space of W s at the fixed point is the stable eigenspace
Rds ∼= Es. This completes the proof.

Lemma 4. f is a uniform contraction on W s.

Proof. Let p0 = (x0, φu(x0)), p′0 = (x0
′, φu(x0

′)) be two points from W s, and
consider their images under f , p1 = f(p0), p′1 = f(p′0). Because they are fixed
points of T , by (8) we have

‖x1 − x′1‖ ≤ ‖As‖‖x0 − x0
′‖+ ‖hs(p0)− hs(p′0)‖

≤ ν‖x0 − x0
′‖+ L‖p0 − p′0‖

≤ (ν + L)‖p0 − p′0‖

and by (14)

‖y1 − y′1‖ ≤
∑∞

i=2 ‖Au
2−i[hu(pi(x0))− hu(pi(x0

′))]‖
≤
∑∞

i=2 ᾱ
i−2L‖pi − p′i‖

≤ L
∑∞

i=2 ᾱ
i−2‖γ∗(x0)− γ∗(x0

′)‖∞
≤ L

1−ᾱ
1

1−θ‖x0 − x0
′‖

≤ L
1−ᾱ

1
1−θ‖p0 − p′0‖

implying
‖f(p0)− f(p′0)‖ ≤ (ν + L+ L

1−ᾱ
1

1−θ )‖p0 − p′0‖
which is a uniform contraction for small L, i.e., for small ‖f −Df(q̄)‖1 .
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Lemma 5. Let α be a fixed constant satisfying,

max{|σs|} < α < 1.

Then for any p ∈ W s there is a constant R so that

‖fn(p)− q̄‖ ≤ Rαn, for all n ≥ 0.

Proof. For the parameter α assume the adapted norm satisfies (1). Let

Sα := {γ = {pn}∞n=0 : pn ∈ Rd, sup{α−n‖pn‖ : n ≥ 0} <∞}. (17)

Obviously, Sα is a closed subspace of `∞. So if we can show T (·, x0) maps Sα
into itself, then the property that limn→∞ f

n(p) = q̄ at the required geometric rate
of α for any p ∈ W s follows.

For any γ ∈ Sα, denote it by

‖γ‖α = sup{α−n‖pn‖ : n ≥ 0}.

Then for any γ = {pn}∞n=0 ∈ Sα, we have for γ̄ = T (γ, x0) the following

‖x̄n‖ ≤ ‖Asnx0‖+
∑n

i=1 ‖As
n−i‖L‖pi−1‖

≤ νn‖x0‖+ L
∑n

i=1 ν
n−iαi−1‖γ‖α ≤

(
‖x0‖+ L

α−ν‖γ‖α
)
αn

and similarly,

‖ȳn‖ ≤
∑∞

i=n+1 ‖Au
n+1−i‖L‖pi‖

≤ L
∑∞

i=n+1 ᾱ
i−n−1αi‖γ‖α ≤

Lα
1−αᾱ‖γ‖αα

n.

Therefore

‖(x̄n, ȳn)‖ ≤ Rαn := [‖x0‖+ ( 1
α−ν + α

1−αᾱ)L‖γ‖α]αn

as required.

By applying the theorem above to f−1 we can prove the following theorem.

Theorem 2 (Unstable Manifold Theorem). Let q̄ be a hyperbolic fixed point of a
diffeomorphism f in Rd. Then a sufficiently small ‖f −Df(q̄)‖1 implies W u is
the graph of a C1 function φs : Eu → Es

W u = graph(φs),

and the tangent space of W u at the fixed point is the unstable eigenspace

Tq̄W u = Eu.

Moreover, f−1 is a uniform contraction on W u. In addition, let β be any constant
satisfying

1 < β < min{|σu|},
then for any p ∈ W u there is a constant R so that

‖f−n(p)− q̄‖ ≤ Rβ−n, for all n ≥ 0.

Furthermore, if f is Ck, k ≥ 1, and all its derivatives Djf , 1 ≤ j ≤ k, are
bounded, then φs is also Ck with bounded derivatives.
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Theorem 3 (Local Stable and Local Unstable Manifold Theorem). Let q̄ be a
hyperbolic fixed point of a diffeomorphism f in Rd and let Es, Eu be the stable,
respectively, the unstable eigenspace at q̄ for the linearizationDf(q̄). Let α, β be
any constants satisfying max{|σs|} < α < 1 < β < min{|σu|}. Then there is a
small neighborhoodNr(q̄) and two differentiable functions φu : Nr(q̄)∩Es → Eu,
φs : Nr(q̄) ∩ Eu → Es, so that the local stable and local unstable manifolds
W s

loc(q̄) := graph(φu), W u
loc(q̄) := graph(φs) satisfy the following properties

(i) W s
loc = {p ∈ Nr : limn→∞ f

n(p) = q̄}, and limn→∞ f
n(p) = q̄ at rate αn

for p ∈ W s
loc . f is a uniform contraction on W s

loc, f(W s
loc) ⊂ W s

loc . And
Tq̄W s

loc = Es .

(ii) W u
loc = {p ∈ Nr : limn→∞ f

−n(p) = q̄}, and limn→∞ f
−n(p) = q̄ at rate

β−n for p ∈ W u
loc . f−1 is a uniform contraction onW u

loc, f
−1(W u

loc) ⊂ W u
loc.

And Tq̄W u
loc = Eu .

Moreover, if f is Ck, k ≥ 1, then both W s
loc and W u

loc are Ck manifolds.

Proof. Modify the map f by a C∞ cut-off function ρr(p − q̄) to f → f(p) =
Df(q̄)p+ρr(p− q̄)(f(p)−Df(q̄)(p)). Then for sufficiently small r, Theorems 1
and 2 can be applied to the modified map to obtain the maps φu, φs. Restrict both
to the neighborhood Nr(q̄), then the results follow from the theorems.

Definition 2. Let q̄ be a hyperbolic fixed point of a diffeomorphism f in Rd. The
global stable manifold of the fixed point is defined as

W s
glb(q̄) = ∪∞n f−n(W s

loc(q̄))

and the global unstable manifold is defined as

W u
glb(q̄) = ∪∞n fn(W s

loc(q̄)).

A point p̄ is called a homoclinic point of a hyperbolic fixed point q̄ of f if p̄
is an intersection of W s

glb(q̄) and W u
glb(q̄). We note that if the global stable and

unstable manifolds intersect transversely, then a horseshoe dynamics arises, and
hence f is expected to be chaotic in a neighborhood of the homoclinic orbit.
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