Stable and Unstable Manifolds I

This notes is about stable and unstable manifolds for hyperbolic fixed points of diffeomorphisms.

Let \bar{q} be a hyperbolic fixed point of a diffeomorphism f in \mathbb{R}^d . Denote

$$\sigma^s = \sigma(Df(\bar{q})) \cap \{|z| < 1\}$$
 and $\sigma^u = \sigma(Df(\bar{q})) \cap \{|z| > 1\}$

the set of stable eigenvalues and, respectively, the set of unstable eigenvalues of the linearizatoin $Df(\bar{q})$.

Definition 1. Let $f: \mathbb{R}^d \to \mathbb{R}^d$ be a diffeomorphism and \bar{q} be a nonsingular fixed point. The stable manifold of the fixed point \bar{q} for f is

$$W^{\mathrm{s}} = \{p : \{f^n(p)\}_{n=0}^{\infty} \text{ is a bounded sequence.}\}$$

The unstable manifold of the fixed point is

$$W^{\mathrm{u}} = \{p : \{f^{-n}(p)\}_{n=0}^{\infty} \text{ is a bounded sequence.}\}$$

Theorem 1 (Stable Manifold Theorem). Let \bar{q} be a hyperbolic fixed point of a diffeomorphism f in \mathbb{R}^d with hyperbolic splitting $\mathbb{R}^d \cong \mathbb{E}^s \oplus \mathbb{E}^u$ for the linearization $Df(\bar{q})$. Then a sufficiently small $||f - Df(\bar{q})||_1$ implies W^s is the graph of a C^1 function $\phi_u : \mathbb{E}^s \to \mathbb{E}^u$

$$W^{\rm s} = \operatorname{graph}(\phi_u),$$

and the tangent space of W^{s} at the fixed point is the stable eigenspace

$$\mathbb{T}_{\bar{q}}W^{\mathrm{s}} = \mathbb{E}^{s}.$$

Moreover, f is a uniform contraction on W^s . In addition, let α be any constant satisfying

$$\max\{|\sigma^s|\} < \alpha < 1,$$

then for any $p \in W^s$ there is a constant R so that

$$||f^n(p) - \bar{q}|| \le R\alpha^n$$
, for all $n \ge 0$.

Furthermore, if f is C^k , $k \ge 1$, and all its derivatives $D^j f$, $1 \le j \le k$, are bounded, then ϕ_u is also C^k with bounded derivatives.

Let $\lambda_1 = \max\{|\sigma^s|\} < 1$ and $\lambda_2 = \min\{|\sigma^u|\} > 1$. Then $[\lambda_1, \lambda_2]$ is a pseudo-hyperbolic split for J. In addition, the condition $\lambda_1{}^k \leq \lambda_1 < 1 < \lambda_2$ holds automatically for any $k \geq 1$. Hence, the result follows from the λ -Left Manifold Theorem. Here in this note, we provide a direct proof which is an application of the Uniform Contraction Principle. The main idea is to construct the center-stable manifold function ϕ_u as part of a fixed point of a uniform contraction map. We will break it up into a few lemmas.

Before doing so, we recall a few facts for the system. We first choose a coordinate system (x,y) for the hyperbolic splitting in which $Df(\bar{q})\cong \mathrm{diag}(A_s,A_u)$. An adapted norm is also chosen so that for any constant α from the statement of the theorem we can fix two more constants ν and $\bar{\alpha}$ so that the following inequalities hold

$$||A_s|| < \nu < \alpha < 1 \text{ and } ||A_u^{-1}|| < \bar{\alpha} < 1.$$
 (1)

Second, by the Variation of Parameters Formula Theorem, for sufficiently small $||f - Df(\bar{q})||_1$, the map $(\bar{x}, \bar{y}) = f(x, y)$ is equivalent to

$$\begin{cases} \bar{x} = A_s x + h_s(x, y) \\ y = A_u^{-1} \bar{y} + h_u(\bar{x}, \bar{y}), \end{cases}$$
 (2)

and for any orbit, $p_n = (x_n, y_n) = f(x_{n-1}, y_{n-1}), \ n \ge 0$,

$$\begin{cases} x_n = A_s^{n-\ell} x_\ell + \sum_{i=\ell+1}^n A_s^{n-i} h_s(x_{i-1}, y_{i-1}) \\ y_n = A_u^{n-m} y_m + \sum_{i=n+1}^m A_u^{n+1-i} h_u(x_i, y_i). \end{cases}$$
(3)

We only need orbits from the stable manifold, $(x_0, y_0) \in W^s$, and fix $\ell = 0$ from now on. Also, by the variation of parameter formula theorem, the functions h_s, h_u are all C^1 satisfying

$$h_s(0,0) = 0$$
, $Dh_s(0,0) = 0$, $h_u(0,0) = 0$, $Dh_u(0,0) = 0$ (4)

and they are globally Lipschitz with Lipschitz constants satisfying

$$L = \max\{\text{Lip}(h_s, h_u)\} \to 0 \text{ as } ||f - Df(\bar{q})||_1 \to 0.$$
 (5)

We will repeatedly use this formula for geometric sequences

$$a + ar + ar^{2} + \dots + ar^{n-1} = \frac{a(1-r^{n})}{1-r}$$
, for $r \neq 1$

and its differentiation formulas in r.

Lemma 1. Let

$$\ell^{\infty} = \{ \gamma = \{ p_n \}_{n=0}^{\infty} : p_n = (x_n, y_n) \in \mathbb{R}^d, \sup\{ \| p_n \| : n \ge 0 \} < +\infty \}$$

be the Banach space of bounded infinite sequences with the supreme norm

$$\|\gamma\|_{\infty} = \sup\{\|p_n\| : n \ge 0\}.$$

For any $\gamma \in \ell^{\infty}$, $\gamma = \{p_n\}_{n=0}^{\infty}$, let $\bar{\gamma} = T(\gamma)$ be defined by the equations below

$$\begin{cases} \bar{x}_n = A_s^n x_0 + \sum_{i=1}^n A_s^{n-i} h_s(p_{i-1}) \\ \bar{y}_n = \sum_{i=n+1}^\infty A_u^{n+1-i} h_u(p_i). \end{cases}$$
 (6)

Then $T: \ell^{\infty} \to \ell^{\infty}$. More importantly, $p \in W^{s}$ if and only if the orbit $\gamma_{p} = \{f^{n}(p)\}_{n=0}^{\infty}$ is a fixed point of T with

$$p = (x_0, y_0) = (x_0, \sum_{i=1}^{\infty} A_u^{1-i} h_u(p_i)).$$
 (7)

Proof. Because $h_i(0) = 0$, $||h_i(p)|| \le L||p||$. Since $||A^j|| < \nu^j$, $||A_u^{-j}|| < \bar{\alpha}^j$ for any $j \ge 0$, we have

$$\|\bar{x}_n\| \le \nu^n \|x_0\| + \sum_{i=1}^n \nu^{n-i} L \|p_{i-1}\| \le (\nu + \frac{L}{1-\nu}) \|\gamma\|,$$

and

$$\|\bar{y}_n\| \le \sum_{i=n+1}^{\infty} \bar{\alpha}^{i-n-1} L \|p_i\| \le \frac{L}{1-\bar{\alpha}} \|\gamma\|,$$

implying

$$\|\bar{\gamma}\| \le (\nu + \frac{L}{1-\nu} + \frac{L}{1-\bar{\alpha}})\|\gamma\|,$$

and $T: \ell^{\infty} \to \ell^{\infty}$ follows.

Now for every $p=(x_0,y_0)\in W^s$, because of $\gamma_p=\{p_n=f^n(p)\}_{n=1}^\infty\in\ell^\infty$, the first term of the y_n -equation in (3) tends to 0 as $m\to\infty$. The partial sum term of the y_n -equation converges because of the convergence of the series by the estimate for \bar{y}_n above. Hence, by taking $m\to\infty$ in (3) we obtain

$$\begin{cases} x_n = A_s^n x_0 + \sum_{i=1}^n A_s^{n-i} h_s(p_{i-1}) \\ y_n = \sum_{i=n+1}^\infty A_u^{n+1-i} h_u(p_i), \end{cases}$$
(8)

showing γ_p is a fixed point of T. Conversely, let $\gamma = \{p_n\}_{n=1}^{\infty} \in \ell^{\infty}$ be a fixed point T, satisfying (8). Then it is straightforward to check

$$x_{n+1} = A_s x_n + h_s(x_n, y_n)$$
 and $y_n = A_u^{-1} y_{n+1} + h_u(x_{n+1}, y_{n+1})$

hold for all $n \geq 0$, and by (2) the sequence must be an orbit of f, namely, $p_n = f(p_{n-1})$ for all $n \geq 1$. As a result, the initial point $p = (x_0, y_0)$ must be given by (7).

Lemma 2. There is a Lipschitz continuous function $\phi_u \in C^{0,1}(\mathbb{E}^s, \mathbb{E}^u)$ so that $\phi_u(0) = 0$ and

$$W^{\rm s} = \operatorname{graph}(\phi_u). \tag{9}$$

Proof. By Lemma 1, we know that $p \in W^s$ if and only if p is the initial point of a sequence $\gamma \in \ell^\infty$ which is a fixed point of the map T defined by (6) and (7) holds. To show the existence of such a fixed point, we will consider T as a parameterized map by $x_0 \in \mathbb{E}^s$ and show that $T(\cdot, x_0) : \ell^\infty \to \ell^\infty$, $x_0 \in \mathbb{E}^s$, is a uniform contraction. Specifically, let γ, γ' and $\bar{\gamma} = T(\gamma, x_0), \bar{\gamma}' = T(\gamma', x_0)$. We have

$$\|\bar{x}_{n} - \bar{x}'_{n}\| \leq \sum_{i=1}^{n} \|A_{s}^{n-i}[h_{s}(p_{i-1}) - h_{s}(p'_{i-1})]\|$$

$$\leq \sum_{i=1}^{n} \nu^{n-i}L\|p_{i-1} - p'_{i-1}\|$$

$$\leq \frac{L}{1-\nu}\|\gamma - \gamma'\|_{\infty}$$
(10)

and

$$\|\bar{y}_{n} - \bar{y}'_{n}\| \leq \sum_{i=n+1}^{\infty} \|A_{u}^{n+1-i}[h_{u}(p_{i}) - h_{u}(p'_{i})]\|$$

$$\leq \sum_{i=n+1}^{\infty} \bar{\alpha}^{i-n-1}L\|p_{i} - p'_{i}\|$$

$$\leq \frac{L}{1-\bar{\alpha}}\|\gamma - \gamma'\|_{\infty}.$$
(11)

Hence

$$||T(\gamma, x_0) - T(\gamma', x_0)||_{\infty} \le L(\frac{1}{1-\nu} + \frac{1}{1-\bar{\alpha}})||\gamma - \gamma'||_{\infty}.$$

Therefore, for sufficiently small $||f - Df(\bar{q})||_1$ we can assume by (5)

$$\theta := L(\frac{1}{1-\nu} + \frac{1}{1-\bar{\alpha}}) < 1 \tag{12}$$

and $T(\cdot, x_0)$ has a unique fixed point

$$\gamma^*(x_0) = \{p_n(x_0)\}_{n=0}^{\infty}, \ p_n(x_0) = (x_n(x_0), y_n(x_0)), \ n \ge 0$$
 (13)

for each $x_0 \in \mathbb{E}^s$. Furthermore, since $||A_s|^n|| < \nu^n < 1, n \ge 1$, it is straightforward to show $T(\gamma, x_0)$ is Lipschitz continuous in x_0 with

$$||T(\gamma, x_0) - T(\gamma, x_0')||_{\infty} \le ||x_0 - x_0'||.$$

Thus by the Uniform Contraction Principle I, $\gamma^*(x_0)$ is Lipschitz continuous with

$$\|\gamma^*(x_0) - \gamma^*(x_0')\|_{\infty} \le \frac{1}{1-\theta} \|x_0 - x_0'\|.$$
 (14)

Define

$$\phi_u(x_0) = y_0(x_0) = \sum_{i=1}^{\infty} A_u^{1-i} h_u(p_i(x_0)),$$
(15)

the y-coordinate of the initial point of the fixed point $\gamma^*(x_0)$. Then by (14),

$$\|\phi_u(x_0) - \phi_u(x_0')\| \le \frac{1}{1-\theta} \|x_0 - x_0'\|,$$

proving $\phi_u : \mathbb{E}^s \to \mathbb{E}^u$ is Lipschitz continuous. Because every orbit from $(x_0, y_0) = (x_0, y_0) \in W^s$ is the fixed point of $T(\cdot, x_0)$ for which $(x_0, y_0) = (x_0, \phi_u(x_0))$, the graph identity (9) holds. Also, since the zero sequence $\gamma_0 = \{0\}$ corresponds to the fixed point \bar{q} which is obviously in W^s , we have from (15) and the property h(0) = 0 that $\phi_u(0) = 0$.

Lemma 3. If
$$f \in C^k(\mathbb{R}^d)$$
, then $\phi_u \in C^k(\mathbb{E}^s, \mathbb{E}^u)$, and $\mathbb{T}_{\bar{q}}W^s = \mathbb{E}^s$.

Proof. To show $\phi_u(\cdot)$ is as smooth as f, it suffices to show the fixed point $\gamma^*(\cdot)$ is as smooth as f. By the Uniform Contraction Principle II, we only need to show $T \in C^k(\ell^\infty \times \mathbb{E}^s, \ell^\infty)$ and $\|D_\gamma T(\gamma, x_0)\|$ is uniformly bounded by a constant smaller than 1.

To show T is C^k in x_0 , we note first that

$$[D_{x_0}T(\gamma,x_0)]_{n,s} = A_s^n$$
, and $[D_{x_0}T(\gamma,x_0)]_{n,u} = 0$.

This implies any mixed derivative in γ and x_0 are the zero operators, hence well-defined and exists. So, we only need to show T is C^k separately in γ and x_0 . For the latter, the identity above shows

$$||[D_{x_0}T(\gamma, x_0)]_n|| \le ||A_s|^n|| \le \nu^n < 1$$

and $||D_{x_0}T(\gamma,x_0]||_{\infty} \le 1$ follows. Also, $D_{x_0}^jT(\gamma,x_0)=0$, for $2\le j\le k$. Hence, T is C^k in x_0 .

T is C^k in γ because all derivatives of f to order k are uniformly bounded. This can be seen from the first derivative of T. In fact, for $\gamma = \{p_n\}, v = \{v_n\} \in \ell^{\infty}, D_{\gamma}T(\gamma, x_0)v$ is given as below in components:

$$\begin{cases}
[D_{\gamma}T(\gamma, x_0)v]_{n,s} = \sum_{i=1}^{n} A_s^{n-i} Dh_s(p_{i-1})v_{i-1} \\
[D_{\gamma}T(\gamma, x_0)v]_{n,u} = \sum_{i=n+1}^{\infty} A_u^{n+1-i} Dh_u(p_i)v_i.
\end{cases}$$
(16)

The derivative exists because the infinite series converges uniformly for bounded $D(h_s, h_u)$ because $f \in C^k(\mathbb{R}^d)$. Similarly, D^jT exists for any $1 \leq j \leq k$ because $D^j(h_s, h_u)$ are bounded for all $j \leq k$ since $(h_s, h_u) \in C^k(\mathbb{R}^d)$. Furthermore, from the equations above we have the following estimates

$$||[D_{\gamma}T(\gamma,x_0)v]_{n,\,s}|| \leq \frac{L}{1-\nu}||v||_{\infty} \text{ and } ||[D_{\gamma}T(\gamma,x_0)v]_{n,\,u}|| \leq \frac{L}{1-\bar{\alpha}}||v||_{\infty}$$

by the same arguments for the uniform contraction of T in the proof of Lemme 2. Hence,

$$||D_{\gamma}T(\gamma, x_0)||_{\infty} \le L(\frac{1}{1-\nu} + \frac{1}{1-\bar{\alpha}}) < 1$$

for the same contraction constant of T as in (12).

Finally, for the derivative of ϕ_u as the fixed point for T, we have from the second equation of (16) with n=0

$$D\phi_u(x_0) = \sum_{i=1}^{\infty} A_u^{1-i} Dh_u(p_i(x_0)) Dp_i(x_0).$$

Because in addition $Dh_u(0) = 0$, $p_i(0) = (0,0)$ for all $i \ge 0$, we have

$$D\phi_u(0) = 0,$$

showing that the tangent space of W^s at the fixed point is the stable eigenspace $\mathbb{R}^{d_s} \cong \mathbb{E}^s$. This completes the proof.

Lemma 4. f is a uniform contraction on W^{s} .

Proof. Let $p_0 = (x_0, \phi_u(x_0)), p_0' = (x_0', \phi_u(x_0'))$ be two points from W^s , and consider their images under f, $p_1 = f(p_0), p_1' = f(p_0')$. Because they are fixed points of T, by (8) we have

$$||x_1 - x_1'|| \le ||A_s|| ||x_0 - x_0'|| + ||h_s(p_0) - h_s(p_0')||$$

$$\le \nu ||x_0 - x_0'|| + L||p_0 - p_0'||$$

$$\le (\nu + L)||p_0 - p_0'||$$

and by (14)

$$||y_{1} - y'_{1}|| \leq \sum_{i=2}^{\infty} ||A_{u}|^{2-i} [h_{u}(p_{i}(x_{0})) - h_{u}(p_{i}(x_{0}'))]||$$

$$\leq \sum_{i=2}^{\infty} \bar{\alpha}^{i-2} L ||p_{i} - p'_{i}||$$

$$\leq L \sum_{i=2}^{\infty} \bar{\alpha}^{i-2} ||\gamma^{*}(x_{0}) - \gamma^{*}(x_{0}')||_{\infty}$$

$$\leq \frac{L}{1-\bar{\alpha}} \frac{1}{1-\theta} ||x_{0} - x_{0}'||$$

$$\leq \frac{L}{1-\bar{\alpha}} \frac{1}{1-\theta} ||p_{0} - p'_{0}||$$

implying

$$||f(p_0) - f(p_0')|| \le (\nu + L + \frac{L}{1-\bar{\alpha}} \frac{1}{1-\theta}) ||p_0 - p_0'||$$

which is a uniform contraction for small L, i.e., for small $||f - Df(\bar{q})||_1$.

Lemma 5. Let α be a fixed constant satisfying,

$$\max\{|\sigma^s|\}<\alpha<1.$$

Then for any $p \in W^s$ there is a constant R so that

$$||f^n(p) - \bar{q}|| \le R\alpha^n$$
, for all $n \ge 0$.

Proof. For the parameter α assume the adapted norm satisfies (1). Let

$$S_{\alpha} := \{ \gamma = \{ p_n \}_{n=0}^{\infty} : p_n \in \mathbb{R}^d, \sup \{ \alpha^{-n} || p_n || : n \ge 0 \} < \infty \}.$$
 (17)

Obviously, S_{α} is a closed subspace of ℓ^{∞} . So if we can show $T(\cdot, x_0)$ maps S_{α} into itself, then the property that $\lim_{n\to\infty} f^n(p) = \bar{q}$ at the required geometric rate of α for any $p \in W^s$ follows.

For any $\gamma \in S_{\alpha}$, denote it by

$$\|\gamma\|_{\alpha} = \sup\{\alpha^{-n} \|p_n\| : n \ge 0\}.$$

Then for any $\gamma = \{p_n\}_{n=0}^{\infty} \in S_{\alpha}$, we have for $\bar{\gamma} = T(\gamma, x_0)$ the following

$$\|\bar{x}_n\| \le \|A_s^n x_0\| + \sum_{i=1}^n \|A_s^{n-i}\| L \|p_{i-1}\|$$

$$\le \nu^n \|x_0\| + L \sum_{i=1}^n \nu^{n-i} \alpha^{i-1} \|\gamma\|_{\alpha} \le (\|x_0\| + \frac{L}{\alpha - \nu} \|\gamma\|_{\alpha}) \alpha^n$$

and similarly,

$$\|\bar{y}_n\| \leq \sum_{i=n+1}^{\infty} \|A_u^{n+1-i}\|L\|p_i\|$$

$$\leq L \sum_{i=n+1}^{\infty} \bar{\alpha}^{i-n-1} \alpha^i \|\gamma\|_{\alpha} \leq \frac{L\alpha}{1-\alpha\bar{\alpha}} \|\gamma\|_{\alpha} \alpha^n.$$

Therefore

$$\|(\bar{x}_n, \bar{y}_n)\| \le R\alpha^n := \|x_0\| + (\frac{1}{\alpha - \nu} + \frac{\alpha}{1 - \alpha \bar{\alpha}})L\|\gamma\|_{\alpha} \alpha^n$$

as required.

By applying the theorem above to f^{-1} we can prove the following theorem.

Theorem 2 (Unstable Manifold Theorem). Let \bar{q} be a hyperbolic fixed point of a diffeomorphism f in \mathbb{R}^d . Then a sufficiently small $||f - Df(\bar{q})||_1$ implies W^u is the graph of a C^1 function $\phi_s : \mathbb{E}^u \to \mathbb{E}^s$

$$W^{\mathrm{u}} = \mathrm{graph}(\phi_s),$$

and the tangent space of W^{u} at the fixed point is the unstable eigenspace

$$\mathbb{T}_{\bar{q}}W^{\mathrm{u}} = \mathbb{E}^{u}.$$

Moreover, f^{-1} is a uniform contraction on W^{u} . In addition, let β be any constant satisfying

$$1 < \beta < \min\{|\sigma^u|\},$$

then for any $p \in W^{\mathrm{u}}$ there is a constant R so that

$$||f^{-n}(p) - \bar{q}|| \le R\beta^{-n}$$
, for all $n \ge 0$.

Furthermore, if f is C^k , $k \ge 1$, and all its derivatives $D^j f$, $1 \le j \le k$, are bounded, then ϕ_s is also C^k with bounded derivatives.

Theorem 3 (Local Stable and Local Unstable Manifold Theorem). Let \bar{q} be a hyperbolic fixed point of a diffeomorphism f in \mathbb{R}^d and let \mathbb{E}^s , \mathbb{E}^u be the stable, respectively, the unstable eigenspace at \bar{q} for the linearization $Df(\bar{q})$. Let α , β be any constants satisfying $\max\{|\sigma^s|\} < \alpha < 1 < \beta < \min\{|\sigma^u|\}$. Then there is a small neighborhood $N_r(\bar{q})$ and two differentiable functions $\phi_u : N_r(\bar{q}) \cap \mathbb{E}^s \to \mathbb{E}^u$, $\phi_s : N_r(\bar{q}) \cap \mathbb{E}^u \to \mathbb{E}^s$, so that the local stable and local unstable manifolds $W^s_{\text{loc}}(\bar{q}) := \text{graph}(\phi_u)$, $W^u_{\text{loc}}(\bar{q}) := \text{graph}(\phi_s)$ satisfy the following properties

- (i) $W^{\mathrm{s}}_{\mathrm{loc}} = \{ p \in N_r : \lim_{n \to \infty} f^n(p) = \bar{q} \}$, and $\lim_{n \to \infty} f^n(p) = \bar{q}$ at rate α^n for $p \in W^{\mathrm{s}}_{\mathrm{loc}}$. f is a uniform contraction on $W^{\mathrm{s}}_{\mathrm{loc}}$, $f(W^{\mathrm{s}}_{\mathrm{loc}}) \subset W^{\mathrm{s}}_{\mathrm{loc}}$. And $\mathbb{T}_{\bar{q}}W^{\mathrm{s}}_{\mathrm{loc}} = \mathbb{E}^s$.
- (ii) $W^{\mathrm{u}}_{\mathrm{loc}} = \{ p \in N_r : \lim_{n \to \infty} f^{-n}(p) = \bar{q} \}$, and $\lim_{n \to \infty} f^{-n}(p) = \bar{q}$ at rate β^{-n} for $p \in W^{\mathrm{u}}_{\mathrm{loc}}$. f^{-1} is a uniform contraction on $W^{\mathrm{u}}_{\mathrm{loc}}$, $f^{-1}(W^{\mathrm{u}}_{\mathrm{loc}}) \subset W^{\mathrm{u}}_{\mathrm{loc}}$. And $\mathbb{T}_{\bar{q}}W^{\mathrm{u}}_{\mathrm{loc}} = \mathbb{E}^u$.

Moreover, if f is C^k , $k \ge 1$, then both W_{loc}^s and W_{loc}^u are C^k manifolds.

Proof. Modify the map f by a C^{∞} cut-off function $\rho_r(p-\bar{q})$ to $f\to f(p)=Df(\bar{q})p+\rho_r(p-\bar{q})(f(p)-Df(\bar{q})(p))$. Then for sufficiently small r, Theorems 1 and 2 can be applied to the modified map to obtain the maps ϕ_u,ϕ_s . Restrict both to the neighborhood $N_r(\bar{q})$, then the results follow from the theorems. \Box

Definition 2. Let \bar{q} be a hyperbolic fixed point of a diffeomorphism f in \mathbb{R}^d . The global stable manifold of the fixed point is defined as

$$W_{\mathrm{glb}}^{\mathrm{s}}(\bar{q}) = \bigcup_{n=1}^{\infty} f^{-n}(W_{\mathrm{loc}}^{\mathrm{s}}(\bar{q}))$$

and the global unstable manifold is defined as

$$W_{\text{glb}}^{\text{u}}(\bar{q}) = \bigcup_{n=1}^{\infty} f^n(W_{\text{loc}}^{\text{s}}(\bar{q})).$$

A point \bar{p} is called a homoclinic point of a hyperbolic fixed point \bar{q} of f if \bar{p} is an intersection of $W^{\rm s}_{\rm glb}(\bar{q})$ and $W^{\rm u}_{\rm glb}(\bar{q})$. We note that if the global stable and unstable manifolds intersect transversely, then a horseshoe dynamics arises, and hence f is expected to be chaotic in a neighborhood of the homoclinic orbit.

