[Lecture Note 5]
Sub-Foliation of Left Manifold

The Sub-Foliation of Left-Manifold Theorem obtained in this note can be used
to obtained all commonly encountered invariant foliations for both diffeomor-
phisms and ordinary differential equations. They include: the strong-stable folia-
tion of the stable manifold, /3 C W} , the strong-stable foliation of the center-
stable manifold, /5. C W2, the stable foliation of the center-stable manifold,

ocC
Fi. C WS, the unstable foliation of the center-unstable manifold, 2. C Wy,

the strong-unstable foliation of the center-unstable manifold, /s C WY, and
the strong-unstable foliation of the unstable manifold, F%: C W} .. By using
the stable foliation of the center-stable manifold and the unstable foliation of the
center-unstable manifold, one can prove the uniqueness of center-manifold dy-

namics.

Let ¢ be a fixed point of a diffeomorphism f in R%. Let J = D f(q).

Definition 1. Let [\, \o] and [y, o] be two pseudo-hyperbolic splits for J. The
u-split is called a sub-tight split if

(l) [,U/IMLLQ] S [>\17 )\2]7 i'e" :u2 S )\1~
(ii) pidy < pa.
The \-split is called a sup-tight split if (i) holds and Ay < Aapis .

Denote by EM the generalized eigenspace of J for eigenvalues 0! = {\ € o :
IA| < A1} and E*2 the generalized eigenspace of J for eigenvalues 02 = {\ €
o : |\ > X2}. Then R? = EM x E*2. Similarly, we have R? = E#1 x [E+2,
with E#* ¢ E* and E*? C E#2. For point p = (z,y) € E* x E*2 we will use
7y, © RT — EM for the coordinate projection map with 7, (p) = 2. Similarly,
we have 7, : RY — E#2 with 7,,,(p) = y. Also, for the A-splitting, we have for
q = (u,w) € EM x E*, 7y, : R — EM with 7y, (q) = u and 7y, : R — E*
with ), (q) = w. We will use exclusively p = (x,y) for pu-splitted points and ¢
for \-splitted points. We will write p = m\(p) = (75, (p), Tr,(p)) € EM x EA2
if we want to resolve p in the A-splitting, and ¢ = 7,(q) = (7, (¢), 74,(q)) or
q = (xg,y,) € E*M x E# if we want to resolve ¢ in the u-splitting. Also, we
can use 7; for subspace of R? that contains E’. For example, E* is a subspace
of E*, so if we let IF be any transversal complement of [E# in E, then for any
u € EM 2 B xTF, 7, (u) € B is perfectly defined. Similarly, since E* C E#2,
for any y € E#2, 7y, (y) € E*? is well-defined by the same reason.

Definition 2. Let § be a fixed point of a diffeomorphism f in Re. Let [\, \o]
be a pseudo-hyperbolic splits for J = D f(q) and [y, 2] be a sub-tight split of
[A1, A2]. Let a, B be any constants satisfying

M1<Oé<ﬂ2§)\1<ﬁ<)\2.



Let WA = {p : sup{B"[f"(p) — ¢ : n > 0} < oo} be the lambda-left manifold
of q. For every ¢ € W™ the sub-fiber of q is defined as

F'(q) = {p € W ssup{a™"[f"(p) = ["(@)] : n = 0} < oo}

and the collection
Ft={F"(q): q € WM}

is called the sub-foliation of W™'.

Notice that the sub-fiber defines an equivalence relation on W*i: ¢ € F*(q);
p € F*(q) iff ¢ € F*(p) and F#(q) = F*(p). Also, the foliation is an invariant
family with

f(F*(q)) = F*(f(q))-

Also W™t can be filled by fibers through an invariant sub-manifold of W' as
a stem that runs transverse to /*. In addition, the mu-left manifold is the fiber
through g, W+t = FH(q).

Theorem 1 (Sub-Foliation of Left-Manifold Theorem). Let ¢ be a fixed point of a
CY diffeomorphism f. Let [\1, \o] be a pseudo-hyperbolic splits for J = D f(q)
and [pu, o] be a sub-tight split of [\1, Xo]. Then a sufficiently small | f — Df(q)|,
implies there is a C* function

¥y : EM x EM — EF
such that

(i) g = (wow) € W iffw = my, (1) (1, w0 (), e,

W/\l = graph(¢2) with w = ¢2(U) = Ty (w2)(u7 Wﬂl(u))'

(ii) F*(q) = graph(vs(u,-)) for ¢ = (u,w) € W™, ie.,

p=(z,y) € F'(q) ffy = ¥2(u, ).

(iii) f is Lipschitz on each F"(q) and for an adapted norm the Lipschitz constant
is < « uniformly for all ¢ € W™

(iv) F*(q) coincides with the p-left manifold F"(q) = W' and
T, F(q) = B
v) If fisCP k> 1, A< N, " < o, and ,ul)\lk < o, then 1y is CF.

(vi) F*" is independent of any two different choices in .



The proof is an application of the Uniform Contraction Principle. The main
idea is to construct the sub-foliation function ), as part of a fixed point of a uni-
form contraction map. We will break it up into a few lemmas. Before doing so,
we first recall a few important properties about 1/** in the statements below from
the proof for the Left-Manifold Theorem, assuming the fixed ¢ is translated to
0 € R%

Proposition 1. For any Ay < 8 < Xy, let Sg be a Banach space defined by

Sg={v=A{pu}nlo :Pn € R?, sup{8~"[|pn| : n > 0} < oo}

with norm
171l = sup{B7"|[pnl| : n > 0}.

For any sufficiently small || f — D f(q)||,, the orbit v, = {f"(q) }s> of any point
q = qo = (u,w) € W can be expressed as a function v, = v*(u) for u € EM
so that v* € CFEM,Sp) if f € CHRY) and \\* < X\y. Moreover; for any
u, u' € EM

l7*(u) = v (@)l < 557 1w — |l (1
where 0 < 6,(8) < 1 is a uniform contraction constant depending on (. Fur-

thermore, let ¢5(u) be the E*2-component of v*(u)’s initial point, then ¢ is in
Ck(EM, E*) and

W = graph(¢s), ¢2(0) =0, and D¢(0) = 0.

We also recall that by the Variation of Parameters Formula Theorem (VPF)
for splitting R? = [£#1 x [E#2 corresponding to D f(g) = diag(A;, As), the map
(z,y) = f(x,y) with (x,y), (z,y) € E* x E*? is equivalent to

T =A1x+ hi(z,y) 2)
y = A3 + ho(Z,7),
and for any orbit, p, = (z, yn) = f(Tn-1,Yn-1), and n >0

{ Tn = Afwo + 300, AT ha(pia)
Yn = A"y + 2001 AT ().

Here, the functions h;, hs are defined by f and are as smooth as f, satisfying

3)

They are globally Lipschitz and their Lipschitz constant can be taken to be
L= D(h.ho)lly 0 as |f — Df(@], 0. (5)

The result above holds for sufficiently small || f — D f(q)||;.
Associated with h;, we will need the following functions throughout

gi(q,0p) = hi(q + 6p) — hi(q), for i =1,2. (6)
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Because h; € C*! sois g; € C*! satisfying
9:(0,0) =0, D,g;(0,0) =0, Ds,g:;(0,0) =0, for i =1,2. (7)

More importantly, all derivatives in g satisfy
D}gi(q,0) =0, for 0 <j <k, and i=1,2. (8)

To save notation, we will use the same notation for Lipschitz constants of both A;
and g;

L = max{[|[D(h1, ha)lo; [ D(91, 92)l} = 0 as |[f = Df(@)], = 0. ()

Since g; € C®!, we will denote by Ly, Lo, ..., L;, the Lipschitz constants for
Dqgi, D2gi, ..., D} g;, respectively. Together with the fact that DJg;(¢,0) = 0 we
have
| D?gi(q.0p)|| < Lj||op|| for 0<j <k, and i=1,2. (10)
Unlike L which can be made as small as possible by making || f — D f(q)||, small,
these constants L; are not necessarily small.
We will repeatedly use this formula for geometric sequences

a+ar+ar2+...+arn_1:M,fOr?"#1

1—r

and its differentiation formulas in . We will denote throughout

Y = {pn = " () }00

the orbit of f with the initial point p, for which py = p. The proof now consists of
a sequence of lemmas below.

Lemma 1. For any parameter « satisfying pn < o < o, let

ASy = {7 = {0p,}720 : Op, € B x E** sup{a"||dp,[| : n > 0} < oo}
(11)

with norm
161l = supfa~"13p, ] : n > 0.

For any ¢ = qo = (u,w) € W with v, = {g.} and 6p = {6p,} € AS,, let
0y = T(6) be defined by the equations below

{ 5__xn = A?éx() + Z?:llAll_igl (qi—la 5pi71) (12)
6yn = Z?in—i-l A721+17192(qi7 5pz)

Then 6y € AS,,. Specifically, let v, 1 be any parameters satisfying

P <v<a<l/n< us, (13)
then an adapted norm can be chosen so that
< 6 alLl|é
1551, < [|dzo]| + Hle 4 20 (14)

More importantly, p € F*(q) iff the orbit difference dy =, — v, is a fixed point
of T, i.e., p = q + dp with dp = (dx, 0y,) the initial point of 6y, and specifically,

p = mu(u, d2(w)) + (00, 3272 A3 9a(gi, 0p;)) - (15)
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Proof. We first show that 7' is well-defined together with the bound estimate.
We begin by fixing an adapted norm for the condition (13) so that the following
inequalities hold

A1l < v <a<1/np<||As] and [|A7']] <n < 2. (16)

We now demonstrate 0y = {(dx,,0y,)} € AS,. Because g;(q,0) = 0 and
llgi(q, dp)|| < L||dp]| from (8, 10) we have for dz,,

10z | < AT [ll0wo]l + 32, 1147 91(gi-1, pi 1)
< |0l + 325, v Lat 6yl

n a 711 17
= vl + ﬁnﬁwua L ("
< (flozoll + === )a™.
Similarly,
16y, < Dicntl HA"“1 "g2(qi, ;) |
<> " LOilP’V” (18)
= UL oy, e
_ oLyl on
1—an :

Hence, the estimate (14) holds. This shows that the infinite series converges uni-
formly and that 7" is well-defined, mapping AS,, into itself.

Next, we show the last part of the lemma. First, for p € F*(q), both orbits
Vps Vq are in Sg, and the orbit difference

0y =Y — Vg = {0p, 1 0pp, = P — qn,n > 0} (19)
is in AS, by definition. By the VPF (3), §~ satisfies

{ 0xn = APdzo + 350, AT 91(gi1, 0P )
0y = Ay "6y, + S AT (s, ;)

Because ||0y,,|| < a™|0v||, and ||A5™™| < »™ ™ and an < 1, the first term in
the y,-equation above converges to 0 as m — oco. The estimate (18) also shows
the partial sum of the y,,-equation converges uniformly. Therefore the limit as
m — oo exists for the y,,-equation and the limit is exactly the y,,-equation for the
map 7T'. Hence, d+ is a fixed point of 7.

Conversely, assume 6y = {(dz,,dy,)} is a fixed point of T for a given =,
from W1, It is straightforward to verify

{ 6xn = A102n1 + 91(Gn-1,0py_1)
5yn = Agl(syn-l—l + g2(Qn+17 6pn+1)'

Denote Dn = Qn + 5pna Pn = ($n>yn)> Gn = Wu(Qn) = (xq,nayq,n) € £ x Er2,
Then because v, is an orbit it satisfies

{ Lygn = Alfq,n—l + hl <Qn—1)
Ygn = AQ_ Ygn+1 + h2(Qn+1)-
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Sum up these two equations component by component to obtain

{ Ty = A1y 1 + hi(pn-1)

Yn = A2_1yn+1 + h2(pn+1)a

which shows v, = {p,} = 7, + dy must be an orbit of f. Since 7, € Sz and
oy € AS, C Sp, we also have 7, € Ss. Hence, the initial point, py, of , is in
W and in F*(q) by definition. Last, the identity (15) follows by writing out the
initial point of ~y, because ¢ = (u, ¢2(u)) € W™, O

Lemma 2. Let ¢, € CY(EM E*) be the function whose graph is W*'. Then
there is a function 1, : EM x EM — EH2 5o that for all u € EM,

O2 (u) = T, (¢2) (u’ Ty (u))
and for every ¢ € W with q = (u, ¢o(u))
FH(u) == F*(q) = graph(¢z(u,-)). (20)
Moreover, the definition of F* is independent of any two different choices in .

Proof. By Lemma 1, p € F*(q) iff p = q + 0p with dp = Jp, the initial point
of a fixed point 6y = {dp,, }n>0 of the map T" from its proof. We already know
from Proposition 1 that g is parameterized by u € EM by ¢ = (u, ¢2(u)) as well
as its orbit v, = v*(u) = {gn(u)}. We only need to show dp = (0, Jy,) exists
and is parameterized by v and by its [E*!-coordinate dxy which we will replace by
0x = dxg € [EM. In fact, if that is true, then in this parameterized designation, the
function ), must be defined from the identity (15) as below

p = (2,y) = (z,¢2(u, 7)) := mu(u, da(u)) + (02, oy, (u, 7))

where dz = x — 7, (¢) = © — 1, (u) , namely

¢2(U7 .l’) = Tuy (U’v ¢2(u)) + Zfil Aé_iQQ(Qi(u>7 5pi(uv LT — Ty (u)>> . (21)

Assuming the fixed point ¢+ is unique for 7', then we see the zero sequence oy =
{0} is a trivial fixed point if § = 0. As a consequence, we get

%(% Ty (u)) = Tus (uv ¢2 (u)) + 6y0(u> O) = Ty (uv ¢2<u>>

which gives
PV (1/}2) (uv Ty (u)> = ¢2 (u)7

the inclusion of W*t. Definition (21) obviously shows (20). Therefore, it is only
left to show the existence and uniqueness of fixed point of 7" for each u, dx, and
their independence on any two choices in a.

To this end, we will consider T as a parameterized map T : AS, x E* xE# —
AS,, with §y = T(§,u, dz) being defined by (12) as below

{ §__xn = A?él’ + Z?:l A?iigl (qifl(u)a 6pi—1) (22)
0 = 2 A5 g2(ai(u), Op;)
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We first show 7" is a uniform contraction. By the proof of Lemma 1, T'(-, u, dx)
maps AS, into AS,. For its uniform contraction, let 0, 0y € AS, and 6y =
T(67,u,dz),0v" = T(6v,u,dx). Then we have

10z, — Oz || < D00, HA?ﬂ[gl(qzel(u)a 0pi—1) — 91(qi—1(u), op; )]
<D VPTL|[Op; g — 0p || (23)
< Y VT Lat |6y — 67/l
< JLar(ley = o],

and
10y = 0y "ll < X2 HA?“‘i[Qz(qz‘(U)ﬁPi) — g2(ai(w), op))]|
< Zz;nﬂ 771.7n71L“5pi - 527@'/” 24)
S zl;i:nJrl nl_n_lai”(sﬂy - 57 Ha
< a6y = 69l
Hence,
1T (67, u,0x) = T(67',u, 0x)|l,, < (35 + 12516y — 04l
showing T'(-, u, dx) is a uniform contraction in AS,, provided
0:=0(a) =5 + o <1 (25)

which is true for sufficiently small || f — D f(g)||,. We denote the fixed point by
v (u, dz) = {0p,(u,0x) = (0x,(u, dz), oy, (u, dz))}>2, (26)

Notice that the existence and uniqueness proof of §7* above shows that for
any

<o <a<py with |4 <v<d <a<l/n<|A, |43 <7

as long as
6(c), O(ar) < 1

T'(-,u,dx) has a unique fixed point in AS,, and AS,,. But since AS,, is a closed
subspace of AS,, the unique fixed point 7" (u,dx) is in both AS, and AS,,.
This shows the independence of F* on any two choices in a. [

Lemma 3. The foliation function 1 is C1(EM x EA1 E#2),

Proof. Notice from its definition (21) that we only need to show dp, is C"! for
which it suffices to show the unique fixed point 6" of T from Lemma 2 is C" since
Jdp, is only a point of the sequence *. By the Uniform Contraction Principle II,
we need to verify two conditions: (1) 7'(07,u,dx) is differentiable in 6y and
|| Dsy (67, u,dx)|| is uniformly bounded by a constant smaller than 1; (2) 7" €
CHAS, x EM x E#M AS,).



To show (1), let 0y = {dp,},v = {v,} € AS,, and formally differentiate
(22). Then Dy, T(6y,u, dx)v needs to be as below in components:

{ [DsyT (67, u, 62)v]n, 1 = 11 AT Dopgr(qi1(u), 6p; 1 )vi

& ntl—i 27
Doy T(57,u,82)0], 5 = S 1 AT Dy (i (1), Op, v @7)

By the exactly same estimate as for (23) we have

11D, T(87, u, 62)v]n 1| < 2E

=" vl

Similarly, by the exactly same estimate as for (24) we have

I[Dsy T (67, , 02)]n, of| < $E& 0™ [[V]l,

These estimates imply two conclusions. One, because of the uniform convergence
of the second equation, the derivative Dy, 1'(d,dz) exists. Two, it shows the
derivative is a bounded linear map in L(AS,,, AS,) whose a-norm

| D5, T(6%, u.62)], < 8(a) < 1,

is bounded by the same uniform contraction constant 6(«) from (25).

To show (2), we separate it into three cases. The first case is done above for
derivative in 9+, the second case is for derivative in dx, and the third case is for
derivative in u. For the second case we have formally

[Ds T (07, u,0x)],, 1 = A}, and [Ds, T (57, u,dz)], 2 =0,
which implies
1[Dso T (67, u, 6z)]a]| < AT < ™
and || Ds, T (67, u, 0z)||, < 1 follows. Thatis, T"is C' in dz.
To show the third case, we will treat 7" in u as a composition

T (67, u,6x) = T(6v,7*(u), 6x) (28)

ofamap T : AS, x Sz x E** — AS,, witha C! map v* : EM — Sp which is the
orbit sequence v*(u) = 1, for point ¢ = (u,w) € W Here, 0y = T(5v,, 6x)
is defined as below

{ 5__l‘n = A?é‘r + ZZT’L:I Arll_igl (Qi—la 5pi—1) (29)
5yn = ZZnJrl A721+171g2(q“ 5pz>7

the same definition as 7" except for a general v = {¢,}>2, € Ss. Because of the
composition we only need to show 71" is C" in 7.

To this end, by the sub-tight split definition that 111 \; < p9, we can choose a
parameter ¢ close to 11, « close to o, and 3 close to A; so that

sB<a where g <g<a<pu <A <f< A, (30)



for which an adjusted norm can be chosen to satisfy (16) and
|A1]] <v <¢ < a<| A 31)

We will treat the fixed point 67" (u, dz) in both AS. and AS,. We also use the
estimates below from (10) that forz =1, 2,

19:(q,0p) — 9:(d', 6p)|| < | Dggi(-,op)llolla — d'll < Lalldplilla — 4l (32)

Now, formally differentiating 7" in -y, we obtain from (29) any v € S

[Dﬂ:”(dv, s 593)1)]71, 1= Zz 1 An_iD{]gl (qz 1 5p1 1) (33)
(DT (67,7, 02)0], 5= >0, 1 As* ZDqg2(qw5pz)vu
Because of <3 < a, we have
I[D,T (67,7, 62)vln, 1] < Zf;lnHA’f_i |,|L1|1|5p1-71|| H,vil—lll
D T PR
< il\ml\ o i VT T vl
< Ll gy .
Similarly, we have
I[D,T (37,7, 02)v]n, ol < 3202, 1 A5F ’HlL 1[0ps I il
B A PR
< Llu‘LﬁYH Zz n+177Z et HUHﬁ
L1 (0% n
< Al

Combine these two estimates to obtain

DT (6,7, 02, < (55 )Lal[ov ]l

a—v 1- cm

The convergence of the infinite series also shows the derivative exists. Hence
T(6v,,0x)isin C'(Ss, AS,) and T' is C" in u as needed. O

Lemma 4. f is Lipschitz on F"(q) and for the adapted norm from Lemma 1 the
Lipschitz constant is < o uniformly for all ¢ € W™,

Proof. We remark first that since 7°(0, u, §z) is Lipschitz continuous in éz with
176, u, 0x) = T (6, u, 6a")||, < |62 — 0’|,

because ||AT|| < v", we have by the Uniform Contraction Principle I that 6~
satisfies

167" (u, 0) — 07" (u, 62') |, < 75102 — 62| (36)

For the proof of the lemma, we need to show that for any ¢ € W™ and for
any p,p" € F*(q), [|f(p) = f()|l < ellp — p[|. Let ., 7 be the orbits through
p, P, respectively. Then 0v* = v, — v, and §v*' = ,, — ~, are fixed points of
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T(-,u,0x)and T'(-,u, 0z"), respectively, with oz = x — 7, (u), 02" = 2’/ — 7, (u),
67" = 67" (u, 6x), and 6v*" = §v*(u, 62"). More importantly,

Yo — Vo = (% - 7q) - (%’ - 7(1) =07 — 5’7*/

whose second point on the sequence is

f) = f') = p1 = Py = dp(u, %) — dp, (u, 62').
The E#t-coordinate of the right side can be estimated as

1021 — 6| < || A1 (0x — 62) + g1(qo(w), 6z) — g1(qo(w), 6z')||
< v||dz — 6’| + || (qo(w) + dz) — hy(qo(u) + 62')||
<vl|jdx — 6’| + L||dx — 62|
<w+L)p-7

The E#2-coordinate of the right side is

16y1 = 0y [l < D002, 145 [g2(qi(w), 6p;) — g2(i(w), 5p5)] |
= 2 1457 [ha(gi(w) + op;) — ha(qi(u) + op;)] ||

<Y n P Lal|éy = v,

< e HM (u, 6x) — 07" (u, 62") |,
< Lo Ljidw — 6

< £ Llp - vl

where (36) is used for the second last estimate. Therefore,

1£ () = F(P) < (v+ L+ £ 25)lp— /)l < allp— Pl

for sufficiently small L, i.e., for sufficiently small || f — D f(q)||, sincev < o. [
Lemma 5. Iff is Ck’l, )\1 < Ay, ,u1 < M2, and /Ll)\l < U2, then 1/}2 is Ck

Proof. The case of £ = 1 is done in Lemma 3. For the case of £ > 2, we notice
first from the definition of 1)y, (21), that we need to prove both ¢ and dp,(u, dx)
are C*. By the \-left manifold theorem we know from Proposition 1 that ¢ is C*
because \;" < \,. Hence, we only need to show dp,(u, 6z) is C*, which in turn
suffices to show the fixed point function §v*(u, dz) is C*. Similar to the proof
for the \-left manifold theorem, the Uniform Contraction Principle II cannot be
applied directly for £ = 2 (except for the special case where 1y < 1). This is
because we cannot prove in general T € C*(AS, x EM x E#1, AS,). An indirect
approach is needed.
First, we want to prove instead the following claim

T € C*(AS. x EM x E* AS,) (37)
where ¢ is sufficiently close to 11 and « is sufficiently close to po satisfying

<s<a<p and mF < <a <y (38)

10



which is guaranteed by the assumption ji;* < jis.
To prove the claim, we first fix an adapted norm for (z,y) € E#* x E#2 so that
in addition to (16) we also have

A1) <v<¢<a<|As]- (39)

We separate the proof into four cases. The first case is for derivatives in dx, the
second case is for derivatives in ¢+, the third case is for derivatives in u, and the
fourth case is about mixed derivatives. For the first case we already have from the
proof of Lemma 3 that

[Ds: T (07, u,0x)],, 1 = A}, and [Ds, T (67, u,dz)], 2 =0,

ie., Tis C'in dx. And DgCCT((SPy, u,0x) = 0, for 2 < j < k, the zero operators.
Hence, it is obvious that (67, u, -) € C*(E*, AS,) for 6y € AS..

For the second case, applying the case of j = 1 for p; < ¢ < @ < o, we
know Ds,T'(67,u,0x) € L(AS;,AS;) C L(AS,, AS,) because AS, C AS,
holds automatically. For any 2 < j < Kk, [ngT(év,u,éx)] needs to be a j-
linear form AS, to AS,. To this end, let v = v! ® v? ® --- ® v/ with each
v* € AS,, 1 < ¢ < j. Formally differentiate (22) to get

[ngT(‘s% U, 6 )uln, 1= 300 Aqffins'p'gl(Qi—l(U)a 0p;—1)vi-1 (40)
(D3, (0w, 62)0], -, = 322, 3 AT D5, 05(0i (), i v,

where '

vi=v QU@ - ®vl, v €RL
Similar to the estimate of (23) and because g;(q, dp) = hi(q+ 0p) — hi(q), s <
and ¢* < «, we have

I[D3, T (67, u, 6x)v]n, 1l < D202, TAT D7 | [|via |
< i VI (v
<Al iy v TSI [l @)
< |l Sy vl DT o,
< Wl qrrr_y |vf],.

Here we used the property that ¢ < avand ¢*¥ < o imply ¢/ < acfor1 < j < k.
Similar to (24) we have

I[D3, Ty, w, 62)0ln, o] < 30320 1451 D7 ho| [
< 2 1 el T L
< sl ™ 305 0 (o) Ty [0,

h .
S HliLkna anﬂgzl ||U€ ||o<‘

(42)

Combine these two estimates to obtain

D3, T (67, u, 62)]|| < [[(ha, o)l max{7, 72}

a—v’ 1l—an
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The convergence of the infinite series also shows the derivatives are well-defined.
This completes the proof that T'(-, u, 6x) € C*(AS,, AS,,).

For the third case T'(67, -, 6x) € C*(EM, AS,), we will treat it similarly as in
the proof of Lemma 3 to be a composition of T'(§7, -,dz) : Sz — AS,, defined
by (28, 29), with v = v* : E* — Sj for each vy € AS.. By Proposition 1,
v* € C*(EM, S5). So we only need to show T'(67, -, 6x) is C*. The k = 1 case is
treated in the proof of Lemma 3.

For k > 2, we use the condition that 1, A< {2 to fix parameter ¢ close to
11, B close to Ay, and « close to u so that in addition to (38) we also have

§Bk<oz where 1 <¢ < a <y <A << . 43)

As a result we assume that an adapted norm is chosen so that both (16) and (39)
hold. We will also use the property (10) that

HDqu(q,dp)H < EH(SpH with L = max{L; : 1 <j <k} (44)

We are now ready to show T(07,-,dz) € C*(Sz, AS,) for oy € AS, dx € E*,
We need to show [DJT'(07,~,dz)] is a bounded j-linear form from Sy to AS,,.
To this end, let v = v! ® v?* @ - - - ® v’ with each v* € S5, 1 < ¢ < j. Formally
differentiate (29) in v € Sp to get

{ [D%T(ch,%éx)v]n’ 1= ZZ 1 An_iDégl(% 1, 0P;_1)Vi—1
DI
5

(DT (0y, 7, 0m)v], = 3275, AT Digalai, opi)ui, )

where
1 2 j ¢ d
V=V QU R Qul, v €RY

Similar to the estimate of (34) and because of (44), we have

I[DLT (6,7, 0z )vln, 1l < 3250, AT 1 LylI0p; -1 || [[vi-1 ]
< l_; Z?:l Vn_igi_l|’5’YH<HL1”U£1H
< LH(WH IR Zi e Ei e Y 9
< L6yl iy v I 1W|lg

L||s
P o1 [0,

| /\

where <37 < a,1 < j < k because ¢ < « and ¢3* < «. Similar to the estimate
of (35) we have

IDIT (57,7, 0)eln, ol < S 14571 19
< Loyl O
< L[5 Sy T 1

Ll
9o 6T [0 -

| /\

Combine these two estimates to obtain

DT (87,7, 82)]I|, < (35 + 25 LISV,
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The convergence of the infinite series also shows the derivatives are well-defined.
Hence T'(67, -, 6x) is in C*(Ss, AS,), showing T is C* in u.

For the fourth case about mixed derivatives of 7" in all variables, the arguments
above for ¢, u, dx can be combined to show all derivatives up to order k exist for
T'. This completes the proof for the claim (37).

We are now ready to show 67*(-) € C*(EM x E* AS,). By the Uniform
Contraction Principle Il for T € C*(AS, x EM x E#1 | AS,), the fixed point 6" (+)
is in C*(EM x E* | AS,) and its derivative in (u, dx) is given by

D6y (+) = 220=ol DA T (077 (), )" Do T(677(-), ).

Since 67*(-) € CH(EM xE* AS,), T € CH(AS, xEM xEF AS,) € CHAS, x
EM x B4 AS,),and T € CH(AS, x EM x E# ) AS,), k > 2 by the claim, here
is the key to notice that the composition D, T'(67*(-),-) is C*(E* x EF, AS,).
This implies that the infinite series on the right is in C*(E* x E#1 AS,), and
therefore, Déy*(-) € CHEM x E* AS,), and 67*(-) € C*EM x E*M AS,)
follows. Apply this argument recursively to obtain 67*(-) € C3(EM x E#1, AS,),
and so on until we reach §7*(-) € C*(EM x E*1 | AS,). As a component of the
initial point of §v*, dp, is in C*(E* x E#1 E+2), completing the proof that v, is
C*k. O

Proof of Theorem 1. After the preceding lemmas, it only remains to point out that
by the definition of W#1, which is an invariant subspace of Wit coincides with
the definition of the foliation through the fixed point, 7#(q), i.e., WH = F#(q).
In fact, we can show the tangent space directly as below. Since ¢ ~ u = 0 and
¢2(0) = 0, we have from (21)

a(0,2) = dyo(0,2) = 3272, A3 ha(0p;(0, 7))
whose partial derivative in x € [E#* at the fixed point ¢ ~ x = 0 is
Dyipy(0,0) = 372, Ay~ Dhy(3p;(0,0)) Dodp; (0,0) = 0
since 07*(0,0) = {0} and Dh;(0) = 0, showing T;F*(0) = E*. O

Remark: We can see from the proofs above that if the A-left manifold point q is
fixed at the fixed point ¢ throughout, then the extra Lipschitz continuity condition
for the highest derivative of f is not needed. That is, the u-left manifold F*(q) =
WHis C* if f is C* plus uy* < po. This is because in this case, (7, 6p) = h(p)
with g = 0, dp = p.
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