
[Lecture Note 5]

Sub-Foliation of Left Manifold
The Sub-Foliation of Left-Manifold Theorem obtained in this note can be used

to obtained all commonly encountered invariant foliations for both diffeomor-
phisms and ordinary differential equations. They include: the strong-stable folia-
tion of the stable manifold, F ssloc ⊂ W s

loc, the strong-stable foliation of the center-
stable manifold, F ssloc ⊂ W cs

loc, the stable foliation of the center-stable manifold,
F sloc ⊂ W cs

loc, the unstable foliation of the center-unstable manifold, Fuloc ⊂ W cu
loc,

the strong-unstable foliation of the center-unstable manifold, Fuuloc ⊂ W cu
loc, and

the strong-unstable foliation of the unstable manifold, Fuuloc ⊂ W u
loc. By using

the stable foliation of the center-stable manifold and the unstable foliation of the
center-unstable manifold, one can prove the uniqueness of center-manifold dy-
namics.

Let q̄ be a fixed point of a diffeomorphism f in Rd. Let J = Df(q̄).

Definition 1. Let [λ1, λ2] and [µ1, µ2] be two pseudo-hyperbolic splits for J . The
µ-split is called a sub-tight split if

(i) [µ1, µ2] ≤ [λ1, λ2], i.e., µ2 ≤ λ1 .

(ii) µ1λ1 < µ2 .

The λ-split is called a sup-tight split if (i) holds and λ1 < λ2µ2 .

Denote by Eλ1 the generalized eigenspace of J for eigenvalues σ1 = {λ ∈ σ :
|λ| ≤ λ1} and Eλ2 the generalized eigenspace of J for eigenvalues σ2 = {λ ∈
σ : |λ| ≥ λ2}. Then Rd ∼= Eλ1 × Eλ2 . Similarly, we have Rd ∼= Eµ1 × Eµ2 ,
with Eµ1 ⊂ Eλ1 and Eλ2 ⊂ Eµ2 . For point p = (x, y) ∈ Eµ1 × Eµ2 we will use
πµ1 : Rd → Eµ1 for the coordinate projection map with πµ1(p) = x. Similarly,
we have πµ2 : Rd → Eµ2 with πµ2(p) = y. Also, for the λ-splitting, we have for
q = (u,w) ∈ Eλ1 × Eλ2 , πλ1 : Rd → Eλ1 with πλ1(q) = u and πλ2 : Rd → Eλ2
with πλ2(q) = w. We will use exclusively p = (x, y) for µ-splitted points and q
for λ-splitted points. We will write p = πλ(p) = (πλ1(p), πλ2(p)) ∈ Eλ1 × Eλ2
if we want to resolve p in the λ-splitting, and q = πµ(q) = (πµ1(q), πµ2(q)) or
q = (xq, yq) ∈ Eµ1 × Eµ2 if we want to resolve q in the µ-splitting. Also, we
can use πi for subspace of Rd that contains Ei. For example, Eµ1 is a subspace
of Eλ1 , so if we let F be any transversal complement of Eµ1 in Eλ1 , then for any
u ∈ Eλ1 ∼= Eµ1×F, πµ1(u) ∈ Eµ1 is perfectly defined. Similarly, since Eλ2 ⊂ Eµ2 ,
for any y ∈ Eµ2 , πλ2(y) ∈ Eλ2 is well-defined by the same reason.

Definition 2. Let q̄ be a fixed point of a diffeomorphism f in Rd. Let [λ1, λ2]
be a pseudo-hyperbolic splits for J = Df(q̄) and [µ1, µ2] be a sub-tight split of
[λ1, λ2]. Let α, β be any constants satisfying

µ1 < α < µ2 ≤ λ1 < β < λ2.
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Let W λ1 = {p : sup{β−n[fn(p)− q̄] : n ≥ 0} <∞} be the lambda-left manifold
of q̄. For every q ∈ W λ1 the sub-fiber of q is defined as

Fµ(q) = {p ∈ W λ1 : sup{α−n[fn(p)− fn(q)] : n ≥ 0} <∞}

and the collection
Fµ = {Fµ(q) : q ∈ W λ1}

is called the sub-foliation of W λ1 .

Notice that the sub-fiber defines an equivalence relation on W λ1: q ∈ Fµ(q);
p ∈ Fµ(q) iff q ∈ Fµ(p) and Fµ(q) = Fµ(p). Also, the foliation is an invariant
family with

f(Fµ(q)) = Fµ(f(q)).

Also W λ1 can be filled by fibers through an invariant sub-manifold of W λ1 as
a stem that runs transverse to Fµ. In addition, the mu-left manifold is the fiber
through q̄, W µ1 = Fµ(q̄).

Theorem 1 (Sub-Foliation of Left-Manifold Theorem). Let q̄ be a fixed point of a
C1,1 diffeomorphism f . Let [λ1, λ2] be a pseudo-hyperbolic splits for J = Df(q̄)
and [µ1, µ2] be a sub-tight split of [λ1, λ2]. Then a sufficiently small ‖f −Df(q̄)‖1

implies there is a C1 function

ψ2 : Eλ1 × Eµ1 → Eµ2

such that

(i) q = (u,w) ∈ W λ1 iff w = πλ2(ψ2)(u, πµ1(u)), i.e.,

W λ1 = graph(φ2) with w = φ2(u) = πλ2(ψ2)(u, πµ1(u)).

(ii) Fµ(q) = graph(ψ2(u, ·)) for q = (u,w) ∈ W λ1 , i.e.,

p = (x, y) ∈ Fµ(q) iff y = ψ2(u, x).

(iii) f is Lipschitz on eachFµ(q) and for an adapted norm the Lipschitz constant
is ≤ α uniformly for all q ∈ W λ1 .

(iv) Fµ(q̄) coincides with the µ-left manifold Fµ(q̄) = W µ1 and

Tq̄Fµ(q̄) ∼= Eµ1 .

(v) If f is Ck,1, k ≥ 1, λ1
k < λ2, µ1

k < µ2, and µ1λ1
k < µ2, then ψ2 is Ck.

(vi) Fµ is independent of any two different choices in α.
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The proof is an application of the Uniform Contraction Principle. The main
idea is to construct the sub-foliation function ψ2 as part of a fixed point of a uni-
form contraction map. We will break it up into a few lemmas. Before doing so,
we first recall a few important properties about W λ1 in the statements below from
the proof for the Left-Manifold Theorem, assuming the fixed q̄ is translated to
0 ∈ Rd.

Proposition 1. For any λ1 < β < λ2, let Sβ be a Banach space defined by

Sβ := {γ = {pn}∞n=0 : pn ∈ Rd, sup{β−n‖pn‖ : n ≥ 0} <∞}

with norm
‖γ‖β = sup{β−n‖pn‖ : n ≥ 0}.

For any sufficiently small ‖f −Df(q̄)‖1, the orbit γq = {fn(q)}∞n=0 of any point
q = q0 = (u,w) ∈ W λ1 can be expressed as a function γq = γ∗(u) for u ∈ Eλ1
so that γ∗ ∈ Ck(Eλ1 , Sβ) if f ∈ Ck(Rd) and λ1

k < λ2. Moreover, for any
u, u′ ∈ Eλ1

‖γ∗(u)− γ∗(u′)‖β ≤
1

1−θλ(β)
‖u− u′‖ (1)

where 0 < θλ(β) < 1 is a uniform contraction constant depending on β. Fur-
thermore, let φ2(u) be the Eλ2-component of γ∗(u)’s initial point, then φ2 is in
Ck(Eλ1 ,Eλ2) and

W λ1 = graph(φ2), φ2(0) = 0, and Dφ2(0) = 0.

We also recall that by the Variation of Parameters Formula Theorem (VPF)
for splitting Rd ∼= Eµ1 × Eµ2 corresponding to Df(q̄) ∼= diag(A1, A2), the map
(x̄, ȳ) = f(x, y) with (x, y), (x̄, ȳ) ∈ Eµ1 × Eµ2 is equivalent to{

x̄ = A1x+ h1(x, y)
y = A−1

2 ȳ + h2(x̄, ȳ),
(2)

and for any orbit, pn = (xn, yn) = f(xn−1, yn−1), and n ≥ 0{
xn = An1x0 +

∑n
i=1A

n−i
1 h1(pi−1)

yn = An−m2 ym +
∑m

i=n+1A
n+1−i
2 h2(pi).

(3)

Here, the functions h1, h2 are defined by f and are as smooth as f , satisfying

h1(0) = 0, Dh1(0) = 0, h2(0) = 0, Dh2(0) = 0. (4)

They are globally Lipschitz and their Lipschitz constant can be taken to be

L = ‖D(h1, h2)‖0 → 0 as ‖f −Df(q̄)‖1 → 0. (5)

The result above holds for sufficiently small ‖f −Df(q̄)‖1.
Associated with hi, we will need the following functions throughout

gi(q, δp) = hi(q + δp)− hi(q), for i = 1, 2. (6)
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Because hi ∈ Ck,1 so is gi ∈ Ck,1 satisfying

gi(0, 0) = 0, Dpgi(0, 0) = 0, Dδpgi(0, 0) = 0, for i = 1, 2. (7)

More importantly, all derivatives in q satisfy

Dj
qgi(q, 0) = 0, for 0 ≤ j ≤ k, and i = 1, 2. (8)

To save notation, we will use the same notation for Lipschitz constants of both hi
and gi

L = max{‖D(h1, h2)‖0, ‖D(g1, g2)‖0} → 0 as ‖f −Df(q̄)‖1 → 0. (9)

Since gi ∈ Ck,1, we will denote by L1, L2, . . . , Lk the Lipschitz constants for
Dqgi, D

2
qgi, . . . , D

k
qgi, respectively. Together with the fact that Dj

qgi(q, 0) = 0 we
have

‖Dj
qgi(q, δp)‖ ≤ Lj‖δp‖ for 0 ≤ j ≤ k, and i = 1, 2. (10)

Unlike Lwhich can be made as small as possible by making ‖f −Df(q̄)‖1 small,
these constants Lj are not necessarily small.

We will repeatedly use this formula for geometric sequences

a+ ar + ar2 + · · ·+ arn−1 = a(1−rn)
1−r , for r 6= 1

and its differentiation formulas in r. We will denote throughout

γp = {pn = fn(p)}∞n=0

the orbit of f with the initial point p, for which p0 = p. The proof now consists of
a sequence of lemmas below.

Lemma 1. For any parameter α satisfying µ1 < α < µ2, let

∆Sα := {δγ = {δpn}∞n=0 : δpn ∈ Eµ1 × Eµ2 , sup{α−n‖δpn‖ : n ≥ 0} <∞}
(11)

with norm
‖δγ‖α = sup{α−n‖δpn‖ : n ≥ 0}.

For any q = q0 = (u,w) ∈ W λ1 with γq = {qn} and δp = {δpn} ∈ ∆Sα, let
δγ = T (δγ) be defined by the equations below{

δxn = An1δx0 +
∑n

i=1A
n−i
1 g1(qi−1, δpi−1)

δyn =
∑∞

i=n+1 A
n+1−i
2 g2(qi, δpi)

(12)

Then δγ ∈ ∆Sα. Specifically, let ν, η be any parameters satisfying

µ1 < ν < α < 1/η < µ2, (13)

then an adapted norm can be chosen so that

‖δγ‖α ≤ ‖δx0‖+
L‖δγ‖α
α−ν +

αL‖δγ‖α
1−αη . (14)

More importantly, p ∈ Fµ(q) iff the orbit difference δγ = γp − γq is a fixed point
of T , i.e., p = q + δp with δp = (δx0, δy0) the initial point of δγ, and specifically,

p = πµ(u, φ2(u)) + (δx0,
∑∞

i=1A
1−i
2 g2(qi, δpi)) . (15)
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Proof. We first show that T is well-defined together with the bound estimate.
We begin by fixing an adapted norm for the condition (13) so that the following
inequalities hold

‖A1‖ < ν < α < 1/η < ‖A2‖ and ‖A−1
2 ‖ < η < 1

α
. (16)

We now demonstrate δγ = {(δxn, δyn)} ∈ ∆Sα. Because gi(q, 0) = 0 and
‖gi(q, δp)‖ ≤ L‖δp‖ from (8, 10) we have for δxn

‖δxn‖ ≤ ‖An1‖‖δx0‖+
∑n

i=1 ‖A
n−i
1 g1(qi−1, δpi−1)‖

≤ νn‖δx0‖+
∑n

i=1 ν
n−iLαi−1‖δγ‖α

= νn‖δx0‖+ L‖δγ‖α
αn−νn
α−ν

≤ (‖δx0‖+
L‖δγ‖α
α−ν )αn.

(17)

Similarly,
‖δyn‖ ≤

∑∞
i=n+1 ‖A

n+1−i
2 g2(qi, δpi)‖

≤
∑∞

i=n+1 η
i−n−1Lαi‖δγ‖α

= η−n−1L‖δγ‖α
(αη)n+1

1−αη

=
αL‖δγ‖α

1−αη αn.

(18)

Hence, the estimate (14) holds. This shows that the infinite series converges uni-
formly and that T is well-defined, mapping ∆Sα into itself.

Next, we show the last part of the lemma. First, for p ∈ Fµ(q), both orbits
γp, γq are in Sβ , and the orbit difference

δγ = γp − γq = {δpn : δpn = pn − qn, n ≥ 0} (19)

is in ∆Sα by definition. By the VPF (3), δγ satisfies{
δxn = An1δx0 +

∑n
i=1A

n−i
1 g1(qi−1, δpi−1)

δyn = An−m2 δym +
∑m

i=n+1 A
n+1−i
2 g2(qi, δpi)

Because ‖δym‖ ≤ αm‖δγ‖α and ‖An−m2 ‖ ≤ ηm−n and αη < 1, the first term in
the yn-equation above converges to 0 as m → ∞. The estimate (18) also shows
the partial sum of the yn-equation converges uniformly. Therefore the limit as
m→∞ exists for the yn-equation and the limit is exactly the yn-equation for the
map T . Hence, δγ is a fixed point of T .

Conversely, assume δγ = {(δxn, δyn)} is a fixed point of T for a given γq
from W λ1 . It is straightforward to verify{

δxn = A1δxn−1 + g1(qn−1, δpn−1)
δyn = A−1

2 δyn+1 + g2(qn+1, δpn+1).

Denote pn = qn + δpn, pn = (xn, yn), qn = πµ(qn) = (xq,n, yq,n) ∈ Eµ1 × Eµ2 .
Then because γq is an orbit it satisfies{

xq,n = A1xq,n−1 + h1(qn−1)
yq,n = A−1

2 yq,n+1 + h2(qn+1).

5



Sum up these two equations component by component to obtain{
xn = A1xn−1 + h1(pn−1)
yn = A−1

2 yn+1 + h2(pn+1),

which shows γp = {pn} = γq + δγ must be an orbit of f . Since γq ∈ Sβ and
δγ ∈ ∆Sα ⊂ Sβ , we also have γp ∈ Sβ . Hence, the initial point, p0, of γp is in
W λ1 and in Fµ(q) by definition. Last, the identity (15) follows by writing out the
initial point of γp because q = (u, φ2(u)) ∈ W λ1 .

Lemma 2. Let φ2 ∈ C1(Eλ1 ,Eλ2) be the function whose graph is W λ1 . Then
there is a function ψ2 : Eλ1 × Eµ1 → Eµ2 so that for all u ∈ Eλ1 ,

φ2(u) = πλ2(ψ2)(u, πµ1(u))

and for every q ∈ W λ1 with q = (u, φ2(u))

Fµ(u) := Fµ(q) = graph(ψ2(u, ·)). (20)

Moreover, the definition of Fµ is independent of any two different choices in α.

Proof. By Lemma 1, p ∈ Fµ(q) iff p = q + δp with δp = δp0 the initial point
of a fixed point δγ = {δpn}n≥0 of the map T from its proof. We already know
from Proposition 1 that q is parameterized by u ∈ Eλ1 by q = (u, φ2(u)) as well
as its orbit γq = γ∗(u) = {qn(u)}. We only need to show δp = (δx0, δy0) exists
and is parameterized by u and by its Eµ1-coordinate δx0 which we will replace by
δx = δx0 ∈ Eµ1 . In fact, if that is true, then in this parameterized designation, the
function ψ2 must be defined from the identity (15) as below

p = (x, y) = (x, ψ2(u, x)) := πµ(u, φ2(u)) + (δx, δy0(u, δx))

where δx = x− πµ1(q) = x− πµ1(u) , namely

ψ2(u, x) = πµ2(u, φ2(u)) +
∑∞

i=1 A
1−i
2 g2(qi(u), δpi(u, x− πµ1(u))) . (21)

Assuming the fixed point δγ is unique for T , then we see the zero sequence δγ =
{0} is a trivial fixed point if δx = 0. As a consequence, we get

ψ2(u, πµ1(u)) = πµ2(u, φ2(u)) + δy0(u, 0) = πµ2(u, φ2(u))

which gives
πλ2(ψ2)(u, πµ1(u)) = φ2(u),

the inclusion of W λ1 . Definition (21) obviously shows (20). Therefore, it is only
left to show the existence and uniqueness of fixed point of T for each u, δx, and
their independence on any two choices in α.

To this end, we will consider T as a parameterized map T : ∆Sα×Eλ1×Eµ1 →
∆Sα with δγ = T (δγ, u, δx) being defined by (12) as below{

δxn = An1δx+
∑n

i=1 A
n−i
1 g1(qi−1(u), δpi−1)

δyn =
∑∞

i=n+1A
n+1−i
2 g2(qi(u), δpi)

(22)
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We first show T is a uniform contraction. By the proof of Lemma 1, T (·, u, δx)
maps ∆Sα into ∆Sα. For its uniform contraction, let δγ, δγ′ ∈ ∆Sα and δγ =
T (δγ, u, δx), δγ ′ = T (δγ′, u, δx). Then we have

‖δxn − δxn ′‖ ≤
∑n

i=1 ‖A
n−i
1 [g1(qi−1(u), δpi−1)− g1(qi−1(u), δp′i−1)]‖

≤
∑n

i=1 ν
n−iL‖δpi−1 − δp′i−1‖

≤
∑n

i=1 ν
n−iLαi−1‖δγ − δγ′‖α

≤ L
α−να

n‖δγ − δγ′‖α

(23)

and

‖δyn − δyn ′‖ ≤
∑∞

i=n+1 ‖A
n+1−i
2 [g2(qi(u), δpi)− g2(qi(u), δp′i)]‖

≤
∑∞

i=n+1 η
i−n−1L‖δpi − δp′i‖

≤
∑∞

i=n+1 η
i−n−1αi‖δγ − δγ′‖α

≤ Lα
1−αηα

n‖δγ − δγ′‖α.

(24)

Hence,

‖T (δγ, u, δx)− T (δγ′, u, δx)‖α ≤ ( L
α−ν + Lα

1−αη )‖δγ − δγ′‖α

showing T (·, u, δx) is a uniform contraction in ∆Sα provided

θ := θ(α) = L
α−ν + Lα

1−αη < 1 (25)

which is true for sufficiently small ‖f −Df(q̄)‖1. We denote the fixed point by

δγ∗(u, δx) = {δpn(u, δx) = (δxn(u, δx), δyn(u, δx))}∞n=0 (26)

Notice that the existence and uniqueness proof of δγ∗ above shows that for
any

µ1 < α′ < α < µ2 with ‖A1‖ < ν < α′ < α < 1/η < ‖A2‖, ‖A−1
2 ‖ < η

as long as
θ(α′), θ(α) < 1

T (·, u, δx) has a unique fixed point in ∆Sα′ and ∆Sα. But since ∆Sα′ is a closed
subspace of ∆Sα, the unique fixed point δγ∗(u, δx) is in both ∆Sα′ and ∆Sα.
This shows the independence of Fµ on any two choices in α.

Lemma 3. The foliation function ψ2 is C1(Eλ1 × Eµ1 ,Eµ2).

Proof. Notice from its definition (21) that we only need to show δp0 is C1 for
which it suffices to show the unique fixed point δγ∗ of T from Lemma 2 isC1 since
δp0 is only a point of the sequence δγ∗. By the Uniform Contraction Principle II,
we need to verify two conditions: (1) T (δγ, u, δx) is differentiable in δγ and
‖DδγT (δγ, u, δx)‖ is uniformly bounded by a constant smaller than 1; (2) T ∈
C1(∆Sα × Eλ1 × Eµ1 ,∆Sα).
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To show (1), let δγ = {δpn}, v = {vn} ∈ ∆Sα, and formally differentiate
(22). Then DδγT (δγ, u, δx)v needs to be as below in components:{

[DδγT (δγ, u, δx)v]n, 1 =
∑n

i=1A
n−i
1 Dδpg1(qi−1(u), δpi−1)vi−1

[DδγT (δγ, u, δx)v]n, 2 =
∑∞

i=n+1A
n+1−i
2 Dδpg2(qi(u), δpi)vi.

(27)

By the exactly same estimate as for (23) we have

‖[DδγT (δγ, u, δx)v]n, 1‖ ≤ L
α−να

n‖v‖α.

Similarly, by the exactly same estimate as for (24) we have

‖[DδγT (δγ, u, δx)v]n, 2‖ ≤ Lα
1−αηα

n‖v‖α.

These estimates imply two conclusions. One, because of the uniform convergence
of the second equation, the derivative DδγT (δγ, δx) exists. Two, it shows the
derivative is a bounded linear map in L(∆Sα,∆Sα) whose α-norm

‖DδγT (δγ, u, δx)‖α ≤ θ(α) < 1,

is bounded by the same uniform contraction constant θ(α) from (25).
To show (2), we separate it into three cases. The first case is done above for

derivative in δγ, the second case is for derivative in δx, and the third case is for
derivative in u. For the second case we have formally

[DδxT (δγ, u, δx)]n, 1 = An1 , and [DδxT (δγ, u, δx)]n, 2 = 0,

which implies
‖[DδxT (δγ, u, δx)]n‖ ≤ ‖An1‖ ≤ αn

and ‖DδxT (δγ, u, δx)‖α ≤ 1 follows. That is, T is C1 in δx.
To show the third case, we will treat T in u as a composition

T (δγ, u, δx) = T̄ (δγ, γ∗(u), δx) (28)

of a map T̄ : ∆Sα×Sβ×Eµ1 → ∆Sα with a C1 map γ∗ : Eλ1 → Sβ which is the
orbit sequence γ∗(u) = γq for point q = (u,w) ∈ W λ1 . Here, δγ = T̄ (δγ, γ, δx)
is defined as below{

δxn = An1δx+
∑n

i=1A
n−i
1 g1(qi−1, δpi−1)

δyn =
∑∞

i=n+1A
n+1−i
2 g2(qi, δpi),

(29)

the same definition as T except for a general γ = {qn}∞n=0 ∈ Sβ . Because of the
composition we only need to show T̄ is C1 in γ.

To this end, by the sub-tight split definition that µ1λ1 < µ2, we can choose a
parameter ς close to µ1, α close to µ2, and β close to λ1 so that

ςβ < α where µ1 < ς < α < µ2 ≤ λ1 < β < λ2, (30)
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for which an adjusted norm can be chosen to satisfy (16) and

‖A1‖ < ν < ς < α < ‖A2‖. (31)

We will treat the fixed point δγ∗(u, δx) in both ∆Sς and ∆Sα. We also use the
estimates below from (10) that for i = 1, 2,

‖gi(q, δp)− gi(q′, δp)‖ ≤ ‖Dqgi(·, δp)‖0‖q − q
′‖ ≤ L1‖δp‖‖q − q′‖. (32)

Now, formally differentiating T̄ in γ, we obtain from (29) any v ∈ Sβ{
[DγT̄ (δγ, γ, δx)v]n, 1 =

∑n
i=1A

n−i
1 Dqg1(qi−1, δpi−1)vi−1

[DγT̄ (δγ, γ, δx)v]n, 2 =
∑∞

i=n+1A
n+1−i
2 Dqg2(qi, δpi)vi,

(33)

Because of ςβ < α, we have

‖[DγT̄ (δγ, γ, δx)v]n, 1‖ ≤
∑n

i=1 ‖A
n−i
1 ‖L1‖δpi−1‖‖vi−1‖

≤ L1

∑n
i=1 ν

n−iς i−1‖δγ‖ςβi−1‖v‖β
≤ L1‖δγ‖α

∑n
i=1 ν

n−iαi−1‖v‖β
≤ L1‖δγ‖α

α−ν αn‖v‖β.

(34)

Similarly, we have

‖[DγT̄ (δγ, γ, δx)v]n, 2‖ ≤
∑∞

i=n+1 ‖A
n+1−i
2 ‖L1‖δpi‖‖vi‖

≤ L1

∑∞
i=n+1 η

i−n−1ς i‖δγ‖ςβi‖v‖β
≤ L1‖δγ‖α

∑∞
i=n+1 η

i−n−1αi‖v‖β
≤ L1‖δγ‖αα

1−αη αn‖v‖β.

(35)

Combine these two estimates to obtain

‖[DγT̄ (δγ, γ, δx)]‖α ≤ ( 1
α−ν + α

1−αη )L1‖δγ‖α.

The convergence of the infinite series also shows the derivative exists. Hence
T̄ (δγ, ·, δx) is in C1(Sβ,∆Sα) and T is C1 in u as needed.

Lemma 4. f is Lipschitz on Fµ(q) and for the adapted norm from Lemma 1 the
Lipschitz constant is ≤ α uniformly for all q ∈ W λ1 .

Proof. We remark first that since T (δγ, u, δx) is Lipschitz continuous in δx with

‖T (δγ, u, δx)− T (δγ, u, δx′)‖α ≤ ‖δx− δx
′‖,

because ‖An1‖ < νn, we have by the Uniform Contraction Principle I that δγ∗

satisfies
‖δγ∗(u, δx)− δγ∗(u, δx′)‖α ≤

1
1−θ‖δx− δx

′‖. (36)

For the proof of the lemma, we need to show that for any q ∈ W λ1 and for
any p, p′ ∈ Fµ(q), ‖f(p)− f(p′)‖ ≤ α‖p− p′‖. Let γp, γp′ be the orbits through
p, p′, respectively. Then δγ∗ = γp − γq and δγ∗′ = γp′ − γq are fixed points of

9



T (·, u, δx) and T (·, u, δx′), respectively, with δx = x−πµ1(u), δx′ = x′−πµ1(u),
δγ∗ = δγ∗(u, δx), and δγ∗′ = δγ∗(u, δx′). More importantly,

γp − γp′ = (γp − γq)− (γp′ − γq) = δγ∗ − δγ∗′

whose second point on the sequence is

f(p)− f(p′) = p1 − p′1 = δp1(u, δx)− δp1(u, δx′).

The Eµ1-coordinate of the right side can be estimated as

‖δx1 − δx1
′‖ ≤ ‖A1(δx− δx′) + g1(q0(u), δx)− g1(q0(u), δx′)‖
≤ ν‖δx− δx′‖+ ‖h1(q0(u) + δx)− h1(q0(u) + δx′)‖
≤ ν‖δx− δx′‖+ L‖δx− δx′‖
≤ (ν + L)‖p− p′‖

The Eµ2-coordinate of the right side is

‖δy1 − δy1
′‖ ≤

∑∞
i=2 ‖A

2−i
2 [g2(qi(u), δpi)− g2(qi(u), δp′i)]‖

=
∑∞

i=2 ‖A
2−i
2 [h2(qi(u) + δpi)− h2(qi(u) + δp′i)]‖

≤
∑∞

i=2 η
i−2Lαi‖δγ∗ − δγ∗′‖α

≤ Lα2

1−αη‖δγ
∗(u, δx)− δγ∗(u, δx′)‖α

≤ Lα2

1−αη
1

1−θ‖δx− δx
′‖

≤ Lα2

1−αη
1

1−θ‖p− p
′‖

where (36) is used for the second last estimate. Therefore,

‖f(p)− f(p′)‖ ≤ (ν + L+ Lα2

1−αη
1

1−θ )‖p− p
′‖ ≤ α‖p− p′‖

for sufficiently small L, i.e., for sufficiently small ‖f −Df(q̄)‖1 since ν < α.

Lemma 5. If f is Ck,1, λ1
k < λ2, µ1

k < µ2, and µ1λ1
k < µ2, then ψ2 is Ck.

Proof. The case of k = 1 is done in Lemma 3. For the case of k ≥ 2, we notice
first from the definition of ψ2, (21), that we need to prove both φ2 and δp0(u, δx)
are Ck. By the λ-left manifold theorem we know from Proposition 1 that φ2 is Ck

because λ1
k < λ2. Hence, we only need to show δp0(u, δx) is Ck, which in turn

suffices to show the fixed point function δγ∗(u, δx) is Ck. Similar to the proof
for the λ-left manifold theorem, the Uniform Contraction Principle II cannot be
applied directly for k = 2 (except for the special case where µ1 ≤ 1). This is
because we cannot prove in general T ∈ Ck(∆Sα×Eλ1×Eµ1 ,∆Sα). An indirect
approach is needed.

First, we want to prove instead the following claim

T ∈ Ck(∆Sς × Eλ1 × Eµ1 ,∆Sα) (37)

where ς is sufficiently close to µ1 and α is sufficiently close to µ2 satisfying

µ1 < ς < α < µ2 and µ1
k < ςk < α < µ2 (38)

10



which is guaranteed by the assumption µ1
k < µ2.

To prove the claim, we first fix an adapted norm for (x, y) ∈ Eµ1 ×Eµ2 so that
in addition to (16) we also have

‖A1‖ < ν < ς < α < ‖A2‖. (39)

We separate the proof into four cases. The first case is for derivatives in δx, the
second case is for derivatives in δγ, the third case is for derivatives in u, and the
fourth case is about mixed derivatives. For the first case we already have from the
proof of Lemma 3 that

[DδxT (δγ, u, δx)]n, 1 = An1 , and [DδxT (δγ, u, δx)]n, 2 = 0,

i.e., T is C1 in δx. And Dj
δxT (δγ, u, δx) = 0, for 2 ≤ j ≤ k, the zero operators.

Hence, it is obvious that T (δγ, u, ·) ∈ Ck(Eµ1 ,∆Sα) for δγ ∈ ∆Sς .
For the second case, applying the case of j = 1 for µ1 < ς < α < µ2, we

know DδγT (δγ, u, δx) ∈ L(∆Sς ,∆Sς) ⊂ L(∆Sς ,∆Sα) because ∆Sς ⊂ ∆Sα
holds automatically. For any 2 ≤ j ≤ k, [Dj

δγT (δγ, u, δx)] needs to be a j-
linear form ∆Sς to ∆Sα. To this end, let v = v1 ⊗ v2 ⊗ · · · ⊗ vj with each
v` ∈ ∆Sς , 1 ≤ ` ≤ j. Formally differentiate (22) to get{

[Dj
δγT (δγ, u, δx)v]n, 1 =

∑n
i=1A

n−i
1 Dj

δpg1(qi−1(u), δpi−1)vi−1

[Dj
δγT (δγ, u, δx)v]

n, 2
=
∑∞

i=n+1A
n+1−i
2 Dj

δpg2(qi(u), δpi)vi,
(40)

where
vi = v1

i ⊗ v2
i ⊗ · · · ⊗ v

j
i , v`i ∈ Rd.

Similar to the estimate of (23) and because gi(q, δp) = hi(q+ δp)− hi(q), ς < α,
and ςk < α, we have

‖[Dj
δγT (δγ, u, δx)v]n, 1‖ ≤

∑n
i=1 ‖A

n−i
1 ‖‖Djh1‖‖vi−1‖

≤
∑n

i=1 ν
n−i‖h1‖jΠ

j
`=1‖v`i−1‖

≤ ‖h1‖k
∑n

i=1 ν
n−iςj(i−1)Πj

`=1‖v`‖ς
≤ ‖h1‖k

∑n
i=1 ν

n−iα(i−1)Πj
`=1‖v`‖α

≤ ‖h1‖k
α−ν α

nΠj
`=1‖v`‖α.

(41)

Here we used the property that ς < α and ςk < α imply ςj < α for 1 ≤ j ≤ k.
Similar to (24) we have

‖[Dj
δγT (δγ, u, δx)v]n, 2‖ ≤

∑∞
i=n+1 ‖A

n+1−i
2 ‖‖Djh2‖‖vi‖

≤
∑∞

i=n+1 η
i−n−1‖h2‖jςjiΠ

j
`=1‖v`‖ς

≤ ‖h2‖kη−n−1
∑∞

i=n+1(ηα)iΠj
`=1‖v`‖α

≤ ‖h2‖kα
1−αη α

nΠj
`=1‖v`‖α.

(42)

Combine these two estimates to obtain

‖[Dj
δγT (δγ, u, δx)]‖

α
≤ ‖(h1, h2)‖k max{ 1

α−ν ,
α

1−αη}.

11



The convergence of the infinite series also shows the derivatives are well-defined.
This completes the proof that T (·, u, δx) ∈ Ck(∆Sς ,∆Sα).

For the third case T (δγ, ·, δx) ∈ Ck(Eλ1 ,∆Sα), we will treat it similarly as in
the proof of Lemma 3 to be a composition of T̄ (δγ, ·, δx) : Sβ → ∆Sα, defined
by (28, 29), with γ = γ∗ : Eλ1 → Sβ for each δγ ∈ ∆Sς . By Proposition 1,
γ∗ ∈ Ck(Eλ1 , Sβ). So we only need to show T̄ (δγ, ·, δx) is Ck. The k = 1 case is
treated in the proof of Lemma 3.

For k ≥ 2, we use the condition that µ1λ1
k < µ2 to fix parameter ς close to

µ1, β close to λ1, and α close to µ2 so that in addition to (38) we also have

ςβk < α where µ1 < ς < α < µ2 ≤ λ1 < β < λ2. (43)

As a result we assume that an adapted norm is chosen so that both (16) and (39)
hold. We will also use the property (10) that

‖Dj
qgi(q, δp)‖ ≤ L̄‖δp‖ with L̄ = max{Lj : 1 ≤ j ≤ k}. (44)

We are now ready to show T̄ (δγ, ·, δx) ∈ Ck(Sβ,∆Sα) for δγ ∈ ∆Sς δx ∈ Eµ1 .
We need to show [Dj

γT̄ (δγ, γ, δx)] is a bounded j-linear form from Sβ to ∆Sα.
To this end, let v = v1 ⊗ v2 ⊗ · · · ⊗ vj with each v` ∈ Sβ, 1 ≤ ` ≤ j. Formally
differentiate (29) in γ ∈ Sβ to get{

[Dj
γT̄ (δγ, γ, δx)v]n, 1 =

∑n
i=1A

n−i
1 Dj

qg1(qi−1, δpi−1)vi−1

[Dj
γT̄ (δγ, γ, δx)v]

n, 2
=
∑∞

i=n+1 A
n+1−i
2 Dj

qg2(qi, δpi)vi,
(45)

where
vi = v1

i ⊗ v2
i ⊗ · · · ⊗ v

j
i , v`i ∈ Rd.

Similar to the estimate of (34) and because of (44), we have

‖[Dj
γT̄ (δγ, γ, δx)v]n, 1‖ ≤

∑n
i=1 ‖A

n−i
1 ‖Lj‖δpi−1‖‖vi−1‖

≤ L̄
∑n

i=1 ν
n−iς i−1‖δγ‖ςΠ

j
`=1‖v`i−1‖

≤ L̄‖δγ‖α
∑n

i=1 ν
n−iς i−1βj(i−1)Πj

`=1‖v`‖β
≤ L̄‖δγ‖α

∑n
i=1 ν

n−iαi−1Πj
`=1‖v`‖β

≤ L̄‖δγ‖α
α−ν αnΠj

`=1‖v`‖β,

where ςβj < α, 1 ≤ j ≤ k because ς < α and ςβk < α. Similar to the estimate
of (35) we have

‖[Dj
γT̄ (δγ, γ, δx)v]n, 2‖ ≤

∑∞
i=n+1 ‖A

n+1−i
2 ‖Lj‖δpi‖‖vi‖

≤ L̄
∑∞

i=n+1 η
i−n−1ς i‖δγ‖ςβjiΠ

j
`=1‖v`‖β

≤ L̄‖δγ‖α
∑∞

i=n+1 η
i−n−1αiΠj

`=1‖v`‖β
≤ L̄‖δγ‖αα

1−αη αnΠj
`=1‖v`‖β.

Combine these two estimates to obtain

‖[Dj
γT̄ (δγ, γ, δx)]‖

α
≤ ( 1

α−ν + α
1−αη )L̄‖δγ‖α.
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The convergence of the infinite series also shows the derivatives are well-defined.
Hence T̄ (δγ, ·, δx) is in Ck(Sβ,∆Sα), showing T is Ck in u.

For the fourth case about mixed derivatives of T in all variables, the arguments
above for δγ, u, δx can be combined to show all derivatives up to order k exist for
T . This completes the proof for the claim (37).

We are now ready to show δγ∗(·) ∈ Ck(Eλ1 × Eµ1 ,∆Sα). By the Uniform
Contraction Principle II for T ∈ C1(∆Sς×Eλ1×Eµ1 ,∆Sς), the fixed point δγ∗(·)
is in C1(Eλ1 × Eµ1 ,∆Sς) and its derivative in (u, δx) is given by

Dδγ∗(·) =
∑∞

n=0[DγT (δγ∗(·), ·)]nD(u,δx)T (δγ∗(·), ·).

Since δγ∗(·) ∈ C1(Eλ1×Eµ1 ,∆Sς), T ∈ C1(∆Sς×Eλ1×Eµ1 ,∆Sς) ⊂ C1(∆Sς×
Eλ1 ×Eµ1 ,∆Sα), and T ∈ Ck(∆Sς ×Eλ1 ×Eµ1 ,∆Sα), k ≥ 2 by the claim, here
is the key to notice that the composition DγT (δγ∗(·), ·) is C1(Eλ1 × Eµ1 ,∆Sα).
This implies that the infinite series on the right is in C1(Eλ1 × Eµ1 ,∆Sα), and
therefore, Dδγ∗(·) ∈ C1(Eλ1 × Eµ1 ,∆Sα), and δγ∗(·) ∈ C2(Eλ1 × Eµ1 ,∆Sα)
follows. Apply this argument recursively to obtain δγ∗(·) ∈ C3(Eλ1×Eµ1 ,∆Sα),
and so on until we reach δγ∗(·) ∈ Ck(Eλ1 × Eµ1 ,∆Sα). As a component of the
initial point of δγ∗, δp0 is in Ck(Eλ1 × Eµ1 ,Eµ2), completing the proof that ψ2 is
Ck.

Proof of Theorem 1. After the preceding lemmas, it only remains to point out that
by the definition of W µ1 , which is an invariant subspace of W λ1 , it coincides with
the definition of the foliation through the fixed point, Fµ(q̄), i.e., W µ1 = Fµ(q̄).
In fact, we can show the tangent space directly as below. Since q̄ ∼ u = 0 and
φ2(0) = 0, we have from (21)

ψ2(0, x) = δy0(0, x) =
∑∞

i=1A
1−i
2 h2(δpi(0, x))

whose partial derivative in x ∈ Eµ1 at the fixed point q̄ ∼ x = 0 is

Dxψ2(0, 0) =
∑∞

i=1A
1−i
2 Dh2(δpi(0, 0))Dxδpi(0, 0) = 0

since δγ∗(0, 0) = {0} and Dhi(0) = 0, showing Tq̄Fµ(0) = Eµ1 .

Remark: We can see from the proofs above that if the λ-left manifold point q is
fixed at the fixed point q̄ throughout, then the extra Lipschitz continuity condition
for the highest derivative of f is not needed. That is, the µ-left manifold Fµ(q̄) =
W µ1 is Ck if f is Ck plus µ1

k < µ2. This is because in this case, g(q̄, δp) = h(p)
with q̄ = 0, δp = p.
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