Sub-Foliation of Left Manifold

The Sub-Foliation of Left-Manifold Theorem obtained in this note can be used to obtained all commonly encountered invariant foliations for both diffeomorphisms and ordinary differential equations. They include: the strong-stable foliation of the stable manifold, $\mathcal{F}^{ss}_{\text{loc}} \subset W^{s}_{\text{loc}}$, the strong-stable foliation of the center-stable manifold, $\mathcal{F}^{ss}_{\text{loc}} \subset W^{cs}_{\text{loc}}$, the stable foliation of the center-unstable manifold, $\mathcal{F}^{u}_{\text{loc}} \subset W^{cu}_{\text{loc}}$, the strong-unstable foliation of the center-unstable manifold, $\mathcal{F}^{uu}_{\text{loc}} \subset W^{cu}_{\text{loc}}$, and the strong-unstable foliation of the unstable manifold, $\mathcal{F}^{uu}_{\text{loc}} \subset W^{cu}_{\text{loc}}$. By using the stable foliation of the center-stable manifold and the unstable foliation of the center-unstable manifold, one can prove the uniqueness of center-manifold dynamics.

Let \bar{q} be a fixed point of a diffeomorphism f in \mathbb{R}^d . Let $J=Df(\bar{q})$.

Definition 1. Let $[\lambda_1, \lambda_2]$ and $[\mu_1, \mu_2]$ be two pseudo-hyperbolic splits for J. The μ -split is called a sub-tight split if

(i)
$$[\mu_1, \mu_2] \leq [\lambda_1, \lambda_2]$$
, i.e., $\mu_2 \leq \lambda_1$.

(ii)
$$\mu_1 \lambda_1 < \mu_2$$
.

The λ -split is called a sup-tight split if (i) holds and $\lambda_1 < \lambda_2 \mu_2$.

Denote by \mathbb{E}^{λ_1} the generalized eigenspace of J for eigenvalues $\sigma^1=\{\lambda\in\sigma:|\lambda|\leq\lambda_1\}$ and \mathbb{E}^{λ_2} the generalized eigenspace of J for eigenvalues $\sigma^2=\{\lambda\in\sigma:|\lambda|\geq\lambda_2\}$. Then $\mathbb{R}^d\cong\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\lambda_2}$. Similarly, we have $\mathbb{R}^d\cong\mathbb{E}^{\mu_1}\times\mathbb{E}^{\mu_2}$, with $\mathbb{E}^{\mu_1}\subset\mathbb{E}^{\lambda_1}$ and $\mathbb{E}^{\lambda_2}\subset\mathbb{E}^{\mu_2}$. For point $p=(x,y)\in\mathbb{E}^{\mu_1}\times\mathbb{E}^{\mu_2}$ we will use $\pi_{\mu_1}:\mathbb{R}^d\to\mathbb{E}^{\mu_1}$ for the coordinate projection map with $\pi_{\mu_1}(p)=x$. Similarly, we have $\pi_{\mu_2}:\mathbb{R}^d\to\mathbb{E}^{\mu_2}$ with $\pi_{\mu_2}(p)=y$. Also, for the λ -splitting, we have for $q=(u,w)\in\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\lambda_2}$, $\pi_{\lambda_1}:\mathbb{R}^d\to\mathbb{E}^{\lambda_1}$ with $\pi_{\lambda_1}(q)=u$ and $\pi_{\lambda_2}:\mathbb{R}^d\to\mathbb{E}^{\lambda_2}$ with $\pi_{\lambda_2}(q)=w$. We will use exclusively p=(x,y) for μ -splitted points and q for λ -splitted points. We will write $p=\pi_{\lambda}(p)=(\pi_{\lambda_1}(p),\pi_{\lambda_2}(p))\in\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\lambda_2}$ if we want to resolve p in the p-splitting, and p0 and p1 and p2 are p3 and p4 are p4 and p5 are p5 are p6 are p6 are p7 and p8 are p9 are p9 are p9 are p9 are p9 are p9 are p9. The property of p9 are p9 and p9 are p9 and p9 are p

Definition 2. Let \bar{q} be a fixed point of a diffeomorphism f in \mathbb{R}^d . Let $[\lambda_1, \lambda_2]$ be a pseudo-hyperbolic splits for $J = Df(\bar{q})$ and $[\mu_1, \mu_2]$ be a sub-tight split of $[\lambda_1, \lambda_2]$. Let α , β be any constants satisfying

$$\mu_1 < \alpha < \mu_2 \le \lambda_1 < \beta < \lambda_2.$$

Let $W^{\lambda_1} = \{p : \sup\{\beta^{-n}[f^n(p) - \bar{q}] : n \ge 0\} < \infty\}$ be the lambda-left manifold of \bar{q} . For every $q \in W^{\lambda_1}$ the sub-fiber of q is defined as

$$\mathcal{F}^{\mu}(q) = \{ p \in W^{\lambda_1} : \sup \{ \alpha^{-n} [f^n(p) - f^n(q)] : n \ge 0 \} < \infty \}$$

and the collection

$$\mathcal{F}^{\mu} = \{ \mathcal{F}^{\mu}(q) : q \in W^{\lambda_1} \}$$

is called the sub-foliation of W^{λ_1} .

Notice that the sub-fiber defines an equivalence relation on W^{λ_1} : $q \in \mathcal{F}^{\mu}(q)$; $p \in \mathcal{F}^{\mu}(q)$ iff $q \in \mathcal{F}^{\mu}(p)$ and $\mathcal{F}^{\mu}(q) = \mathcal{F}^{\mu}(p)$. Also, the foliation is an invariant family with

$$f(\mathcal{F}^{\mu}(q)) = \mathcal{F}^{\mu}(f(q)).$$

Also W^{λ_1} can be filled by fibers through an invariant sub-manifold of W^{λ_1} as a stem that runs transverse to \mathcal{F}^{μ} . In addition, the mu-left manifold is the fiber through \bar{q} , $W^{\mu_1} = \mathcal{F}^{\mu}(\bar{q})$.

Theorem 1 (Sub-Foliation of Left-Manifold Theorem). Let \bar{q} be a fixed point of a $C^{1,1}$ diffeomorphism f. Let $[\lambda_1, \lambda_2]$ be a pseudo-hyperbolic splits for $J = Df(\bar{q})$ and $[\mu_1, \mu_2]$ be a sub-tight split of $[\lambda_1, \lambda_2]$. Then a sufficiently small $||f - Df(\bar{q})||_1$ implies there is a C^1 function

$$\psi_2: \mathbb{E}^{\lambda_1} \times \mathbb{E}^{\mu_1} \to \mathbb{E}^{\mu_2}$$

such that

(i)
$$q = (u, w) \in W^{\lambda_1}$$
 iff $w = \pi_{\lambda_2}(\psi_2)(u, \pi_{\mu_1}(u))$, i.e.,

$$W^{\lambda_1} = \operatorname{graph}(\phi_2) \text{ with } w = \phi_2(u) = \pi_{\lambda_2}(\psi_2)(u, \pi_{\mu_1}(u)).$$

(ii)
$$\mathcal{F}^{\mu}(q) = \operatorname{graph}(\psi_2(u,\cdot))$$
 for $q = (u,w) \in W^{\lambda_1}$, i.e., $p = (x,y) \in \mathcal{F}^{\mu}(q)$ iff $y = \psi_2(u,x)$.

- (iii) f is Lipschitz on each $\mathcal{F}^{\mu}(q)$ and for an adapted norm the Lipschitz constant is $\leq \alpha$ uniformly for all $q \in W^{\lambda_1}$.
- (iv) $\mathcal{F}^{\mu}(\bar{q})$ coincides with the μ -left manifold $\mathcal{F}^{\mu}(\bar{q})=W^{\mu_1}$ and

$$\mathbb{T}_{\bar{q}}\mathcal{F}^{\mu}(\bar{q}) \cong \mathbb{E}^{\mu_1}.$$

- (v) If f is $C^{k,1}$, k > 1, $\lambda_1^k < \lambda_2$, $\mu_1^k < \mu_2$, and $\mu_1 \lambda_1^k < \mu_2$, then ψ_2 is C^k .
- (vi) \mathcal{F}^{μ} is independent of any two different choices in α .

The proof is an application of the Uniform Contraction Principle. The main idea is to construct the sub-foliation function ψ_2 as part of a fixed point of a uniform contraction map. We will break it up into a few lemmas. Before doing so, we first recall a few important properties about W^{λ_1} in the statements below from the proof for the Left-Manifold Theorem, assuming the fixed \bar{q} is translated to $0 \in \mathbb{R}^d$.

Proposition 1. For any $\lambda_1 < \beta < \lambda_2$, let S_{β} be a Banach space defined by

$$S_{\beta} := \{ \gamma = \{ p_n \}_{n=0}^{\infty} : p_n \in \mathbb{R}^d, \sup \{ \beta^{-n} || p_n || : n \ge 0 \} < \infty \}$$

with norm

$$\|\gamma\|_{\beta} = \sup\{\beta^{-n} \|p_n\| : n \ge 0\}.$$

For any sufficiently small $||f - Df(\bar{q})||_1$, the orbit $\gamma_q = \{f^n(q)\}_{n=0}^{\infty}$ of any point $q = q_0 = (u, w) \in W^{\lambda_1}$ can be expressed as a function $\gamma_q = \gamma^*(u)$ for $u \in \mathbb{E}^{\lambda_1}$ so that $\gamma^* \in C^k(\mathbb{E}^{\lambda_1}, S_\beta)$ if $f \in C^k(\mathbb{R}^d)$ and $\lambda_1^k < \lambda_2$. Moreover, for any $u, u' \in \mathbb{E}^{\lambda_1}$

$$\|\gamma^*(u) - \gamma^*(u')\|_{\beta} \le \frac{1}{1 - \theta_{\lambda}(\beta)} \|u - u'\|$$
 (1)

where $0 < \theta_{\lambda}(\beta) < 1$ is a uniform contraction constant depending on β . Furthermore, let $\phi_2(u)$ be the \mathbb{E}^{λ_2} -component of $\gamma^*(u)$'s initial point, then ϕ_2 is in $C^k(\mathbb{E}^{\lambda_1}, \mathbb{E}^{\lambda_2})$ and

$$W^{\lambda_1} = \operatorname{graph}(\phi_2), \ \phi_2(0) = 0, \ \text{and} \ D\phi_2(0) = 0.$$

We also recall that by the Variation of Parameters Formula Theorem (VPF) for splitting $\mathbb{R}^d \cong \mathbb{E}^{\mu_1} \times \mathbb{E}^{\mu_2}$ corresponding to $Df(\bar{q}) \cong \operatorname{diag}(A_1, A_2)$, the map $(\bar{x}, \bar{y}) = f(x, y)$ with $(x, y), (\bar{x}, \bar{y}) \in \mathbb{E}^{\mu_1} \times \mathbb{E}^{\mu_2}$ is equivalent to

$$\begin{cases} \bar{x} = A_1 x + h_1(x, y) \\ y = A_2^{-1} \bar{y} + h_2(\bar{x}, \bar{y}), \end{cases}$$
 (2)

and for any orbit, $p_n = (x_n, y_n) = f(x_{n-1}, y_{n-1})$, and $n \ge 0$

$$\begin{cases} x_n = A_1^n x_0 + \sum_{i=1}^n A_1^{n-i} h_1(p_{i-1}) \\ y_n = A_2^{n-m} y_m + \sum_{i=n+1}^m A_2^{n+1-i} h_2(p_i). \end{cases}$$
(3)

Here, the functions h_1 , h_2 are defined by f and are as smooth as f, satisfying

$$h_1(0) = 0, \ Dh_1(0) = 0, \ h_2(0) = 0, \ Dh_2(0) = 0.$$
 (4)

They are globally Lipschitz and their Lipschitz constant can be taken to be

$$L = ||D(h_1, h_2)||_0 \to 0 \text{ as } ||f - Df(\bar{q})||_1 \to 0.$$
 (5)

The result above holds for sufficiently small $||f - Df(\bar{q})||_1$.

Associated with h_i , we will need the following functions throughout

$$g_i(q, \delta p) = h_i(q + \delta p) - h_i(q), \text{ for } i = 1, 2.$$
 (6)

Because $h_i \in C^{k,1}$ so is $g_i \in C^{k,1}$ satisfying

$$g_i(0,0) = 0$$
, $D_p g_i(0,0) = 0$, $D_{\delta p} g_i(0,0) = 0$, for $i = 1, 2$. (7)

More importantly, all derivatives in q satisfy

$$D_a^j g_i(q,0) = 0$$
, for $0 \le j \le k$, and $i = 1, 2$. (8)

To save notation, we will use the same notation for Lipschitz constants of both h_i and g_i

$$L = \max\{\|D(h_1, h_2)\|_0, \|D(g_1, g_2)\|_0\} \to 0 \text{ as } \|f - Df(\bar{q})\|_1 \to 0.$$
 (9)

Since $g_i \in C^{k,1}$, we will denote by L_1, L_2, \ldots, L_k the Lipschitz constants for $D_q g_i, D_q^2 g_i, \ldots, D_q^k g_i$, respectively. Together with the fact that $D_q^j g_i(q,0) = 0$ we have

$$||D_{\sigma}^{j}g_{i}(q,\delta p)|| \le L_{j}||\delta p|| \text{ for } 0 \le j \le k, \text{ and } i = 1,2.$$
 (10)

Unlike L which can be made as small as possible by making $||f - Df(\bar{q})||_1$ small, these constants L_i are not necessarily small.

We will repeatedly use this formula for geometric sequences

$$a + ar + ar^{2} + \dots + ar^{n-1} = \frac{a(1-r^{n})}{1-r}$$
, for $r \neq 1$

and its differentiation formulas in r. We will denote throughout

$$\gamma_p = \{p_n = f^n(p)\}_{n=0}^{\infty}$$

the orbit of f with the initial point p, for which $p_0 = p$. The proof now consists of a sequence of lemmas below.

Lemma 1. For any parameter α satisfying $\mu_1 < \alpha < \mu_2$, let

$$\Delta S_{\alpha} := \{ \delta \gamma = \{ \delta p_n \}_{n=0}^{\infty} : \delta p_n \in \mathbb{E}^{\mu_1} \times \mathbb{E}^{\mu_2}, \sup \{ \alpha^{-n} || \delta p_n || : n \ge 0 \} < \infty \}$$

$$\tag{11}$$

with norm

$$\|\delta\gamma\|_{\alpha} = \sup\{\alpha^{-n} \|\delta p_n\| : n \ge 0\}.$$

For any $q=q_0=(u,w)\in W^{\lambda_1}$ with $\gamma_q=\{q_n\}$ and $\delta p=\{\delta p_n\}\in \Delta S_\alpha$, let $\overline{\delta\gamma}=T(\delta\gamma)$ be defined by the equations below

$$\begin{cases}
\overline{\delta x}_n = A_1^n \delta x_0 + \sum_{i=1}^n A_1^{n-i} g_1(q_{i-1}, \delta p_{i-1}) \\
\overline{\delta y}_n = \sum_{i=n+1}^\infty A_2^{n+1-i} g_2(q_i, \delta p_i)
\end{cases}$$
(12)

Then $\overline{\delta\gamma} \in \Delta S_{\alpha}$. Specifically, let ν, η be any parameters satisfying

$$\mu_1 < \nu < \alpha < 1/\eta < \mu_2, \tag{13}$$

then an adapted norm can be chosen so that

$$\|\overline{\delta\gamma}\|_{\alpha} \le \|\delta x_0\| + \frac{L\|\delta\gamma\|_{\alpha}}{\alpha-\nu} + \frac{\alpha L\|\delta\gamma\|_{\alpha}}{1-\alpha\eta}.$$
 (14)

More importantly, $p \in \mathcal{F}^{\mu}(q)$ iff the orbit difference $\delta \gamma = \gamma_p - \gamma_q$ is a fixed point of T, i.e., $p = q + \delta p$ with $\delta p = (\delta x_0, \delta y_0)$ the initial point of $\delta \gamma$, and specifically,

$$p = \pi_{\mu}(u, \phi_2(u)) + (\delta x_0, \sum_{i=1}^{\infty} A_2^{1-i} g_2(q_i, \delta p_i)).$$
 (15)

Proof. We first show that T is well-defined together with the bound estimate. We begin by fixing an adapted norm for the condition (13) so that the following inequalities hold

$$||A_1|| < \nu < \alpha < 1/\eta < ||A_2|| \text{ and } ||A_2^{-1}|| < \eta < \frac{1}{\alpha}.$$
 (16)

We now demonstrate $\overline{\delta\gamma}=\{(\overline{\delta x}_n,\overline{\delta y}_n)\}\in\underline{\Delta}S_\alpha$. Because $g_i(q,0)=0$ and $\|g_i(q,\delta p)\|\leq L\|\delta p\|$ from (8, 10) we have for $\overline{\delta x}_n$

$$\|\overline{\delta x}_{n}\| \leq \|A_{1}^{n}\| \|\delta x_{0}\| + \sum_{i=1}^{n} \|A_{1}^{n-i}g_{1}(q_{i-1}, \delta p_{i-1})\|$$

$$\leq \nu^{n} \|\delta x_{0}\| + \sum_{i=1}^{n} \nu^{n-i} L\alpha^{i-1} \|\delta \gamma\|_{\alpha}$$

$$= \nu^{n} \|\delta x_{0}\| + L \|\delta \gamma\|_{\alpha} \frac{\alpha^{n} - \nu^{n}}{\alpha - \nu}$$

$$\leq (\|\delta x_{0}\| + \frac{L \|\delta \gamma\|_{\alpha}}{\alpha - \nu})\alpha^{n}.$$

$$(17)$$

Similarly,

$$\|\overline{\delta y}_{n}\| \leq \sum_{i=n+1}^{\infty} \|A_{2}^{n+1-i}g_{2}(q_{i}, \delta p_{i})\|$$

$$\leq \sum_{i=n+1}^{\infty} \eta^{i-n-1} L \alpha^{i} \|\delta \gamma\|_{\alpha}$$

$$= \eta^{-n-1} L \|\delta \gamma\|_{\alpha} \frac{(\alpha \eta)^{n+1}}{1-\alpha \eta}$$

$$= \frac{\alpha L \|\delta \gamma\|_{\alpha}}{1-\alpha \eta} \alpha^{n}.$$
(18)

Hence, the estimate (14) holds. This shows that the infinite series converges uniformly and that T is well-defined, mapping ΔS_{α} into itself.

Next, we show the last part of the lemma. First, for $p \in \mathcal{F}^{\mu}(q)$, both orbits γ_p, γ_q are in S_{β} , and the orbit difference

$$\delta \gamma = \gamma_p - \gamma_q = \{ \delta p_n : \delta p_n = p_n - q_n, n \ge 0 \}$$
 (19)

is in ΔS_{α} by definition. By the VPF (3), $\delta \gamma$ satisfies

$$\begin{cases} \delta x_n = A_1^n \delta x_0 + \sum_{i=1}^n A_1^{n-i} g_1(q_{i-1}, \delta p_{i-1}) \\ \delta y_n = A_2^{n-m} \delta y_m + \sum_{i=n+1}^m A_2^{n+1-i} g_2(q_i, \delta p_i) \end{cases}$$

Because $\|\delta y_m\| \leq \alpha^m \|\delta \gamma\|_{\alpha}$ and $\|A_2^{n-m}\| \leq \eta^{m-n}$ and $\alpha \eta < 1$, the first term in the y_n -equation above converges to 0 as $m \to \infty$. The estimate (18) also shows the partial sum of the y_n -equation converges uniformly. Therefore the limit as $m \to \infty$ exists for the y_n -equation and the limit is exactly the y_n -equation for the map T. Hence, $\delta \gamma$ is a fixed point of T.

Conversely, assume $\delta\gamma=\{(\delta x_n,\delta y_n)\}$ is a fixed point of T for a given γ_q from W^{λ_1} . It is straightforward to verify

$$\begin{cases} \delta x_n = A_1 \delta x_{n-1} + g_1(q_{n-1}, \delta p_{n-1}) \\ \delta y_n = A_2^{-1} \delta y_{n+1} + g_2(q_{n+1}, \delta p_{n+1}). \end{cases}$$

Denote $p_n=q_n+\delta p_n,\ p_n=(x_n,y_n),\ q_n=\pi_\mu(q_n)=(x_{q,n},y_{q,n})\in\mathbb{E}^{\mu_1}\times\mathbb{E}^{\mu_2}.$ Then because γ_q is an orbit it satisfies

$$\begin{cases} x_{q,n} = A_1 x_{q,n-1} + h_1(q_{n-1}) \\ y_{q,n} = A_2^{-1} y_{q,n+1} + h_2(q_{n+1}). \end{cases}$$

Sum up these two equations component by component to obtain

$$\begin{cases} x_n = A_1 x_{n-1} + h_1(p_{n-1}) \\ y_n = A_2^{-1} y_{n+1} + h_2(p_{n+1}), \end{cases}$$

which shows $\gamma_p = \{p_n\} = \gamma_q + \delta \gamma$ must be an orbit of f. Since $\gamma_q \in S_\beta$ and $\delta \gamma \in \Delta S_\alpha \subset S_\beta$, we also have $\gamma_p \in S_\beta$. Hence, the initial point, p_0 , of γ_p is in W^{λ_1} and in $\mathcal{F}^\mu(q)$ by definition. Last, the identity (15) follows by writing out the initial point of γ_p because $q = (u, \phi_2(u)) \in W^{\lambda_1}$.

Lemma 2. Let $\phi_2 \in C^1(\mathbb{E}^{\lambda_1}, \mathbb{E}^{\lambda_2})$ be the function whose graph is W^{λ_1} . Then there is a function $\psi_2 : \mathbb{E}^{\lambda_1} \times \mathbb{E}^{\mu_1} \to \mathbb{E}^{\mu_2}$ so that for all $u \in \mathbb{E}^{\lambda_1}$,

$$\phi_2(u) = \pi_{\lambda_2}(\psi_2)(u, \pi_{\mu_1}(u))$$

and for every $q \in W^{\lambda_1}$ with $q = (u, \phi_2(u))$

$$\mathcal{F}^{\mu}(u) := \mathcal{F}^{\mu}(q) = \operatorname{graph}(\psi_2(u, \cdot)). \tag{20}$$

Moreover, the definition of \mathcal{F}^{μ} is independent of any two different choices in α .

Proof. By Lemma 1, $p \in \mathcal{F}^{\mu}(q)$ iff $p = q + \delta p$ with $\delta p = \delta p_0$ the initial point of a fixed point $\delta \gamma = \{\delta p_n\}_{n \geq 0}$ of the map T from its proof. We already know from Proposition 1 that q is parameterized by $u \in \mathbb{E}^{\lambda_1}$ by $q = (u, \phi_2(u))$ as well as its orbit $\gamma_q = \gamma^*(u) = \{q_n(u)\}$. We only need to show $\delta p = (\delta x_0, \delta y_0)$ exists and is parameterized by u and by its \mathbb{E}^{μ_1} -coordinate δx_0 which we will replace by $\delta x = \delta x_0 \in \mathbb{E}^{\mu_1}$. In fact, if that is true, then in this parameterized designation, the function ψ_2 must be defined from the identity (15) as below

$$p = (x,y) = (x,\psi_2(u,x)) := \pi_{\mu}(u,\phi_2(u)) + (\delta x, \delta y_0(u,\delta x))$$

where $\delta x = x - \pi_{\mu_1}(q) = x - \pi_{\mu_1}(u)$, namely

$$\psi_2(u,x) = \pi_{\mu_2}(u,\phi_2(u)) + \sum_{i=1}^{\infty} A_2^{1-i} g_2(q_i(u),\delta p_i(u,x-\pi_{\mu_1}(u))). \tag{21}$$

Assuming the fixed point $\delta \gamma$ is unique for T, then we see the zero sequence $\delta \gamma = \{0\}$ is a trivial fixed point if $\delta x = 0$. As a consequence, we get

$$\psi_2(u,\pi_{\mu_1}(u)) = \pi_{\mu_2}(u,\phi_2(u)) + \delta y_0(u,0) = \pi_{\mu_2}(u,\phi_2(u))$$

which gives

$$\pi_{\lambda_2}(\psi_2)(u, \pi_{\mu_1}(u)) = \phi_2(u),$$

the inclusion of W^{λ_1} . Definition (21) obviously shows (20). Therefore, it is only left to show the existence and uniqueness of fixed point of T for each u, δx , and their independence on any two choices in α .

To this end, we will consider T as a parameterized map $T: \Delta S_{\alpha} \times \mathbb{E}^{\lambda_1} \times \mathbb{E}^{\mu_1} \to \Delta S_{\alpha}$ with $\overline{\delta \gamma} = T(\delta \gamma, u, \delta x)$ being defined by (12) as below

$$\begin{cases}
\overline{\delta x}_n = A_1^n \delta x + \sum_{i=1}^n A_1^{n-i} g_1(q_{i-1}(u), \delta p_{i-1}) \\
\overline{\delta y}_n = \sum_{i=n+1}^\infty A_2^{n+1-i} g_2(q_i(u), \delta p_i)
\end{cases}$$
(22)

We first show T is a uniform contraction. By the proof of Lemma 1, $T(\cdot, u, \delta x)$ maps ΔS_{α} into ΔS_{α} . For its uniform contraction, let $\delta \gamma, \delta \gamma' \in \Delta S_{\alpha}$ and $\overline{\delta \gamma} = T(\delta \gamma, u, \delta x), \overline{\delta \gamma'} = T(\delta \gamma', u, \delta x)$. Then we have

$$\|\overline{\delta x}_{n} - \overline{\delta x}_{n}'\| \leq \sum_{i=1}^{n} \|A_{1}^{n-i}[g_{1}(q_{i-1}(u), \delta p_{i-1}) - g_{1}(q_{i-1}(u), \delta p'_{i-1})]\|$$

$$\leq \sum_{i=1}^{n} \nu^{n-i} L \|\delta p_{i-1} - \delta p'_{i-1}\|$$

$$\leq \sum_{i=1}^{n} \nu^{n-i} L \alpha^{i-1} \|\delta \gamma - \delta \gamma'\|_{\alpha}$$

$$\leq \frac{L}{\alpha - \nu} \alpha^{n} \|\delta \gamma - \delta \gamma'\|_{\alpha}$$
(23)

and

$$\|\overline{\delta y}_{n} - \overline{\delta y}_{n}'\| \leq \sum_{i=n+1}^{\infty} \|A_{2}^{n+1-i}[g_{2}(q_{i}(u), \delta p_{i}) - g_{2}(q_{i}(u), \delta p'_{i})]\|$$

$$\leq \sum_{i=n+1}^{\infty} \eta^{i-n-1} L \|\delta p_{i} - \delta p'_{i}\|$$

$$\leq \sum_{i=n+1}^{\infty} \eta^{i-n-1} \alpha^{i} \|\delta \gamma - \delta \gamma'\|_{\alpha}$$

$$\leq \frac{L\alpha}{1-\alpha n} \alpha^{n} \|\delta \gamma - \delta \gamma'\|_{\alpha}.$$
(24)

Hence,

$$||T(\delta\gamma, u, \delta x) - T(\delta\gamma', u, \delta x)||_{\alpha} \le (\frac{L}{\alpha - \nu} + \frac{L\alpha}{1 - \alpha\eta})||\delta\gamma - \delta\gamma'||_{\alpha}$$

showing $T(\cdot, u, \delta x)$ is a uniform contraction in ΔS_{α} provided

$$\theta := \theta(\alpha) = \frac{L}{\alpha - \nu} + \frac{L\alpha}{1 - \alpha n} < 1 \tag{25}$$

which is true for sufficiently small $||f - Df(\bar{q})||_1$. We denote the fixed point by

$$\delta \gamma^*(u, \delta x) = \{ \delta p_n(u, \delta x) = (\delta x_n(u, \delta x), \delta y_n(u, \delta x)) \}_{n=0}^{\infty}$$
 (26)

Notice that the existence and uniqueness proof of $\delta\gamma^*$ above shows that for any

$$\mu_1 < \alpha' < \alpha < \mu_2$$
 with $||A_1|| < \nu < \alpha' < \alpha < 1/\eta < ||A_2||, ||A_2^{-1}|| < \eta$

as long as

$$\theta(\alpha'), \ \theta(\alpha) < 1$$

 $T(\cdot, u, \delta x)$ has a unique fixed point in $\Delta S_{\alpha'}$ and ΔS_{α} . But since $\Delta S_{\alpha'}$ is a closed subspace of ΔS_{α} , the unique fixed point $\delta \gamma^*(u, \delta x)$ is in both $\Delta S_{\alpha'}$ and ΔS_{α} . This shows the independence of \mathcal{F}^{μ} on any two choices in α .

Lemma 3. The foliation function ψ_2 is $C^1(\mathbb{E}^{\lambda_1} \times \mathbb{E}^{\mu_1}, \mathbb{E}^{\mu_2})$.

Proof. Notice from its definition (21) that we only need to show δp_0 is C^1 for which it suffices to show the unique fixed point $\delta \gamma^*$ of T from Lemma 2 is C^1 since δp_0 is only a point of the sequence $\delta \gamma^*$. By the Uniform Contraction Principle II, we need to verify two conditions: (1) $T(\delta \gamma, u, \delta x)$ is differentiable in $\delta \gamma$ and $\|D_{\delta \gamma} T(\delta \gamma, u, \delta x)\|$ is uniformly bounded by a constant smaller than 1; (2) $T \in C^1(\Delta S_\alpha \times \mathbb{E}^{\lambda_1} \times \mathbb{E}^{\mu_1}, \Delta S_\alpha)$.

To show (1), let $\delta \gamma = \{\delta p_n\}, v = \{v_n\} \in \Delta S_{\alpha}$, and formally differentiate (22). Then $D_{\delta \gamma} T(\delta \gamma, u, \delta x) v$ needs to be as below in components:

$$\begin{cases}
[D_{\delta\gamma}T(\delta\gamma, u, \delta x)v]_{n, 1} = \sum_{i=1}^{n} A_1^{n-i} D_{\delta p} g_1(q_{i-1}(u), \delta p_{i-1}) v_{i-1} \\
[D_{\delta\gamma}T(\delta\gamma, u, \delta x)v]_{n, 2} = \sum_{i=n+1}^{\infty} A_2^{n+1-i} D_{\delta p} g_2(q_i(u), \delta p_i) v_i.
\end{cases} (27)$$

By the exactly same estimate as for (23) we have

$$||[D_{\delta\gamma}T(\delta\gamma, u, \delta x)v]_{n, 1}|| \leq \frac{L}{\alpha-\nu}\alpha^n||v||_{\alpha}.$$

Similarly, by the exactly same estimate as for (24) we have

$$||[D_{\delta\gamma}T(\delta\gamma, u, \delta x)v]_{n, 2}|| \le \frac{L\alpha}{1-\alpha\eta}\alpha^n||v||_{\alpha}.$$

These estimates imply two conclusions. One, because of the uniform convergence of the second equation, the derivative $D_{\delta\gamma}T(\delta\gamma,\delta x)$ exists. Two, it shows the derivative is a bounded linear map in $L(\Delta S_{\alpha},\Delta S_{\alpha})$ whose α -norm

$$||D_{\delta\gamma}T(\delta\gamma, u, \delta x)||_{\alpha} \le \theta(\alpha) < 1,$$

is bounded by the same uniform contraction constant $\theta(\alpha)$ from (25).

To show (2), we separate it into three cases. The first case is done above for derivative in $\delta \gamma$, the second case is for derivative in δx , and the third case is for derivative in u. For the second case we have formally

$$[D_{\delta x}T(\delta\gamma,u,\delta x)]_{n,\;1}=A_1^n,\;\;{\rm and}\;\;[D_{\delta x}T(\delta\gamma,u,\delta x)]_{n,\;2}=0,$$

which implies

$$||[D_{\delta x}T(\delta \gamma, u, \delta x)]_n|| \le ||A_1^n|| \le \alpha^n$$

and $||D_{\delta x}T(\delta \gamma, u, \delta x)||_{\alpha} \leq 1$ follows. That is, T is C^1 in δx .

To show the third case, we will treat T in u as a composition

$$T(\delta\gamma, u, \delta x) = \bar{T}(\delta\gamma, \gamma^*(u), \delta x) \tag{28}$$

of a map $\bar{T}:\Delta S_{\alpha}\times S_{\beta}\times \mathbb{E}^{\mu_{1}}\to \Delta S_{\alpha}$ with a C^{1} map $\gamma^{*}:\mathbb{E}^{\lambda_{1}}\to S_{\beta}$ which is the orbit sequence $\gamma^{*}(u)=\gamma_{q}$ for point $q=(u,w)\in W^{\lambda_{1}}$. Here, $\overline{\delta\gamma}=\bar{T}(\delta\gamma,\gamma,\delta x)$ is defined as below

the same definition as T except for a general $\gamma = \{q_n\}_{n=0}^{\infty} \in S_{\beta}$. Because of the composition we only need to show \bar{T} is C^1 in γ .

To this end, by the sub-tight split definition that $\mu_1\lambda_1<\mu_2$, we can choose a parameter ς close to μ_1 , α close to μ_2 , and β close to λ_1 so that

$$\varsigma \beta < \alpha \text{ where } \mu_1 < \varsigma < \alpha < \mu_2 \le \lambda_1 < \beta < \lambda_2,$$
(30)

for which an adjusted norm can be chosen to satisfy (16) and

$$||A_1|| < \nu < \varsigma < \alpha < ||A_2||. \tag{31}$$

We will treat the fixed point $\delta \gamma^*(u, \delta x)$ in both ΔS_{ς} and ΔS_{α} . We also use the estimates below from (10) that for i = 1, 2,

$$||g_i(q,\delta p) - g_i(q',\delta p)|| \le ||D_q g_i(\cdot,\delta p)||_0 ||q - q'|| \le L_1 ||\delta p|| ||q - q'||.$$
 (32)

Now, formally differentiating \bar{T} in γ , we obtain from (29) any $v \in S_{\beta}$

$$\begin{cases}
[D_{\gamma}\bar{T}(\delta\gamma, \gamma, \delta x)v]_{n, 1} = \sum_{i=1}^{n} A_{1}^{n-i} D_{q}g_{1}(q_{i-1}, \delta p_{i-1})v_{i-1} \\
[D_{\gamma}\bar{T}(\delta\gamma, \gamma, \delta x)v]_{n, 2} = \sum_{i=n+1}^{\infty} A_{2}^{n+1-i} D_{q}g_{2}(q_{i}, \delta p_{i})v_{i},
\end{cases}$$
(33)

Because of $\varsigma \beta < \alpha$, we have

$$||[D_{\gamma}\bar{T}(\delta\gamma, \gamma, \delta x)v]_{n, 1}|| \leq \sum_{i=1}^{n} ||A_{1}^{n-i}||L_{1}||\delta p_{i-1}||||v_{i-1}|| \\ \leq L_{1} \sum_{i=1}^{n} \nu^{n-i} \zeta^{i-1}||\delta\gamma||_{\zeta} \beta^{i-1}||v||_{\beta} \\ \leq L_{1} ||\delta\gamma||_{\alpha} \sum_{i=1}^{n} \nu^{n-i} \alpha^{i-1}||v||_{\beta} \\ \leq \frac{L_{1}||\delta\gamma||_{\alpha}}{\alpha - \nu} \alpha^{n} ||v||_{\beta}.$$
(34)

Similarly, we have

$$||[D_{\gamma}\bar{T}(\delta\gamma, \gamma, \delta x)v]_{n, 2}|| \leq \sum_{i=n+1}^{\infty} ||A_{2}^{n+1-i}||L_{1}||\delta p_{i}|| ||v_{i}|| \leq L_{1} \sum_{i=n+1}^{\infty} \eta^{i-n-1} \zeta^{i} ||\delta\gamma||_{\varsigma} \beta^{i} ||v||_{\beta} \leq L_{1} ||\delta\gamma||_{\alpha} \sum_{i=n+1}^{\infty} \eta^{i-n-1} \alpha^{i} ||v||_{\beta} \leq \frac{L_{1} ||\delta\gamma||_{\alpha} \alpha}{1-\alpha\eta} \alpha^{n} ||v||_{\beta}.$$
(35)

Combine these two estimates to obtain

$$\|[D_{\gamma}\bar{T}(\delta\gamma,\gamma,\delta x)]\|_{\alpha} \leq (\frac{1}{\alpha-\nu} + \frac{\alpha}{1-\alpha n})L_1\|\delta\gamma\|_{\alpha}.$$

The convergence of the infinite series also shows the derivative exists. Hence $\bar{T}(\delta\gamma,\cdot,\delta x)$ is in $C^1(S_\beta,\Delta S_\alpha)$ and T is C^1 in u as needed.

Lemma 4. f is Lipschitz on $\mathcal{F}^{\mu}(q)$ and for the adapted norm from Lemma 1 the Lipschitz constant is $\leq \alpha$ uniformly for all $q \in W^{\lambda_1}$.

Proof. We remark first that since $T(\delta \gamma, u, \delta x)$ is Lipschitz continuous in δx with

$$||T(\delta\gamma, u, \delta x) - T(\delta\gamma, u, \delta x')||_{\alpha} \le ||\delta x - \delta x'||,$$

because $||A_1^n|| < \nu^n$, we have by the Uniform Contraction Principle I that $\delta \gamma^*$ satisfies

$$\|\delta\gamma^*(u,\delta x) - \delta\gamma^*(u,\delta x')\|_{\alpha} \le \frac{1}{1-\theta} \|\delta x - \delta x'\|. \tag{36}$$

For the proof of the lemma, we need to show that for any $q \in W^{\lambda_1}$ and for any $p, p' \in \mathcal{F}^{\mu}(q)$, $\|f(p) - f(p')\| \leq \alpha \|p - p'\|$. Let $\gamma_p, \gamma_{p'}$ be the orbits through p, p', respectively. Then $\delta \gamma^* = \gamma_p - \gamma_q$ and $\delta \gamma^{*'} = \gamma_{p'} - \gamma_q$ are fixed points of

 $T(\cdot, u, \delta x)$ and $T(\cdot, u, \delta x')$, respectively, with $\delta x = x - \pi_{\mu_1}(u)$, $\delta x' = x' - \pi_{\mu_1}(u)$, $\delta \gamma^* = \delta \gamma^*(u, \delta x)$, and $\delta \gamma^{*'} = \delta \gamma^*(u, \delta x')$. More importantly,

$$\gamma_p - \gamma_{p'} = (\gamma_p - \gamma_q) - (\gamma_{p'} - \gamma_q) = \delta \gamma^* - \delta \gamma^{*'}$$

whose second point on the sequence is

$$f(p) - f(p') = p_1 - p'_1 = \delta p_1(u, \delta x) - \delta p_1(u, \delta x').$$

The \mathbb{E}^{μ_1} -coordinate of the right side can be estimated as

$$\|\overline{\delta x}_{1} - \overline{\delta x}_{1}'\| \leq \|A_{1}(\delta x - \delta x') + g_{1}(q_{0}(u), \delta x) - g_{1}(q_{0}(u), \delta x')\|$$

$$\leq \nu \|\delta x - \delta x'\| + \|h_{1}(q_{0}(u) + \delta x) - h_{1}(q_{0}(u) + \delta x')\|$$

$$\leq \nu \|\delta x - \delta x'\| + L\|\delta x - \delta x'\|$$

$$\leq (\nu + L)\|p - p'\|$$

The \mathbb{E}^{μ_2} -coordinate of the right side is

$$\begin{split} \|\overline{\delta y}_1 - \overline{\delta y}_1{}'\| &\leq \sum_{i=2}^\infty \|A_2^{2-i}[g_2(q_i(u), \delta p_i) - g_2(q_i(u), \delta p_i')]\| \\ &= \sum_{i=2}^\infty \|A_2^{2-i}[h_2(q_i(u) + \delta p_i) - h_2(q_i(u) + \delta p_i')]\| \\ &\leq \sum_{i=2}^\infty \eta^{i-2} L\alpha^i \|\delta \gamma^* - \delta \gamma^{*'}\|_\alpha \\ &\leq \frac{L\alpha^2}{1-\alpha\eta} \|\delta \gamma^*(u, \delta x) - \delta \gamma^*(u, \delta x')\|_\alpha \\ &\leq \frac{L\alpha^2}{1-\alpha\eta} \frac{1}{1-\theta} \|\delta x - \delta x'\| \\ &\leq \frac{L\alpha^2}{1-\alpha\eta} \frac{1}{1-\theta} \|p - p'\| \end{split}$$

where (36) is used for the second last estimate. Therefore,

$$||f(p) - f(p')|| \le (\nu + L + \frac{L\alpha^2}{1-\alpha\eta} \frac{1}{1-\theta})||p - p'|| \le \alpha ||p - p'||$$

for sufficiently small L, i.e., for sufficiently small $||f - Df(\bar{q})||_1$ since $\nu < \alpha$. \square

Lemma 5. If f is
$$C^{k,1}$$
, $\lambda_1^k < \lambda_2$, $\mu_1^k < \mu_2$, and $\mu_1 \lambda_1^k < \mu_2$, then ψ_2 is C^k .

Proof. The case of k=1 is done in Lemma 3. For the case of $k\geq 2$, we notice first from the definition of ψ_2 , (21), that we need to prove both ϕ_2 and $\delta p_0(u,\delta x)$ are C^k . By the λ -left manifold theorem we know from Proposition 1 that ϕ_2 is C^k because $\lambda_1{}^k < \lambda_2$. Hence, we only need to show $\delta p_0(u,\delta x)$ is C^k , which in turn suffices to show the fixed point function $\delta \gamma^*(u,\delta x)$ is C^k . Similar to the proof for the λ -left manifold theorem, the Uniform Contraction Principle II cannot be applied directly for k=2 (except for the special case where $\mu_1\leq 1$). This is because we cannot prove in general $T\in C^k(\Delta S_\alpha\times \mathbb{E}^{\lambda_1}\times \mathbb{E}^{\mu_1},\Delta S_\alpha)$. An indirect approach is needed.

First, we want to prove instead the following claim

$$T \in C^k(\Delta S_{\varsigma} \times \mathbb{E}^{\lambda_1} \times \mathbb{E}^{\mu_1}, \Delta S_{\alpha})$$
(37)

where ς is sufficiently close to μ_1 and α is sufficiently close to μ_2 satisfying

$$\mu_1 < \varsigma < \alpha < \mu_2 \quad \text{and} \quad {\mu_1}^k < \varsigma^k < \alpha < \mu_2$$
 (38)

which is guaranteed by the assumption $\mu_1^k < \mu_2$.

To prove the claim, we first fix an adapted norm for $(x, y) \in \mathbb{E}^{\mu_1} \times \mathbb{E}^{\mu_2}$ so that in addition to (16) we also have

$$||A_1|| < \nu < \varsigma < \alpha < ||A_2||. \tag{39}$$

We separate the proof into four cases. The first case is for derivatives in δx , the second case is for derivatives in $\delta \gamma$, the third case is for derivatives in u, and the fourth case is about mixed derivatives. For the first case we already have from the proof of Lemma 3 that

$$[D_{\delta x}T(\delta \gamma, u, \delta x)]_{n, 1} = A_1^n$$
, and $[D_{\delta x}T(\delta \gamma, u, \delta x)]_{n, 2} = 0$,

i.e., T is C^1 in δx . And $D^j_{\delta x}T(\delta\gamma,u,\delta x)=0$, for $2\leq j\leq k$, the zero operators. Hence, it is obvious that $T(\delta\gamma,u,\cdot)\in C^k(\mathbb{E}^{\mu_1},\Delta S_\alpha)$ for $\delta\gamma\in\Delta S_\varsigma$.

For the second case, applying the case of j=1 for $\mu_1<\varsigma<\alpha<\mu_2$, we know $D_{\delta\gamma}T(\delta\gamma,u,\delta x)\in L(\Delta S_\varsigma,\Delta S_\varsigma)\subset L(\Delta S_\varsigma,\Delta S_\alpha)$ because $\Delta S_\varsigma\subset\Delta S_\alpha$ holds automatically. For any $2\leq j\leq k$, $[D^j_{\delta\gamma}T(\delta\gamma,u,\delta x)]$ needs to be a j-linear form ΔS_ς to ΔS_α . To this end, let $v=v^1\otimes v^2\otimes\cdots\otimes v^j$ with each $v^\ell\in\Delta S_\varsigma,\ 1\leq\ell\leq j$. Formally differentiate (22) to get

$$\begin{cases}
[D_{\delta\gamma}^{j}T(\delta\gamma, u, \delta x)v]_{n, 1} = \sum_{i=1}^{n} A_{1}^{n-i}D_{\delta p}^{j}g_{1}(q_{i-1}(u), \delta p_{i-1})v_{i-1} \\
[D_{\delta\gamma}^{j}T(\delta\gamma, u, \delta x)v]_{n, 2} = \sum_{i=n+1}^{\infty} A_{2}^{n+1-i}D_{\delta p}^{j}g_{2}(q_{i}(u), \delta p_{i})v_{i},
\end{cases} (40)$$

where

$$v_i = v_i^1 \otimes v_i^2 \otimes \cdots \otimes v_i^j, \quad v_i^\ell \in \mathbb{R}^d.$$

Similar to the estimate of (23) and because $g_i(q, \delta p) = h_i(q + \delta p) - h_i(q)$, $\varsigma < \alpha$, and $\varsigma^k < \alpha$, we have

$$||[D_{\delta\gamma}^{j}T(\delta\gamma,u,\delta x)v]_{n,\ 1}|| \leq \sum_{i=1}^{n} ||A_{1}^{n-i}|| ||D^{j}h_{1}|| ||v_{i-1}|| \leq \sum_{i=1}^{n} \nu^{n-i} ||h_{1}||_{j} \Pi_{\ell=1}^{j} ||v_{i-1}^{\ell}|| \leq ||h_{1}||_{k} \sum_{i=1}^{n} \nu^{n-i} \varsigma^{j(i-1)} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\varsigma} \leq ||h_{1}||_{k} \sum_{i=1}^{n} \nu^{n-i} \alpha^{(i-1)} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\alpha} \leq \frac{||h_{1}||_{k}}{\alpha - \nu} \alpha^{n} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\alpha}.$$

$$(41)$$

Here we used the property that $\varsigma < \alpha$ and $\varsigma^k < \alpha$ imply $\varsigma^j < \alpha$ for $1 \le j \le k$. Similar to (24) we have

$$||[D_{\delta\gamma}^{j}T(\delta\gamma, u, \delta x)v]_{n, 2}|| \leq \sum_{i=n+1}^{\infty} ||A_{2}^{n+1-i}|| ||D^{j}h_{2}|| ||v_{i}|| \leq \sum_{i=n+1}^{\infty} \eta^{i-n-1} ||h_{2}||_{j} \varsigma^{ji} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\varsigma} \leq ||h_{2}||_{k} \eta^{-n-1} \sum_{i=n+1}^{\infty} (\eta\alpha)^{i} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\alpha} \leq \frac{||h_{2}||_{k}\alpha}{1-\alpha\eta} \alpha^{n} \Pi_{\ell=1}^{j} ||v^{\ell}||_{\alpha}.$$

$$(42)$$

Combine these two estimates to obtain

$$\|[D_{\delta\gamma}^j T(\delta\gamma, u, \delta x)]\|_{\alpha} \le \|(h_1, h_2)\|_k \max\{\frac{1}{\alpha - \nu}, \frac{\alpha}{1 - \alpha\eta}\}.$$

The convergence of the infinite series also shows the derivatives are well-defined. This completes the proof that $T(\cdot, u, \delta x) \in C^k(\Delta S_{\varsigma}, \Delta S_{\alpha})$.

For the third case $T(\delta\gamma,\cdot,\delta x)\in C^k(\mathbb{E}^{\lambda_1},\Delta S_\alpha)$, we will treat it similarly as in the proof of Lemma 3 to be a composition of $\bar{T}(\delta\gamma,\cdot,\delta x):S_\beta\to\Delta S_\alpha$, defined by (28, 29), with $\gamma=\gamma^*:\mathbb{E}^{\lambda_1}\to S_\beta$ for each $\delta\gamma\in\Delta S_\varsigma$. By Proposition 1, $\gamma^*\in C^k(\mathbb{E}^{\lambda_1},S_\beta)$. So we only need to show $\bar{T}(\delta\gamma,\cdot,\delta x)$ is C^k . The k=1 case is treated in the proof of Lemma 3.

For $k \geq 2$, we use the condition that $\mu_1 \lambda_1^k < \mu_2$ to fix parameter ς close to μ_1 , β close to λ_1 , and α close to μ_2 so that in addition to (38) we also have

$$\varsigma \beta^k < \alpha \text{ where } \mu_1 < \varsigma < \alpha < \mu_2 \le \lambda_1 < \beta < \lambda_2.$$
(43)

As a result we assume that an adapted norm is chosen so that both (16) and (39) hold. We will also use the property (10) that

$$||D_q^j g_i(q, \delta p)|| \le \bar{L} ||\delta p|| \text{ with } \bar{L} = \max\{L_j : 1 \le j \le k\}.$$
 (44)

We are now ready to show $\bar{T}(\delta\gamma,\cdot,\delta x)\in C^k(S_\beta,\Delta S_\alpha)$ for $\delta\gamma\in\Delta S_\varsigma$ $\delta x\in\mathbb{E}^{\mu_1}$. We need to show $[D_\gamma^j\bar{T}(\delta\gamma,\gamma,\delta x)]$ is a bounded j-linear form from S_β to ΔS_α . To this end, let $v=v^1\otimes v^2\otimes\cdots\otimes v^j$ with each $v^\ell\in S_\beta,\ 1\leq\ell\leq j$. Formally differentiate (29) in $\gamma\in S_\beta$ to get

$$\begin{cases}
 \left[D_{\gamma}^{j} \bar{T}(\delta\gamma, \gamma, \delta x) v \right]_{n, 1} = \sum_{i=1}^{n} A_{1}^{n-i} D_{q}^{j} g_{1}(q_{i-1}, \delta p_{i-1}) v_{i-1} \\
 \left[D_{\gamma}^{j} \bar{T}(\delta\gamma, \gamma, \delta x) v \right]_{n, 2} = \sum_{i=n+1}^{\infty} A_{2}^{n+1-i} D_{q}^{j} g_{2}(q_{i}, \delta p_{i}) v_{i},
\end{cases}$$
(45)

where

$$v_i = v_i^1 \otimes v_i^2 \otimes \cdots \otimes v_i^j, \quad v_i^\ell \in \mathbb{R}^d.$$

Similar to the estimate of (34) and because of (44), we have

$$\begin{split} \|[D_{\gamma}^{j}\bar{T}(\delta\gamma,\gamma,\delta x)v]_{n,\;1}\| &\leq \sum_{i=1}^{n}\|A_{1}^{n-i}\|L_{j}\|\delta p_{i-1}\|\|v_{i-1}\|\\ &\leq \bar{L}\sum_{i=1}^{n}\nu^{n-i}\varsigma^{i-1}\|\delta\gamma\|_{\varsigma}\Pi_{\ell=1}^{j}\|v_{i-1}^{\ell}\|\\ &\leq \bar{L}\|\delta\gamma\|_{\alpha}\sum_{i=1}^{n}\nu^{n-i}\varsigma^{i-1}\beta^{j(i-1)}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\beta}\\ &\leq \bar{L}\|\delta\gamma\|_{\alpha}\sum_{i=1}^{n}\nu^{n-i}\alpha^{i-1}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\beta}\\ &\leq \frac{\bar{L}\|\delta\gamma\|_{\alpha}}{\alpha-\nu}\alpha^{n}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\beta}, \end{split}$$

where $\varsigma \beta^j < \alpha, 1 \le j \le k$ because $\varsigma < \alpha$ and $\varsigma \beta^k < \alpha$. Similar to the estimate of (35) we have

$$\begin{split} \|[D_{\gamma}^{j}\bar{T}(\delta\gamma,\gamma,\delta x)v]_{n,\;2}\| &\leq \sum_{i=n+1}^{\infty} \|A_{2}^{n+1-i}\|L_{j}\|\delta p_{i}\|\|v_{i}\| \\ &\leq \bar{L}\sum_{i=n+1}^{\infty} \eta^{i-n-1}\varsigma^{i}\|\delta\gamma\|_{\varsigma}\beta^{ji}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\beta} \\ &\leq \bar{L}\|\delta\gamma\|_{\alpha}\sum_{i=n+1}^{\infty} \eta^{i-n-1}\alpha^{i}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\beta} \\ &\leq \frac{\bar{L}\|\delta\gamma\|_{\alpha}\alpha}{1-\alpha\eta}\alpha^{n}\Pi_{\ell=1}^{j}\|v^{\ell}\|_{\beta}. \end{split}$$

Combine these two estimates to obtain

$$\|[D_{\gamma}^{j}\bar{T}(\delta\gamma,\gamma,\delta x)]\|_{\alpha} \leq (\frac{1}{\alpha-\nu} + \frac{\alpha}{1-\alpha\eta})\bar{L}\|\delta\gamma\|_{\alpha}.$$

The convergence of the infinite series also shows the derivatives are well-defined. Hence $\bar{T}(\delta\gamma, \cdot, \delta x)$ is in $C^k(S_\beta, \Delta S_\alpha)$, showing T is C^k in u.

For the fourth case about mixed derivatives of T in all variables, the arguments above for $\delta \gamma, u, \delta x$ can be combined to show all derivatives up to order k exist for T. This completes the proof for the claim (37).

We are now ready to show $\delta\gamma^*(\cdot) \in C^k(\mathbb{E}^{\lambda_1} \times \mathbb{E}^{\mu_1}, \Delta S_\alpha)$. By the Uniform Contraction Principle II for $T \in C^1(\Delta S_{\varsigma} \times \mathbb{E}^{\lambda_1} \times \mathbb{E}^{\mu_1}, \Delta S_{\varsigma})$, the fixed point $\delta\gamma^*(\cdot)$ is in $C^1(\mathbb{E}^{\lambda_1} \times \mathbb{E}^{\mu_1}, \Delta S_{\varsigma})$ and its derivative in $(u, \delta x)$ is given by

$$D\delta\gamma^*(\cdot) = \sum_{n=0}^{\infty} [D_{\gamma}T(\delta\gamma^*(\cdot), \cdot)]^n D_{(u,\delta x)}T(\delta\gamma^*(\cdot), \cdot).$$

Since $\delta\gamma^*(\cdot)\in C^1(\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\Delta S_\varsigma), T\in C^1(\Delta S_\varsigma\times\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\Delta S_\varsigma)\subset C^1(\Delta S_\varsigma\times\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\Delta S_\varsigma)\subset C^1(\Delta S_\varsigma\times\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\Delta S_\varsigma)$, and $T\in C^k(\Delta S_\varsigma\times\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\Delta S_\alpha), k\geq 2$ by the claim, here is the key to notice that the composition $D_\gamma T(\delta\gamma^*(\cdot),\cdot)$ is $C^1(\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\Delta S_\alpha)$. This implies that the infinite series on the right is in $C^1(\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\Delta S_\alpha)$, and therefore, $D\delta\gamma^*(\cdot)\in C^1(\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\Delta S_\alpha)$, and $\delta\gamma^*(\cdot)\in C^2(\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\Delta S_\alpha)$ follows. Apply this argument recursively to obtain $\delta\gamma^*(\cdot)\in C^3(\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\Delta S_\alpha)$, and so on until we reach $\delta\gamma^*(\cdot)\in C^k(\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\Delta S_\alpha)$. As a component of the initial point of $\delta\gamma^*$, δp_0 is in $C^k(\mathbb{E}^{\lambda_1}\times\mathbb{E}^{\mu_1},\mathbb{E}^{\mu_2})$, completing the proof that ψ_2 is C^k .

Proof of Theorem 1. After the preceding lemmas, it only remains to point out that by the definition of W^{μ_1} , which is an invariant subspace of W^{λ_1} , it coincides with the definition of the foliation through the fixed point, $\mathcal{F}^{\mu}(\bar{q})$, i.e., $W^{\mu_1} = \mathcal{F}^{\mu}(\bar{q})$. In fact, we can show the tangent space directly as below. Since $\bar{q} \sim u = 0$ and $\phi_2(0) = 0$, we have from (21)

$$\psi_2(0,x) = \delta y_0(0,x) = \sum_{i=1}^{\infty} A_2^{1-i} h_2(\delta p_i(0,x))$$

whose partial derivative in $x \in \mathbb{E}^{\mu_1}$ at the fixed point $\bar{q} \sim x = 0$ is

$$D_x \psi_2(0,0) = \sum_{i=1}^{\infty} A_2^{1-i} Dh_2(\delta p_i(0,0)) D_x \delta p_i(0,0) = 0$$

since
$$\delta \gamma^*(0,0) = \{0\}$$
 and $Dh_i(0) = 0$, showing $\mathbb{T}_{\bar{q}}\mathcal{F}^{\mu}(0) = \mathbb{E}^{\mu_1}$.

Remark: We can see from the proofs above that if the λ -left manifold point q is fixed at the fixed point \bar{q} throughout, then the extra Lipschitz continuity condition for the highest derivative of f is not needed. That is, the μ -left manifold $\mathcal{F}^{\mu}(\bar{q}) = W^{\mu_1}$ is C^k if f is C^k plus $\mu_1^k < \mu_2$. This is because in this case, $g(\bar{q}, \delta p) = h(p)$ with $\bar{q} = 0$, $\delta p = p$.