
[Lecture Note 4]

Left and Right Manifold Theorem
The Left-Manifold Theorem obtained in this note can be used to obtain all

commonly encountered local invariant manifolds of fixed points for both diffeo-
morphisms and ordinary differential equations. They include: the local strong-
stable manifold, W ss

loc, the local stable manifold, W s
loc, the local center-stable man-

ifold, W cs
loc, the local center-manifold, W c

loc, the local center-unstable manifold,
W cu

loc, the local unstable manifold, W u
loc, and the local strong-unstable manifold,

W uu
loc . All of them are as smooth as f .

Let q̄ be a fixed point of a diffeomorphism f in Rd. Let J = Df(q̄), and
denote

σ = {λ ∈ C : λ is an eigenvalue of J . }
Also, |σ| denote the set of absolute values of elements from σ.

Definition 1. Let 0 < λ1 < λ2. The interval [λ1, λ2] is called a pseudo-hyperbolic
split for J if (λ1, λ2) is a spectral gap in the following sense

(i) |σ| ∩ (λ1, λ2) = ∅.

(ii) λ1 = max{|σ| ∩ [0, λ1]}.

(iii) λ2 = min{|σ| ∩ [λ2,∞)}.

Denote by Eλ1 the generalized eigenspace of J for eigenvalues σ1 = {λ ∈ σ :
|λ| ≤ λ1} and Eλ2 the generalized eigenspace of J for eigenvalues σ2 = {λ ∈ σ :
|λ| ≥ λ2}. Then Rd ∼= Eλ1 × Eλ2 .

Definition 2. Let q̄ be a fixed point of a diffeomorphism f in Rd and let [λ1, λ2]
be a pseudo-hyperbolic split of J = Df(q̄). Let β be any constant satisfying
λ1 < β < λ2. The left or lambda-left manifold of the fixed point q̄ for f is

W λ1 = {p : {β−n[fn(p)− q̄]}∞n=0 is a bounded sequence}.

The right or lambda-right manifold is

W λ2 = {p : {βn[f−n(p)− q̄]}∞n=0 is a bounded sequence}.

Theorem 1 (Left Manifold Theorem). Let q̄ be a fixed point of a diffeomorphism
f in Rd with a pseudo-hyperbolic split [λ1, λ2]. Let Rd ∼= Eλ1 × Eλ2 . Then a
sufficiently small ‖f −Df(q̄)‖1 implies

(i) W λ1 is the graph of a C1 function φ2 : Eλ1 → Eλ2

W λ1 = graph(φ2),

(ii) The tangent space of W λ1 at the fixed point is the lambda-left eigenspace

Tq̄W λ1 ∼= Eλ1 .
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(iii) W λ1 is independent of any two different choices in β.

(iv) f is uniform Lipschitz on W λ1 and for an adapted norm the Lipschitz con-
stant is ≤ β.

(v) If λ1
k < λ2 and f ∈ Ck(Rd), 1 ≤ k < ∞, then φ2 ∈ Ck(Eλ1 ,Eλ2). If

λ1
k+1 < λ2 and f ∈ Ck,1(Rd), then φ2 ∈ Ck,1(Eλ1 ,Eλ2).

The proof is an application of the Uniform Contraction Principle. The main
idea is to construct the lambda-left manifold function φ2 as part of a fixed point of
a uniform contraction map. We will break it up into a few lemmas.

Before doing so, we recall a few important properties about f . We first trans-
late q̄ to the origin and choose a coordinate system (x, y) for the splitting Rd ∼=
Eλ1 ×Eλ2 for which Df(q̄) ∼= diag(A1, A2). By the Variation of Parameters For-
mula Theorem, a sufficiently small ‖f −Df(q̄)‖1 implies that the map (x̄, ȳ) =
f(x, y) is equivalent to {

x̄ = A1x+ h1(x, y)
y = A2

−1ȳ + h2(x̄, ȳ),
(1)

and for any orbit, pn = (xn, yn) = f(xn−1, yn−1), and n ≥ 0,{
xn = A1

nx0 +
∑n

i=1A1
n−ih1(pi−1)

yn = A2
n−mym +

∑m
i=n+1A2

n+1−ih2(pi).
(2)

Here, the functions h1, h2 are defined by f and are as smooth as f , satisfying

h1(0) = 0, Dh1(0) = 0, h2(0) = 0, Dh2(0) = 0 (3)

and they are globally Lipschitz and the Lipschitz constant can be taken to be

L = ‖(Dh1, Dh2)‖0 → 0 as ‖f −Df(q̄)‖1 → 0. (4)

We will repeatedly use the formula below and and its differentiations in r

a+ ar + ar2 + · · ·+ arn−1 = a(1−rn)
1−r , for r 6= 1.

Especially, its convergence and its derivatives convergence as n → ∞ for 0 <
r < 1. We will denote throughout

γp = {pn = fn(p)}∞n=0

the forward orbit of f with the initial point p, for which p0 = p. The proof now
consists of a sequence of lemmas below.

Lemma 1. For the parameter β from the definition of W λ1 , let

Sβ := {γ = {pn}∞n=0 : pn ∈ Rd, sup{β−n‖pn‖ : n ≥ 0} <∞} (5)
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with norm
‖γ‖β = sup{β−n‖pn‖ : n ≥ 0}.

For any γ = {pn = (xn, y0)} ∈ Sβ , let γ = T (γ) be defined by equations{
x̄n = A1

nx0 +
∑n

i=1 A1
n−ih1(pi−1)

ȳn =
∑∞

i=n+1A2
n+1−ih2(pi).

(6)

Then γ ∈ Sβ . Specifically, let α, ν be parameters satisfying

λ1 < ν < β < 1/α < λ2, (7)

then an adapted norm can be chosen so that

‖γ̄‖β ≤ ‖x0‖+
L‖γ‖β
β−ν +

Lβ‖γ‖β
1−αβ . (8)

More importantly, p = (x0, y0) ∈ W λ1 if and only if the orbit γp = {fn(p)}∞n=0 is
a fixed point of T and

p = (x0, y0) = (x0,
∑∞

i=1 A2
1−ih2(pi)) . (9)

Proof. For the parameters satisfying (7), we can choose an adapted norm to satisfy
the relations below

‖A2
−1‖ < α, ‖A1‖ < ν < β < 1/α < ‖A2‖. (10)

We now show γ̄ ∈ Sβ . Specifically, because ‖h1(p)‖ = ‖h1(p)− h1(0)‖ ≤ L‖p‖
and ν < β, we have for x̄n

‖x̄n‖ ≤ ‖A1
n‖‖x0‖+

∑n
i=1 ‖A1

n−ih1(pi−1)‖
≤ νn‖x0‖+

∑n
i=1 ν

n−iLβi−1‖γ‖β
= νn‖x0‖+ L‖γ‖β

βn−νn
β−ν ≤ (‖x0‖+

L‖γ‖β
β−ν )βn.

(11)

Similarly,

‖ȳn‖ ≤
∑∞

i=n+1 ‖A2
n+1−ih2(pi)‖ ≤

∑∞
i=n+1 α

i−n−1Lβi‖γ‖β
= α−n−1L‖γ‖β

(αβ)n+1

1−αβ =
Lβ‖γ‖β
1−αβ β

n.
(12)

Hence, T is well-defined and the bound estimate (8) holds, implying T : Sβ → Sβ .
Next, for any p := p0 = (x0, y0) ∈ W λ1 , by definition γp = {pn = fn(p0)} ∈

Sβ , so ‖pn‖ ≤ ‖γ‖ββn for n ≥ 0. Because for m ≥ n, ‖A2
n−m‖ ≤ αm−n, and

αβ < 1, the first term of the yn-equation of the VPF (2) goes to 0 as m → ∞.
Because of the estimate (12), the partial sum of the yn-equation converges as well
as m→∞. So every orbit from W λ1 satisfies{

xn = A1
nx0 +

∑n
i=1 A1

n−ih1(pi−1)
yn =

∑∞
i=n+1A2

n+1−ih2(pi),
(13)
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showing γp is a fixed point of T .
Conversely, if a sequence γ = {pn = (xn, yn)} ∈ Sβ is a fixed point of T ,

satisfying (13), then it is straightforward to verify

xn+1 = A1xn + h1(xn, yn) and yn = A2
−1yn+1 + h2(xn+1, yn+1)

hold for all n ≥ 0. By (1) the sequence is an orbit of f . Therefore, γ = γp ∈
W λ1 , p = (x0, y0) by definition. And equation (9) holds from (13).

Lemma 2. There is a Lipschitz continuous function φ2 ∈ C0,1(Eλ1 ,Eλ2) so that

W λ1 = graph(φ2). (14)

Proof. By Lemma 1, we know that p ∈ W λ1 if and only if p is the initial point
of a sequence γ ∈ Sβ which is a fixed point of the map T defined by (6) and (9)
holds. To show the existence of such a fixed point, we will consider T as a map
parameterized by x0 ∈ Eλ1 and show that T (·, x0) : Sβ → Sβ, x0 ∈ Eλ1 , is a
uniform contraction. Specifically, let γ, γ′ and γ̄ = T (γ, x0), γ̄′ = T (γ′, x0). We
have

‖x̄n − x̄′n‖ ≤
∑n

i=1 ‖A1
n−i[h1(pi−1)− h1(p′i−1)]‖

≤
∑n

i=1 ν
n−iL‖pi−1 − p′i−1‖

≤
∑n

i=1 ν
n−iLβi−1‖γ − γ′‖β

≤ L
β−νβ

n‖γ − γ′‖β

(15)

and
‖ȳn − ȳ′n‖ ≤

∑∞
i=n+1 ‖A2

n+1−i[h2(pi)− h2(p′i)]‖
≤
∑∞

i=n+1 α
i−n−1L‖pi − p′i‖

≤
∑∞

i=n+1 α
i−n−1βi‖γ − γ′‖β

≤ Lβ
1−αββ

n‖γ − γ′‖β .

(16)

Hence,
‖T (γ, x0)− T (γ′, x0)‖β ≤ ( L

β−ν + Lβ
1−αβ )‖γ − γ′‖β ,

showing T (·, x0) is a uniform contraction provided

θ := θ(β) = L
β−ν + Lβ

1−αβ < 1 (17)

which is true for small ‖f −Df(q̄)‖1 by (4). Denote the unique fixed point of
T (·, x0) by

γ∗(x0) = {pn(x0)}∞n=0, pn(x0) = (xn(x0), yn(x0)), n ≥ 0. (18)

Define
φ2(x0) := y0(x0) =

∑∞
i=1A2

1−ih2(pi(x0)), (19)

the y-coordinate of the initial point of the fixed point γ∗(x0). By Lemma 1(9), we
have p ∈ W λ1 iff p = (x0, y0) = (x0, φ2(x0)), i.e., the identity (14).

Next, since T : Sβ × Eλ1 → Sβ is Lipschitz continuous in x0 with

‖T (γ, x0)− T (γ, x0
′)‖β ≤ ‖x0 − x0

′‖
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because ‖A1
n‖ < βn, we have by the Uniform Contraction Principle I that γ∗(x0)

is Lipschitz continuous with

‖γ∗(x0)− γ∗(x0
′)‖β ≤

1
1−θ‖x0 − x0

′‖ (20)

which in turn implies φ2 is Lipschitz continuous with

‖φ2(x0)− φ2(x0
′)‖ ≤ ‖γ∗(x0)− γ∗(x0

′)‖β ≤
1

1−θ‖x0 − x0
′‖ ,

completing the proof of the lemma.

Lemma 3. φ2 ∈ C1(Eλ1 ,Eλ2) and Tq̄W λ1 ∼= Eλ1 .

Proof. The main argument is to show that the Uniform Contraction Principle II
applies to T for k = 1. Two conditions are needed to verify: (1) T ∈ C1(Sβ ×
Eλ1 , Sβ); and (2) ‖DγT (γ, x0)‖ is uniformly bounded by a constant smaller than
1.

To verify the conditions, let γ = {pn}, v = {vn} ∈ Sβ , and formally differen-
tiate (6). Then DγT (γ, x0)v needs to be as below in components:{

[DγT (γ, x0)v]n, 1 =
∑n

i=1A1
n−iDh1(pi−1)vi−1

[DγT (γ, x0)v]n, 2 =
∑∞

i=n+1A2
n+1−iDh2(pi)vi.

(21)

By exactly the same estimates as for (15, 16) we have

‖[DγT (γ, x0)v]n, 1‖ ≤ L
β−νβ

n‖v‖β

and
‖[DγT (γ, x0)v]n, 2‖ ≤ Lβ

1−αββ
n‖v‖β .

These estimates imply three things. One, because of the uniform convergence of
the second equation, the derivative DγT (γ, x0) is well-defined. Two, the deriva-
tive is in fact in L(Sβ, Sβ) as required. Three, the derivative’s β-norm

‖DγT (γ, x0)‖β ≤ θ(β) < 1

is bounded by the same uniform contraction constant θ(β). About its derivative in
x0, we have

[Dx0T (γ, x0)]n, 1 = A1
n, and [Dx0T (γ, x0)]n, 2 = 0.

Obviously, Dx0T (γ, x0) ∈ L(Eλ1 , Sβ) since ‖A1
n‖ < βn. This shows the Uni-

form Contraction Principle II indeed applies for T with the case of k = 1. Thus,
we can conclude that for the fixed point, γ∗(·) ∈ C1(Eλ1 , Sβ), and φ2 ∈ C1(Eλ1 ,Eλ2)
follows.

Furthermore, since the fixed point q̄ ∼ 0 is obviously on the manifold, we have
γ0 = γ∗(0) = {0}n≥0, the zero sequence. Hence, φ2(0) = 0 because h2(0) = 0.
In addition, for the derivative of φ2, we have from (19)

Dφ2(x0) =
∑∞

i=1A2
1−iDh2(pi(x0))Dpi(x0).
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Because Dh2(0) = 0, and pi(0) = 0 for all i ≥ 0, we have

Dφ2(0) = 0,

showing that the tangent space of W λ1 at q̄ ∼ 0 is the lambda-left eigenspace Eλ1 .
This proves the theorem for k = 1.

Lemma 4. The definition of W λ1 is independent of any two choices in β. More
specifically, let γ∗(x0) be the fixed point of the map T (·, x0) from Lemma 1,
then for any 1 < β′ < β, a sufficiently small ‖f −Df(q̄)‖1 implies γ∗(·) ∈
C1(Eλ1 , Sβ′) and γ∗(·) ∈ C1(Eλ1 , Sβ).

Proof. Let β′ and β be two different constants satisfying the definition of W λ1 .
Assume without loss of generality that λ1 < β′ < β < λ2. On one hand, it is
automatically true by definition that

W λ1
β′ ⊆ W λ1

β

because Sβ′ ⊂ Sβ for β′ < β.
On the other hand, we can re-adjust the adapted norm if necessary so that

‖A2
−1‖ < α, ‖A1‖ < ν < β′ < β < 1/α < ‖A2‖.

Also, by making ‖f −Df(q̄)‖1 smaller if necessary, we can assume

θ(β′), θ(β) < 1.

Thus, the same estimates (11, 12) imply that the uniform contraction map T (·, x0)
defined in Sβ maps the subset Sβ′ into itself. Therefore, the fixed point func-
tion γ∗(·) for parameter β must reside in Sβ′ , and therefore the reverse inclusion
W λ1
β ⊆ W λ1

β′ follows, implying

W λ1
β′ = W λ1

β ,

i.e., the independence of W λ1 on β. The proof of Lemma 3 also shows the same
fixed point function γ∗(·) is in both C1(Eλ1 , Sβ′) and C1(Eλ1 , Sβ).

Lemma 5. f is a uniform Lipschitz onW λ1 and for the adapted norm from Lemma
1 the Lipschitz constant is ≤ β.

Proof. Let p0 = (x0, φ2(x0)), p′0 = (x0
′, φ2(x0

′)) be two points from W λ1 , and
consider their images under f , p1 = f(p0), p′1 = f(p′0). Because their orbits,
γ∗(x0), γ∗(x0

′), are fixed points of T , by (13) and (10) we have

‖x1 − x′1‖ ≤ ‖A1‖‖x0 − x0
′‖+ ‖h1(p0)− h1(p′0)‖

≤ ν‖x0 − x0
′‖+ L‖p0 − p′0‖

≤ (ν + L)‖p0 − p′0‖
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and by (13), (10), and (20)

‖y1 − y′1‖ ≤
∑∞

i=2 ‖A2
2−i[h2(pi)− h2(p′i)]‖

≤
∑∞

i=2 α
i−2L‖pi − p′i‖

≤ L
∑∞

i=2 α
i−2βi‖γ∗(x0)− γ∗(x0

′)‖β
≤ Lβ2

1−αβ
1

1−θ‖x0 − x0
′‖

≤ Lβ2

1−αβ
1

1−θ‖p0 − p′0‖.

Hence,

‖f(p0)− f(p′0)‖ ≤ (ν + L+ Lβ2

1−αβ
1

1−θ )‖p0 − p′0‖ < β‖p0 − p′0‖

for small L, i.e., for small ‖f −Df(q̄)‖1 .

Lemma 6. If λ1
k < λ2 and f ∈ Ck(Rd), 1 ≤ k < ∞, then φ2 ∈ Ck(Eλ1 ,Eλ2).

If λ1
k+1 < λ2 and f ∈ Ck,1(Rd), then φ2 ∈ Ck,1(Eλ1 ,Eλ2).

Proof. The k = 1 case is proved in Lemma 3. For k ≥ 2, we note that the
Uniform Contraction Principle II cannot apply directly as the proof of Lemma 3
did for k = 1. This is because we cannot prove T ∈ Ck(Sβ × Eλ1 , Sβ). An
indirect approach is needed. We consider the Ck case first in details because the
Ck,1 case follows easily.

Because of the assumption λ1
k < λ2, we can choose ς close to λ1 and β close

to λ2 so that the following conditions hold

λ1 < ς < β < λ2, and λ1
k < ςk < β < λ2. (22)

And assume
‖A1‖ < ν < ς < β < 1/α, ‖A2

−1‖ < α < 1, (23)

by re-adjusting the adapted norm if necessary. By Lemma 4, we have for small
‖f −Df(q̄)‖1 and β′ = ς the following

γ∗(·) ∈ C1(Eλ1 , Sς) and T ∈ C1(Sς × Eλ1 , Sς). (24)

We want to prove first instead the following claim

T ∈ Ck(Sς × Eλ1 , Sβ). (25)

We note first that

[Dx0T (γ, x0)]n, 1 = A1
n, and [Dx0T (γ, x0)]n, 2 = 0.

This implies any mixed derivative in γ and x0 are the zero operators, hence well-
defined and exists. So, we only need to show T is Ck(Sς × Eλ1 , Sβ) separately in
γ and x0. For the latter, the identity above shows

‖[Dx0T (γ, x0)]n‖ ≤ ‖A1
n‖ < νn < βn
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and ‖Dx0T (γ, x0]‖β ≤ 1 follows. Also, Dj
x0
T (γ, x0) = 0, for 2 ≤ j ≤ k. Hence,

T (γ, ·) ∈ Ck(Eλ1 , Sβ).
Now we show T (·, x0) ∈ Ck(Sς , Sβ), i.e., Dj

γT (γ, x0) is a bounded j-linear
form from ⊗jSς to Sβ for any 1 ≤ j ≤ k. The case of j = 1 is true by (24)
because T (·, x0) ∈ C1(Sς , Sς) ⊂ C1(Sς , Sβ) since Sς ⊂ Sβ for ς < β.

For any 2 ≤ j ≤ k, [Dj
γT (γ, x0)] should be a bounded j-linear form from

Sς to Sβ . To this end, let v = v1 ⊗ v2 ⊗ · · · ⊗ vj with each v` ∈ Sς . Formally
differentiate (6) to get{

[Dj
γT (γ, x0)v]n, 1 =

∑n
i=1A1

n−iDjh1(pi−1)vi−1

[Dj
γT (γ, x0)v]

n, 2
=
∑∞

i=n+1A2
n+1−iDjh2(pi)vi,

(26)

where
vi = v1

i ⊗ v2
i ⊗ · · · ⊗ v

j
i , v`i ∈ Rd.

Similar to the estimate of (15), we have

‖[Dj
γT (γ, x0)v]n, 1‖ ≤

∑n
i=1 ‖A1

n−i‖‖[Djh1(pi−1)]vi−1‖
≤
∑n

i=1 ν
n−i‖h1‖jΠ

j
`=1‖v`i−1‖

≤ ‖h1‖k
∑n

i=1 ν
n−iςj(i−1)Πj

`=1‖v`‖ς
≤ ‖h1‖k

∑n
i=1 ν

n−iβi−1Πj
`=1‖v`‖ς

≤ ‖h1‖k
β−ν β

nΠj
`=1‖v`‖ς

(27)

where ‖A1‖ < ν < ς < β and ςk < β by (22, 23), which imply ςj < β for
1 ≤ j ≤ k. Similar to the estimate of (16) we have

‖[Dj
γT (γ, x0)v]n, 2‖ ≤

∑∞
i=n+1 ‖A2

n+1−i‖‖[Djh2(pi)]vi‖
≤
∑∞

i=n+1 α
i−n−1‖h2‖jςjiΠ

j
`=1‖v`‖ς

≤ ‖h2‖kα−n−1
∑∞

i=n+1(αςj)iΠj
`=1‖v`‖ς

≤ ‖h2‖kα−n−1 (αβ)n+1

1−αβ Πj
`=1‖v`‖ς

≤ ‖h2‖kβ
1−αβ β

nΠj
`=1‖v`‖ς .

(28)

Combine these two estimates to obtain

‖[Dj
γT (γ, x0)]‖

β
≤ ‖(h1, h2)‖k max{ 1

β−ν ,
β

1−αβ}.

The convergence of the infinite series also shows the derivatives are well-defined.
This completes the proof that T ∈ Ck(Sς × Eλ1 , Sβ).

We are now ready to show γ∗(·) ∈ Ck(Eλ1 , Sβ). By the Uniform Contraction
Principle II for T ∈ C1(Sς × Eλ1 , Sς), the fixed point γ∗(·) is in C1(Eλ1 , Sς) and
its derivative is given by

Dγ∗(·) =
∑∞

n=0[DγT (γ∗(·), ·)]nDx0T (γ∗(·), ·).

Since γ∗(·) ∈ C1(Eλ1 , Sς), T ∈ C1(Sς × Eλ1 , Sς) ⊂ C1(Sς × Eλ1 , Sβ), and
T ∈ Ck(Sς × Eλ1 , Sβ), k ≥ 2, here is the key to notice that the composition
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DγT (γ∗(·), ·) is C1(Eλ1 , Sβ). This implies that the infinite series on the right is
in C1(Eλ1 , Sβ), and therefore, Dγ∗(·) ∈ C1(Eλ1 , Sβ), and γ∗(·) ∈ C2(Eλ1 , Sβ)
follows. Apply this argument recursively to obtain γ∗(·) ∈ C3(Eλ1 , Sβ), and so
on until we reach γ∗(·) ∈ Ck(Eλ1 , Sβ). As a component of the initial point of γ∗,
φ2 is in Ck(Eλ1 ,Eλ2) as well.

For the case of f ∈ Ck,1, the argument above can be used to show first T ∈
Ck,1(Sς × Eλ1 , Sβ), using λ1

k+1 < ςk+1 < β < λ2, and then γ∗ ∈ Ck,1(Eλ1 , Sβ),
which in turn implies φ2 is Ck,1. This completes the proof.

The lemmas above complete the proof for Theorem 1. For future reference,
we state the following result from the proofs above.

Proposition 1. Let [λ1, λ2] be a pseudo-hyperbolic split of J = Df(q̄) for a
diffeormorphism f in Rd at a fixed point q̄. For any λ1 < ς < β < λ2 and small
‖f −Df(q̄)‖1, the orbit γp = {fn(p)}∞n=0 of any point p = (x0, y0) ∈ W λ1 can
be expressed as a function γp = γ∗(x0) for x0 ∈ Eλ1 so that γ∗ ∈ Ck(Eλ1 , Sς)
and γ∗ ∈ Ck(Eλ1 , Sβ) if λ1

k < λ2 and f ∈ Ck(Rd), 1 ≤ k < ∞, or γ∗ ∈
Ck,1(Eλ1 , Sς) and γ∗ ∈ Ck,1(Eλ1 , Sβ) if λ1

k+1 < λ2 and f ∈ Ck,1(Rd).
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