[Lecture Note 4]
Left and Right Manifold Theorem

The Left-Manifold Theorem obtained in this note can be used to obtain all
commonly encountered local invariant manifolds of fixed points for both diffeo-
morphisms and ordinary differential equations. They include: the local strong-
stable manifold, W , the local stable manifold, W _, the local center-stable man-
ifold, W, the local center-manifold, W) ., the local center-unstable manifold,

loc?

Wie, the local unstable manifold, W)} , and the local strong-unstable manifold,
Weu, All of them are as smooth as f.

loc*

Let ¢ be a fixed point of a diffeomorphism f in R%. Let J = Df(q), and
denote
o ={A € C: \isaneigenvalue of J. }

Also, |o| denote the set of absolute values of elements from o.

Definition 1. Let 0 < \; < X\o. The interval (A1, \s] is called a pseudo-hyperbolic
split for J if (A1, Xo) is a spectral gap in the following sense

(l) |0'| N ()\1,)\2) = .
(ii) A1 = max{|o| N[0, A\1]}.
(iii) Ao = min{|o| N [Ag, 00)}.

Denote by EM the generalized eigenspace of .J for eigenvalues 0! = {\ € o :
|A| < A1} and E*2 the generalized eigenspace of J for eigenvalues 02 = {\ € o :
IA| > Xo}. Then R? = EM x Er2,

Definition 2. Let G be a fixed point of a diffeomorphism f in R¢ and let [\, \s]
be a pseudo-hyperbolic split of J = Df(q). Let 5 be any constant satisfying
A < B < Xo. The left or lambda-left manifold of the fixed point q for f is

W = {p: {B7"[f"(p) — q|}°°, is a bounded sequence}.
The right or lambda-right manifold is
W2 = {p: {B"[f"(p) — q|}°°, is a bounded sequence}.

Theorem 1 (Left Manifold Theorem). Let q be a fixed point of a diffeomorphism
f in R with a pseudo-hyperbolic split [\1, \o]. Let R? = EM x E*2. Then a
sufficiently small || f — D f(q)||, implies

(i) W™ is the graph of a C' function ¢ : EM — EM2
WA = graph(gs),
(ii) The tangent space of W' at the fixed point is the lambda-left eigenspace

T,W = EM.
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(iii) W™ is independent of any two different choices in f3.

(iv) f is uniform Lipschitz on W' and for an adapted norm the Lipschitz con-
stant is < [3.

(v) IF " < XMyand f € CFRY), 1 < k < oo, then ¢po € CHEM EN). If
MY < Xy and f € CFY(RY), then ¢y € CFHEM EX2),

The proof is an application of the Uniform Contraction Principle. The main
idea is to construct the lambda-left manifold function ¢, as part of a fixed point of
a uniform contraction map. We will break it up into a few lemmas.

Before doing so, we recall a few important properties about f. We first trans-
late g to the origin and choose a coordinate system (z,y) for the splitting R?
EM x E*2 for which D f(q) = diag(A,;, As). By the Variation of Parameters For-
mula Theorem, a sufficiently small || f — D f(g)||, implies that the map (z,y) =
f(x,y) is equivalent to

T = A1z + hi(z,y)
{ y = A5+ ha(Z,9), )
and for any orbit, p, = (x,, yn) = f(Tn_1,Yn_1), and n > 0,
{ T, = Alnino + Z'j:lfln—ihl (pil,_l) )
Yn = A" " Y + D1 A" o (ps).
Here, the functions hq, hs are defined by f and are as smooth as f, satisfying
h1(0) =0, Dhy(0) =0, h2(0) =0, Dhy(0) =0 3)
and they are globally Lipschitz and the Lipschitz constant can be taken to be
L =||(Dhy, Dhs)llg = 0 as [[f = Df (@), = 0. @)

We will repeatedly use the formula below and and its differentiations in r

a+ar+a7«2+...+a7«”*1:M,forr#l.
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Especially, its convergence and its derivatives convergence as n — oo for 0 <
r < 1. We will denote throughout

Y = {pn = " () 100

the forward orbit of f with the initial point p, for which py = p. The proof now
consists of a sequence of lemmas below.

Lemma 1. For the parameter [3 from the definition of W™, let

Sp = A{v = {pa}iZo : o € R sup{B7"|Ipull : n > 0} < o0} (5)



with norm
1715 = sup{B~"([pnl| : n = 0}.
For any v = {pn = (n,Y0)} € Ss, let ¥ = T'(y) be defined by equations

{ Tn = A"wo + Z:-L:ll {41”_%1(]91'—1) 6)
Un = Yo nsr A" ha(pi).

Then 7y € Sg. Specifically, let o, v be parameters satisfying
M <v<f<l/a<g, (7

then an adapted norm can be chosen so that

Ll LA
17l < llzoll + Zte 4 22070 ®)

More importantly, p = (xo, yo) € W' if and only if the orbit v, = { f"(p)}32, is
a fixed point of T and

p = (20,Y0) = (0, Ypoy A2 "ha(pi)) - 9)

Proof. For the parameters satisfying (7), we can choose an adapted norm to satisfy
the relations below

A7 < o, ALl <v < B<1/a<|As. (10)

We now show 7 € Sg. Specifically, because ||hy(p)|| = ||h1(p) — h1(0)|| < L||p||
and v < 3, we have for z,,

2l < 1AV llol] + S22 A (i)
< v ol + Dy VLB T 1Vl " (11)
n n_,mn L
= v"||@ol| + Lllvll s 552 < (llzoll + 552)8"™

-V

Similarly,

1]l < 3272y 1A o ()| < D02,y o " LBl
(@Bt _ LAl gn (12)
1-aB ~ 1-aB :

=a " L7l

Hence, 7" is well-defined and the bound estimate (8) holds, implying 7" : Sg — S;.

Next, for any p := py = (o, yo) € W, by definition v, = {p, = f"(po)} €
Sp, 80 |lpull < [|7l|z8" for n > 0. Because for m > n, [|A" ™| < a™™", and
aff < 1, the first term of the y,-equation of the VPF (2) goes to 0 as m — oo.
Because of the estimate (12), the partial sum of the y,,-equation converges as well
as m — o0o. So every orbit from W satisfies

{ T = Ai"wo + 300 A ha(pic)

0o P i 13
Yn = Zi:nJrl Ay o h2(pi)7 (13



showing v, is a fixed point of 7'.
Conversely, if a sequence v = {p, = (2, y,)} € Sp is a fixed point of 7T,
satisfying (13), then it is straightforward to verify

Tp4+1 = Alxn + hl(xna yn) and Yn = A271yn+1 + hQ(fEn—f—l; yn+1)

hold for all n > 0. By (1) the sequence is an orbit of f. Therefore, v = v, €
WA p = (x0,0) by definition. And equation (9) holds from (13). O

Lemma 2. There is a Lipschitz continuous function ¢, € C%1(EM , E*?) so that
W = graph(¢,). (14)

Proof. By Lemma 1, we know that p € W™ if and only if p is the initial point
of a sequence v € Sz which is a fixed point of the map 7" defined by (6) and (9)
holds. To show the existence of such a fixed point, we will consider 7" as a map
parameterized by zo € E* and show that T'(-,z0) : S5 — Sg, ¥ € EM, is a
uniform contraction. Specifically, let v,~ and ¥ = T'(~y, zo),5 = T'(v, zo). We

have ,
120 — @[] < 3oy 1A [ha(pi1) — (P )]
<D Vn_?L‘|Pi—1 — Piall
< Z? VLB Y =l
< 558" =71l

(15)

and e
150 = Tl < 2o 142" [ha(pi) — ha(P))]|

< Zz n+1 Oél " 1Ll|pl sz
< Zz n+1 al " BZH/V 7 ||ﬁ
< =58y =Nl -

(16)

Hence,
1T (v, 20) = T(V, o)l 5 < (55 + 225) v = 7ll5 »

showing T'(-, z) is a uniform contraction provided

0:=0(8) =75+ 225 <1 (17)

which is true for small || f — D f(g)||, by (4). Denote the unique fixed point of
T( ,l’o) by

7 (o) = {Pn(z0)}nZo, Pu(t0) = (2n(20), yn(20)), n = 0. (18)

Define '
P2 (w0) := yo(0) = Doy As'"ha(pi(wo)), (19)

the y-coordinate of the initial point of the fixed point 7*(z(). By Lemma 1(9), we
have p € W iff p = (g, yo) = (w0, ¢2(70)), i.€., the identity (14).
Next, since T : S x EM — Sj is Lipschitz continuous in z with

IT(v,20) = T(y,26)| 5 < ll0 — 0|
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because ||A;"|| < 8", we have by the Uniform Contraction Principle I that y*(x)
is Lipschitz continuous with

17" (o) = 7" (20")l 5 < 5510 — 20| (20)

which in turn implies ¢- is Lipschitz continuous with

I¢2(z0) = @2(z0)Il < [I7*(z0) — 7v* (o)l < tHgllw0 — 20’

completing the proof of the lemma. [

’

Lemma 3. ¢, € C1(EM E*?) and T,W™ = EM,

Proof. The main argument is to show that the Uniform Contraction Principle II
applies to T for k = 1. Two conditions are needed to verify: (1) T € C*(S5 x
E*, Sg); and (2) || D,T' (7, zo)|| is uniformly bounded by a constant smaller than
1.

To verify the conditions, let v = {p, },v = {v,,} € S, and formally differen-
tiate (6). Then D, T (7, zo)v needs to be as below in components:

[DWT(% xO)U]n, 1= Z?:l AlniiDhlv(pi—l)Ui—l
[DyT(y,x0)v],, 5 = 222,41 A2 T Dha(pi)vi.

By exactly the same estimates as for (15, 16) we have

I[DyT (7, 20)V]n, 1] < %5””””5

1)

and
DT (v, 2o)vla, 2]l < 2258710l -

These estimates imply three things. One, because of the uniform convergence of
the second equation, the derivative D, T(, zo) is well-defined. Two, the deriva-
tive is in fact in L(Ss, S3) as required. Three, the derivative’s 3-norm

1D, (.20, < 0(8) < 1

is bounded by the same uniform contraction constant #(3). About its derivative in
o, we have

[DxOT(’}/, IO)]n, 1 = Aln, and [DmOT(’)/, {E())]m 9 = O

Obviously, D,,T(v,ro) € L(E*,Sg) since ||A,"|| < 8". This shows the Uni-
form Contraction Principle II indeed applies for 7" with the case of £ = 1. Thus,
we can conclude that for the fixed point, v*(-) € C1(E*, Sg), and ¢y € CH(EM | E*2)
follows.

Furthermore, since the fixed point ¢ ~ 0 is obviously on the manifold, we have
70 = 7*(0) = {0},,>0, the zero sequence. Hence, ¢»(0) = 0 because hy(0) = 0.
In addition, for the derivative of ¢, we have from (19)

Do(w0) = Y2721 Ay~ Dha(pi(xo)) Dpi(o).
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Because Dhy(0) = 0, and p;(0) = 0 for all ¢ > 0, we have
D¢5(0) =0,

showing that the tangent space of W at ¢ ~ 0 is the lambda-left eigenspace E*1.
This proves the theorem for £ = 1. [

Lemma 4. The definition of W™ is independent of any two choices in 3. More
specifically, let v*(xo) be the fixed point of the map T'(-,xo) from Lemma I,
then for any 1 < ' < f, a sufficiently small ||f — Df(q)||, implies v*(-) €
Cl(EAl, Sgl) and "}/*<) S Cl(EM, Sg)

Proof. Let 3’ and 3 be two different constants satisfying the definition of W™,
Assume without loss of generality that \; < 5/ < 8 < A3. On one hand, it is
automatically true by definition that

A1 A1

because Sg C S for 3" < .
On the other hand, we can re-adjust the adapted norm if necessary so that

A7 <o, [JAl| <v<fB <B<1/a<|A].
Also, by making || f — Df(g)||, smaller if necessary, we can assume

0(8"), 0(8) < 1.

Thus, the same estimates (11, 12) imply that the uniform contraction map 7°(-, x¢)
defined in Sz maps the subset Sy into itself. Therefore, the fixed point func-
tion v*(-) for parameter  must reside in Sg, and therefore the reverse inclusion
I/Vﬂ’\1 C Wg‘,l follows, implying

A1 A1
W/B/ — Wﬁ 9

i.e., the independence of W on /3. The proof of Lemma 3 also shows the same
fixed point function v*(+) is in both C1(E*, Sg/) and C1(EM, Sp). O

Lemma 5. f is a uniform Lipschitz on W and for the adapted norm from Lemma
1 the Lipschitz constant is < (3.

Proof. Let py = (g, ¢2(x0)), ph = (o', p2(x0’)) be two points from W1, and
consider their images under f, p1 = f(po),p} = f(py).- Because their orbits,
v (o), v*(x¢), are fixed points of T', by (13) and (10) we have

|21 — 24 || < | Adl[|wo — x0"|| + [[h1(po) — ha(pp)]]
< vllzo — xo'[| + Lllpo — poll
< (v+ L)|lpo — ol



and by (13), (10), and (20)

lyr = will < 222 142" [ha(pi) — P2 ()]
<Dico az_?L||Pi — Pl
< LY, a3y (o) — v* (@)l

- 2
< gallvo — a0l
L
< £ 5lpo — phll-
Hence,
2
1 (po) = F0R)Il < (v + L+ 55 155) o — p6ll < Bllpo — woll
for small L, i.e., for small || f — Df(q)||; - O

Lemma 6. If \\" < My and f € C*(R?), 1 < k < oo, then ¢y € CF(EM EN),
IFN < Myand f € CFY(RY), then ¢y € CFHEM, EA2).

Proof. The k = 1 case is proved in Lemma 3. For £ > 2, we note that the
Uniform Contraction Principle II cannot apply directly as the proof of Lemma 3
did for k = 1. This is because we cannot prove T € C*(S5 x EM S3). An
indirect approach is needed. We consider the C* case first in details because the
CH1 case follows easily.

Because of the assumption A" < Ay, we can choose ¢ close to )\; and [ close
to A2 so that the following conditions hold

M <c<f <N, and \* <cF < B <. (22)

And assume
A <v<s<pB<l/a, |47 <a<l, (23)

by re-adjusting the adapted norm if necessary. By Lemma 4, we have for small
If — Df(q)]l, and 8 = ¢ the following

v*(-) € CHEM,S.) and T € C*(S. x EM,S,). (24)
We want to prove first instead the following claim
T € C*(S. x EM | Sp). (25)
We note first that
(DT (7, 20)]n, 1 = A", and [Dy T(7v,x0)]n 2 = 0.

This implies any mixed derivative in vy and x are the zero operators, hence well-
defined and exists. So, we only need to show 7" is C*(S, x E*| Sj) separately in
~ and z(. For the latter, the identity above shows

[[Dao Ty, o)lnll < | AL} <™ < 5"
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and || D, T (7, 20| 5 < 1 follows. Also, D} T'(,x) = 0, for 2 < j < k. Hence,
T(y,) € CHEM, S,)

Now we show T'(-, o) € C*(S,, Sp), i.e., DIT(, ) is a bounded j-linear
form from ®’S; to Sg for any 1 < 57 < k. The case of j = 1 is true by (24)
because T'(-, z9) € C'(S,, S;) C C'(S, Sp) since S, C Sg for¢ < .

For any 2 < j < Kk, [D%T(v, xo)] should be a bounded j-linear form from
S, to Sg. To this end, let v = v ® v? ® - -+ ® v/ with each v* € S.. Formally
differentiate (6) to get

{ [D%T(% L0)V]n, 1= D iy A" DI hy (pioy)via

[D%T(% IO)U]n, 2 Zfin+1 A" DI hy(pi)us, (20)

where
V=0 @V @u, v eR

19

Similar to the estimate of (15), we have

DT (7, x0)v]n, 1] < 320 1A T I[D? ha (D) Jvia |

< S VT I v

< bl 208y vt I [l 27)
7] Z?:l e i VO WIL
I

IAINA

where ||4;]] < v < ¢ < B and ¢* < B by (22, 23), which imply ¢/ < 3 for
1 < j < k. Similar to the estimate of (16) we have

I[DIT (v, x0)v]n, 2ll < 3272, 4 ([ A" D ha(p)]ui|

< Z?in-u O‘iin71||h2||j§ﬁH%=1 |'|U£||§

< Nhallpa™ 222 (o) T 0l (28)
ol S o

ha|l. 8 i
[2le? grrg)_ o),

[VARVAN

Combine these two estimates to obtain

IDIT (v, z0)lll 5 < [[(has o)l max{ 55, 5}

The convergence of the infinite series also shows the derivatives are well-defined.
This completes the proof that 7' € C*(S, x EM | Sp).

We are now ready to show v*(-) € C*(E*, Sg). By the Uniform Contraction
Principle II for T € C*(S, x EM, S,), the fixed point ~*(-) is in C1(E*, S.) and
its derivative is given by

Dy*(-) = 220zl DAT (v (), )" Dag T (v (), -)-

Since v*(-) € CYEM,S,.), T € CY(S, x EM S) c CY(S, x EM,Sp), and
T € C*(S. x EM,Sg),k > 2, here is the key to notice that the composition
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D, T(y*(+),-) is C*(E*, Sg). This implies that the infinite series on the right is
in C1(EM, S), and therefore, Dy*(-) € C*(E™M, Sg), and v*(-) € C*(EM, Sp)
follows. Apply this argument recursively to obtain v*(-) € C3(E*, Sj), and so
on until we reach *(-) € C¥(E*, S5). As a component of the initial point of v*,
¢ is in CF(EM  E*2) as well.

For the case of f € C*1, the argument above can be used to show first 7' €
CP(S, x BN, Sp), using \;" ™ < ¢*1 < B < )y, and then v* € CF1(EM, Sp),
which in turn implies ¢, is C*'. This completes the proof. [

The lemmas above complete the proof for Theorem 1. For future reference,
we state the following result from the proofs above.

Proposition 1. Let [\, \s] be a pseudo-hyperbolic split of J = Df(q) for a
diffeormorphism f in R? at a fixed point . For any \ < s < 3 < \o and small
1f = DF (@)l the orbit 5, = {f"(p)}:2y of any point p = (0, yo) € W can
be expressed as a function v, = v*(xo) for vy € EM so that v* € C*(EM,S,)
and v* € CHEM Sg) if M\ < Myand f € CFRY),1 < k < oo, or v* €
CRYEM,S,) and v+ € CPYEM, Sg) if M < Mg and f € CH'(RY).




