
[Lecture Note 3]

Variation of Parameters Formula
and Adapted Norm

Let f : Rd → Rd be a continuously differentiable map and q̄ be a nonsingular
fixed point, i.e., the linearizationDf(q̄) is invertible. IfDf(q̄) is similar to a block
diagonal matrix

Df(q̄) ∼ diag(A,B)

then we can assume that after translating the fixed point to the origin 0 there is a
coordinate system (x, y) ∈ Rd so that the mapping (x̄, ȳ) = f(x, y) can be written
as {

x̄ = f1(x, y) = Ax+ h(x, y)

ȳ = f2(x, y) = By + h̃(x, y).
(1)

By the Global Inverse Function Theorem we know that for H(p) = f(p) −
Df(q̄)p if ‖H‖1 < δ and δ sufficiently small, then f is globally invertible with
inverse f−1 = Df(q̄)−1 +G and ‖G‖1 < ε and ε = O(δ) (i.e., limδ→0 ε = 0). So
for (x, y) = f−1(x̄, ȳ) we can write{

x = [f−1]1(x̄, ȳ) = A−1x̄+ g̃(x̄, ȳ)
y = [f−1]2(x̄, ȳ) = B−1ȳ + g(x̄, ȳ).

(2)

Lemma 1 (Variation of Parameters Formula for Map). Let q̄ be a nonsingular
fixed point of a continuously differentiable map f in Rd. If Df(q̄) ∼ diag(A,B)
for some matrixes A,B, then for sufficiently small δ > 0, ‖f −Df(q̄)‖1 < δ
implies there is a coordinate system so that p̄ = f(p) is equivalent to{

x̄ = Ax+ h(x, y)
y = B−1ȳ + g(x̄, ȳ),

(3)

with the properties that h(0, 0) = 0, g(0, 0) = 0, Dh(0, 0) = 0, Dg(0, 0) = 0,
and ‖(h, g)‖1 → 0 as δ → 0. Moreover, the following variation of parameter
formula holds for any orbit (xn+1, yn+1) = f(xn, yn), n ∈ Z{

xn = An−`x` +
∑n

i=`+1A
n−ih(xi−1, yi−1)

yn = Bn−mym +
∑m

i=n+1B
n+1−ig(xi, yi)

(4)

for any ` ≤ n ≤ m.

Proof. The discussion preceding the lemma shows that for sufficiently small δ,
p̄ = f(p) is equivalent to Eq.(1) and Eq.(2), together they imply Eq.(3). Also,
it follows from the discussion that h(0, 0) = 0, g(0, 0) = 0, Dh(0, 0) = 0,
Dg(0, 0) = 0, and ‖(h, g)‖1 → 0 as δ → 0.

Conversely, assume a pair of points (x, y), (x̄, ȳ) satisfy Eq.(3). Recall from
the Global Inverse Function Theorem that for H = f − J with J = Df(q̄), the
inverse of f = J+H can be written as f−1 = J−1+G withG = −J−1◦H ◦f−1.
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In the coordinate system (x, y) for which J = diag(A,B), H = (h, h̃), G =
(g̃, g), we have

g = −B−1 ◦ h̃ ◦ f−1.

Hence, the second equation of Eq.(3) can be written as

ȳ = By −Bg(x̄, ȳ) = By + h̃ ◦ f−1(x̄, ȳ).

Pairing it with the first equation of Eq.(3) we have{
x̄ = Ax+ h(x, y)

ȳ = By + h̃ ◦ (J−1 +G)(x̄, ȳ).
(5)

Treating it as a fixed point for the mapping defined by the right side of equation,
p̄ = S(p̄, p), S : Rd × Rd → Rd, we can conclude that if

‖H‖1(‖J‖+ ‖G‖1) < 1 (6)

then S(·, p) is a uniform contraction. Hence, for every p = (x, y), there is a
unique fixed point (x̄, ȳ) = f ∗(x, y) parameterized by (x, y). Because (x̄, ȳ) =
f(x, y) obviously satisfies Eq.(5), it is a fixed point of S(·, p). Therefore, by the
uniqueness of the fixed point we must have (x̄, ȳ) = f(x, y) = f ∗(x, y), proving
the equivalence of Eq.(3) to Eq.(1). Because the assumption ‖f −Df(q̄)‖1 < δ
implies (6) for small δ, the equivalence indeed holds.

As a consequence to Eq.(3), for any orbit γ = {pn}∞n=−∞, with (xn+1, yn+1) =
f(xn, yn), we use the first equation of Eq.(3) to write

xn = Axn−1 + h(xn−1, yn−1)

and then recursively apply it to itself to obtain the first equation of Eq.(4). Simi-
larly, we use the second equation of Eq.(3) to write

yn = B−1yn+1 + g(xn+1, yn+1)

and then recursively apply it to itself to obtain the second equation of Eq.(4).

Denote J = Df(q̄), σ(J) the set of eigenvalues of the linearization, count-
ing multiplicity. Denote σs(J) = σ(J) ∩ {|z| < 1}, σc(J) = σ(J) ∩ {|z| =
1}, σu(J) = σ(J) ∩ {|z| > 1} the set of eigenvalues inside, on, outside the unit
circle, respectively. Denote Es,Ec,Eu the corresponding generalized eigenspaces
for eigenvalues of σs, σc, σu, respectively. Then Rd ∼= Es ⊕ Ec ⊕ Eu. In fact,
the phase space can be split or combined in other different ways. Two splits
we will need later are Rd ∼= Ecs ⊕ Eu, Rd ∼= Es ⊕ Ecu, with Ecs = Es ⊕ Ec
and Ecu = Ec ⊕ Eu, corresponding to σcs = σs ∪ σc, σcu = σc ∪ σu, etc. Let
di = #(σi) = dim(Ei). Then d = dcs + du, dcs = ds + dc, etc. Also, Edi ∼= Rdi ,
for i = s, c, u, sc, su.

Depending on applications, a coordinate system (x, y) can be chosen so that
Df(q̄) = diag(A,B) with eigenvalues of A the set σcs and those of B the set

2



σu. Or A’s eigenvalues are from σs, and B’s eigenvalues are from σcu. Or in the
case of hyperbolic fixed points, A’s eigenvalues are from σs, and B’s eigenvalues
are from σu, because σc = ∅. Or a coordinate system (x, y, z) so that Df(q̄) =
diag(A,C,B) with σ(A) = σs, σ(C) = σc, and σ(B) = σu. In any case, for
‖f −Df(q̄)‖1 < δ with sufficiently small δ, the Variation of Parameters Formula
(Lemma 1) applies. For the cases of two-matrixes splits for the linearization,
functions h, g are all C1 satisfying

h(0, 0) = 0, Dh(0, 0) = 0, g(0, 0) = 0, Dg(0, 0) = 0 (7)

and they are globally Lipschitz with Lipschitz constants satisfying

L = max{Lip(h),Lip(g)} → 0 as ‖f −Df(q̄)‖1 → 0. (8)

The same conditions also hold for h̃, g̃ but we do not need them usually. The
Variation of Parameters Formula can also be generalized to three-matrixes split
cases for the linearization.

We can further assume the coordinate is chosen so that the matrixesA,B, etc.,
are in their Jordan canonical forms. Specifically, for example, matrixA is a block-
diagonal matrix, A = diag(D1, . . . , Dk) with each Di being one of the following
forms: 

D N 0 . . . 0
0 D N . . . 0
...

... . . . ...
0 0 . . . D N
0 0 . . . 0 D


where either D = λ,N = 0, or D = λ,N = ε, or D =

[
a −b
b a

]
, N =[

0 0
0 0

]
, or D =

[
a −b
b a

]
, N =

[
ε 0
0 ε

]
, with λ or a+ ib the eigenvalues of

Di, and ε being an arbitrarily small but nonzero number. Similar forms for B or
for any other splitting also hold. Take a hyperbolic case as an example for which
σc = ∅, σ(A) = σs, σ(B) = σu. Then for any fixed but arbitrary constants α, β
satisfying

max{σ(A)} < α < 1 < β < min{σ(B)}

we can choose a sufficiently small ε a priori and then a coordinate system (x, y)
so that with respect the Euclidean norm for (x, y) the matrix norms for A and B
satisfy

‖A‖ < α < 1 < β < ‖B‖ and ‖B−1‖ < 1/β. (9)

Such a norm is referred to as an adapted norm for the linearization. Take a non-
hyperbolic case for which σ(A) = σcs and σ(B) = σu. Then for any constants
α, β

max{σ(A)} = 1 < β <
1

α
< min{σ(B)}
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we can choose again a sufficiently small ε a priori and then a coordinate system
(x, y) so that the matrix norms for A and B satisfy

‖A‖ < β and ‖B−1‖ < α < 1. (10)

The last case as an example is for the splitting σ(A) = σs and σ(B) = σcu, for
which for any constants α, β

max{σ(A)} < α < 1 and max{σ(B−1)} = 1 < β <
1

α

we can choose an adapted coordinate (x, y) so that

‖A‖ < α < 1 and ‖B−1‖ < β. (11)

Such coordinates will prove to be convenient in analyses of invariant manifolds of
diffeomorphic maps.
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