
[Lecture Note 2]

Applications of IFT: Inverse Function Theorems

Theorem 1 (Global Inverse Function Theorem). Let An×n be nonsingular and
h ∈ C1(Rn). Then there is a small number δ > 0 so that supx∈Rn(|h(x)| +
|Dh(x)|) < δ implies f(x) = Ax + h(x) is invertible and the inverse f−1 is
as smooth as f . Moreover, f−1 can be expressed as f−1 = A−1 + g with g =
−A−1 ◦ h ◦ f−1, supx∈Rn(|g(x)|+ |Dg(x)|) ≤ ε and limδ→0 ε = 0. Furthermore,
if f is Ck for k ≥ 1 or analytic then f−1 is also Ck or analytic, respectively.

Proof. Let X = C1(Rn) be the Banach space of functions from Rn to itself for
which they and their derivatives are uniformly continuous and uniformly bounded
with norm

||h||1 = sup
x∈Rn

(|h(x)|+ |Dh(x)|).

We look for inverse of the form φ = A−1 + g with g ∈ X

id = φ ◦ f = (A−1 + g) ◦ (A+ h) = id + A−1 ◦ h+ g ◦ (A+ h)

equivalent to
F (g, h) := A−1 ◦ h+ g ◦ (A+ h) = 0.

Obviously, F (g, h) ∈ X , showing F : X ×X → X . Also, F is differentiable in
g, h with DgF (g, h)v = v ◦ (A + h) and DhF (g, h)v = Dg ◦ (A + h)v for any
v ∈ X , showing F ∈ C1(X × X,X). Moreover, DgF (0, 0)v = v ◦ A = w for
any w ∈ X iff v = w ◦ A−1. This shows DgF (0, 0) ∈ L(X,X) is invertible with
a bounded inverse since v = [DgF (0, 0)]−1w = w◦A−1 and |[DgF (0, 0)]−1| = 1.
Since in addition F (0, 0) = 0, therefore, by IFT there are open neighborhood
V = Nδ1(0), U = Nδ2(0) ⊂ X for some small numbers δ1, δ2 > 0 and a u ∈
C1(V, U) so that F (g, h) = 0 for (g, h) ∈ U ×V iff g = u(h). So, the left-inverse
φ(h) = A−1 + u(h) exists and is of C1.

To show φ is also the right-inverse, consider similarly the right-inverse of the
form ψ = A−1 + g with

id = f ◦ ψ = (A+ h) ◦ (A−1 + g) = id + A ◦ g + h ◦ (A−1 + g)

equivalent to
G(g, h) := A ◦ g + h ◦ (A−1 + g) = 0.

It is similar to show G ∈ C1(X ×X,X) and G(0, 0) = 0. It is slightly different
to show DgG(0, 0) has a bounded inverse. Specifically, for any v ∈ X ,

DgG(0, 0)v = [A+Dh(A−1·)]v = A[id + A−1Dh(A−1·)]v,

which means

[DgG(0, 0)v](x) = [A+Dh(A−1x)]v(x) = A[id + A−1Dh(A−1x)]v(x).
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So DgG(0, 0) is invertible if T ∈ L(X,X) with T (x) = A−1Dh(A−1x) is
bounded by supx∈Rn |T (x)| < 1 which holds if supx∈Rn |Dh(x)| < 1/|A−1| := r.
So if we let Y = N̄r(0) ⊂ X , then for G ∈ C1(X × Y,X), DgG(0, 0) ∈
L(X,X) has a bounded inverse. Therefore, by IFT there are open neighborhood
V = Nδ′1

(0) ⊂ Y, U = Nδ′2
(0) ⊂ X for some small numbers δ′1, δ

′
2 > 0 and a

w ∈ C1(V, U) so that G(g, h) = 0 for (g, h) ∈ U × V iff g = w(h). That is, the
right-inverse ψ(h) = A−1 + w(h) exists.

Next, to show φ and ψ are the same function, let δ = min{δ1, δ′1}, and γ =
max{δ2, δ′2}, then both u and w map V = Nδ(0) ⊂ X to U = Nγ(0) ⊂ X .
Because of the continuity, limδ→0 ε = 0 where ε = max{‖u‖1, ‖w‖1}. As a
result, both φ(h) = A−1 + u(h) and ψ(h) = A−1 + w(h) are defined for h ∈ V
so that φ(h) ◦ f = id and f ◦ ψ(h) = id imply

φ(h) = φ(h) ◦ id = φ(h) ◦ (f ◦ ψ(h)) = ψ(h)

by the associative law of composition. By definition, we have φ(h) = f−1.
Finally, if h is Ck for k ≥ 1 or analytic, then both F and G have the same

smoothness, and by IFT both φ and ψ have the same smoothness as well. As a
consequence, f−1 is as smooth as h is.

Lemma 1 (Cut-off Function). For each r > 0 there exists a C∞ function ρr :
Rn → [0, 1] so that ρr|Nr ≡ 1 and supp{ρ} ⊂ N2r, where Nr is the Euclidean
ball of radius r in Rn centered at 0.

Proof. Let |x| =
√∑

x2i be the Euclidean norm for Rn. Define

φ(x) =

{
exp(−1/(1− 4|x|2), |x| < 1/2
0, 1/2 ≤ |x|

Then φ is a C∞ function with support supp{φ} ⊂ N1/2. Let

a =
∫
Rn φ(x)dx,

which is a positive number. Let

χ(x) =

{
1, |x| < 3/2
0, 3/2 ≤ |x|

be the characteristic function of the radius-3/2 ball N3/2 of 0. Define

ρ1(x) = 1
a
φ ∗ χ(x) = 1

a

∫
Rn φ(x− y)χ(y)dy

where φ ∗ χ is the convolution of φ and χ. The integral exists because both func-
tions have a finite support. Also ρ1 is as smooth as φ is. In addition, for any
x ∈ N1, and x− y in the support of φ with |x− y| < 1/2, we have that y is in the
support of χ because |y| ≤ |x|+ |x− y| ≤ 3/2. So

ρ1(x) = 1
a

∫
Rn φ(x− y)χ(y)dy = 1

a

∫
Rn φ(x− y)dy = 1.
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On the other hand, for |x| > 2 and x − y in the support of φ with |x − y| < 1/2,
y is outside the support of χ because |y| ≥ |x| − |x− y| > 3/2. Therefore

ρ1(x) = 1
a

∫
Rn φ(x− y)χ(y)dy = 0.

Clearly we also have 0 ≤ ρ1(x) ≤ 1. Last, for each r > 0, the required function
is

ρr(x) = ρ1(x/r).

This completes the proof.

Theorem 2 (Local Inverse Function Theorem). Let f : Rn → Rn be aCk function
for k ≥ 1. Assume at a point x0, Df(x0) is invertible. Then there is a small
open neighborhood U of x0, a small open neighborhood V of y0 = f(x0) so that
f : U → V is 1-1, onto, and the inverse f−1 is also Ck.

Proof. First we claim that f : U → V is invertible iff g : U ′ = U ⊕ {−x0} →
V ′ = V ⊕{−y0} is invertible where ȳ = g(x̄) = f(x̄+x0)−y0, x̄ = x−x0 ∈ U ′.
This can be checked directly as follows. Specifically, if f is invertible with inverse
f−1, then g−1(ȳ) = f−1(ȳ + y0)− x0 because

g ◦ g−1(ȳ) = f(g−1(ȳ) + x0)− y0 = (ȳ + y0)− y0 = ȳ,

and similarly g−1 ◦ g(x̄) = x̄. If g is invertible with inverse g−1, then f−1(y) =
g−1(y − y0) + x0 because

f ◦ f−1(y) = [f(g−1(y − y0) + x0)− y0] + y0 = g ◦ g−1(ȳ) + y0 = y,

and similarly f−1 ◦ f(x) = x.
So, without loss of generality, we can assume x0 = y0 = 0 for f ∈ Ck(Rn,Rn).

Now, let A = Df(0), k(x) = f(x)− Ax. Then k(0) = 0, Dk(x) = Df(x)− A
and Dk(0) = 0. So by the continuous differentiability of f for any δ1 > 0 there is
a small r-ball Nr of x = 0 so that

sup
x∈Nr

(|k(x)|+ |Dk(x)|) ≤ δ1.

Let ρr be a cut-off function from the previous lemma. Define

h(x) = ρr/2(x)k(x).

Then the support of h is inside Nr, and

|Dh(x)| = |Dρr/2(x)k(x) + ρr/2(x)Dk(x)| ≤ Kδ1

for a constant K and all x ∈ Rn. Hence,

sup
x∈Rn

(|h(x)|+ |Dh(x)|) ≤ (K + 1)δ1 := δ

Therefore, by the Global Inverse Function Theorem, for sufficiently small r > 0,
F (x) = Ax + h(x) is Ck invertible in Rn. For x ∈ Nr/2, since ρr/2(x) ≡ 1, we
have F (x) = Ax+h(x) = Ax+ k(x) = f(x). Hence f is locally invertible from
U = Nr/2 to V = F (U), and the inverse, f−1 = F−1|V , is also Ck.

Reference: S.-N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer-
Verlag, 1982.
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