[Lecture Note 2]
Applications of IFT: Inverse Function Theorems

Theorem 1 (Global Inverse Function Theorem). Let A, ., be nonsingular and
h € CYR"™). Then there is a small number 6 > 0 so that sup,cgn(|h(z)| +
|Dh(x)|) < & implies f(x) = Ax + h(x) is invertible and the inverse f~' is
as smooth as f. Moreover, f~1 can be expressed as {1 = A™! + g with g =
— A oho f7Y sup,cpne(|g(x)| + |Dg(z)]) < € andlim; o € = 0. Furthermore,
if f is C* for k > 1 or analytic then f~ is also C* or analytic, respectively.

Proof. Let X = C'(R") be the Banach space of functions from R" to itself for
which they and their derivatives are uniformly continuous and uniformly bounded
with norm

[1hlly = sup (|h(z)| + [ Dh(z)]).

zeR™

We look for inverse of the form ¢ = A~! + gwithg € X
id=¢of=(A"+g)o(A+h)=id+ A oh+go(A+h)

equivalent to
F(g,h) = A "oh+go(A+h)=0.

Obviously, F'(g, h) € X, showing F': X x X — X. Also, F is differentiable in
g,h with D F(g,h)v = vo (A+ h) and D,F(g,h)v = Dg o (A + h)v for any
v € X, showing F € C'(X x X, X). Moreover, D,F(0,0)v = vo A = w for
any w € X iff v = w o A~'. This shows D,F(0,0) € L(X, X) is invertible with
a bounded inverse since v = [D,F(0,0)]'w = wo A~ and |[D,F(0,0)] 7} = 1.
Since in addition F'(0,0) = 0, therefore, by IFT there are open neighborhood
V = N, (0),U = Ns,(0) C X for some small numbers ;,0, > 0 and a u €
CY(V,U) sothat F(g,h) = 0for (g,h) € U x Viff g = u(h). So, the left-inverse
#(h) = A~' + u(h) exists and is of C"*.

To show ¢ is also the right-inverse, consider similarly the right-inverse of the
form ) = A™! + g with

id=foyp=(A+h)o(A +g)=id+Aog+ho (A +yg)

equivalent to
G(g,h) :==Aog+ho(A™ ' +g)=0.

It is similar to show G € C'(X x X, X) and G(0,0) = 0. It is slightly different
to show D,G/(0, 0) has a bounded inverse. Specifically, for any v € X,

D,G(0,0)v = [A + Dh(A™")]v = A[id + A"'Dh(A™ "),
which means

[D,G(0,0)v](z) = [A+ Dh(A™'2)|v(z) = Alid + A~ Dh(A™ " z)]v(x).
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So D,G(0,0) is invertible if T € L(X,X) with T(z) = A~'Dh(A'z) is
bounded by sup, g« |T(x)| < 1 which holds if sup, g | Dh(z)| < 1/]A7] :=r,
So if we let Y = N,(0) C X, then for G € CY(X x Y, X), D,G(0,0) €
L(X, X) has a bounded inverse. Therefore, by IFT there are open neighborhood
V = Ns(0) C Y,U = Ng,(0) C X for some small numbers §;,d; > 0 and a
w e CY(V,U) so that G(g,h) = 0 for (g,h) € U x V iff g = w(h). That is, the
right-inverse ¢ (h) = A~ + w(h) exists.

Next, to show ¢ and v are the same function, let § = min{d;, |}, and v =
max{dy, 45}, then both u and w map V' = Ny(0) C X to U = N,(0) C X.
Because of the continuity, lims_,oe = 0 where ¢ = max{|ul/,, |w||,}. Asa
result, both ¢(h) = A~ + u(h) and (k) = A~ + w(h) are defined for h € V
so that ¢(h) o f =id and f o ¢)(h) = id imply

¢(h) = ¢(h) oid = ¢(h) o (fo(h)) = ¢(h)

by the associative law of composition. By definition, we have ¢(h) = f~1.
Finally, if h is C* for k > 1 or analytic, then both F' and G have the same

smoothness, and by IFT both ¢ and 1) have the same smoothness as well. As a

consequence, f ! is as smooth as A is. [

Lemma 1 (Cut-off Function). For each r > 0 there exists a C'*° function p, :
R™ — [0, 1] so that p.|n, = 1 and supp{p} C Ns,, where N, is the Euclidean
ball of radius r in R" centered at 0.

Proof. Let |z| = /> x? be the Euclidean norm for R". Define

exp(—1/(1 —4]z|*), |z] <1/2
o) = { 0 1/2 < |a|

Then ¢ is a C* function with support supp{¢} C Ny ». Let
a= [p. ¢(x)dz,
which is a positive number. Let

1,z < 3/2
x(x) = { 0, 3/2< |z

be the characteristic function of the radius-3/2 ball N3 /2 of 0. Define
pi(x) = ¢ x(2) = 5 fau O(z — y)x(y)dy

where ¢ * x is the convolution of ¢ and . The integral exists because both func-
tions have a finite support. Also p; is as smooth as ¢ is. In addition, for any
x € Ny, and x — y in the support of ¢ with |x — y| < 1/2, we have that y is in the
support of y because |y| < |z| + |z — y| < 3/2. So

pr(z) =1L [ d@—y)x(y)dy =L [p. o(z —y)dy = 1.
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On the other hand, for |z| > 2 and x — y in the support of ¢ with |z — y| < 1/2,
y is outside the support of y because |y| > || — | — y| > 3/2. Therefore

pr(x) =1 [o 0z — y)x(y)dy = 0.
Clearly we also have 0 < p;(z) < 1. Last, for each r > 0, the required function
is
pr(l') = pl(l'/T')
This completes the proof. 0
Theorem 2 (Local Inverse Function Theorem). Let f : R® — R" be a C* function
for k > 1. Assume at a point xo, Df(x) is invertible. Then there is a small

open neighborhood U of o, a small open neighborhood V' of yo = f(x0) so that
f:U — Vis I-1, onto, and the inverse f~' is also C*.

Proof. First we claim that f : U — V isinvertible iff g : U’ = U & {—x¢} —
V' =V @ {—yo} is invertible where § = ¢(Z) = f(T+x0) — 40, T =x—1x9 € U'.
This can be checked directly as follows. Specifically, if f is invertible with inverse
f71 then g7 1(y) = f~1(§ + yo) — w0 because

9097 (7) = flg™ (@) +20) —yo = (§ +10) — v0 =7,
and similarly g~! o g(Z) = z. If g is invertible with inverse g~ !, then f~!(y) =
g (y — yo) + xo because

Fof™ () =1f(g7"(y = yo) + o) = vol + 90 =909 " (7) +v0 = v,
and similarly f~!o f(z) = z.

So, without loss of generality, we can assume g = yo = 0 for f € C*(R", R").
Now, let A = Df(0), k(z) = f(x) — Az. Then k(0) = 0, Dk(x) = Df(z) — A
and Dk(0) = 0. So by the continuous differentiability of f for any d; > 0 there is
a small r-ball N, of x = 0 so that

sup (|k(x)] + [DE(z)[) < 01.

IENT

Let p, be a cut-off function from the previous lemma. Define
hx) = prya(a)k(a).
Then the support of £ is inside /V,., and
| Dh(x)| = [Dprja(2)k(x) + pryj2(x) Dk(x)] < Koy
for a constant K and all x € R"™. Hence,
sup (|h(x)| + |Dh(z)|) < (K +1)6, :=46

zeR?
Therefore, by the Global Inverse Function Theorem, for sufficiently small » > 0,
F(z) = Az + h(z) is C* invertible in R". For = € N, o, since p,2(z) = 1, we
have F'(x) = Az + h(z) = Ax+ k(x) = f(z). Hence f is locally invertible from
U= N,;ptoV =F(U), and the inverse, f~* = F~!|y, is also C*. O

Reference: S.-N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer-
Verlag, 1982.



