Applications of IFT: Inverse Function Theorems

Theorem 1 (Global Inverse Function Theorem). Let $A_{n\times n}$ be nonsingular and $h\in C^1(\mathbb{R}^n)$. Then there is a small number $\delta>0$ so that $\sup_{x\in\mathbb{R}^n}(|h(x)|+|Dh(x)|)<\delta$ implies f(x)=Ax+h(x) is invertible and the inverse f^{-1} is as smooth as f. Moreover, f^{-1} can be expressed as $f^{-1}=A^{-1}+g$ with $g=-A^{-1}\circ h\circ f^{-1}$, $\sup_{x\in\mathbb{R}^n}(|g(x)|+|Dg(x)|)\leq \epsilon$ and $\lim_{\delta\to 0}\epsilon=0$. Furthermore, if f is C^k for $k\geq 1$ or analytic then f^{-1} is also C^k or analytic, respectively.

Proof. Let $X=C^1(\mathbb{R}^n)$ be the Banach space of functions from \mathbb{R}^n to itself for which they and their derivatives are uniformly continuous and uniformly bounded with norm

$$||h||_1 = \sup_{x \in \mathbb{R}^n} (|h(x)| + |Dh(x)|).$$

We look for inverse of the form $\phi = A^{-1} + q$ with $q \in X$

$$id = \phi \circ f = (A^{-1} + g) \circ (A + h) = id + A^{-1} \circ h + g \circ (A + h)$$

equivalent to

$$F(g,h) := A^{-1} \circ h + g \circ (A+h) = 0.$$

Obviously, $F(g,h) \in X$, showing $F: X \times X \to X$. Also, F is differentiable in g,h with $D_gF(g,h)v = v \circ (A+h)$ and $D_hF(g,h)v = Dg \circ (A+h)v$ for any $v \in X$, showing $F \in C^1(X \times X,X)$. Moreover, $D_gF(0,0)v = v \circ A = w$ for any $w \in X$ iff $v = w \circ A^{-1}$. This shows $D_gF(0,0) \in L(X,X)$ is invertible with a bounded inverse since $v = [D_gF(0,0)]^{-1}w = w \circ A^{-1}$ and $|[D_gF(0,0)]^{-1}| = 1$. Since in addition F(0,0) = 0, therefore, by IFT there are open neighborhood $V = N_{\delta_1}(0), U = N_{\delta_2}(0) \subset X$ for some small numbers $\delta_1, \delta_2 > 0$ and a $u \in C^1(V,U)$ so that F(g,h) = 0 for $(g,h) \in U \times V$ iff g = u(h). So, the left-inverse $\phi(h) = A^{-1} + u(h)$ exists and is of C^1 .

To show ϕ is also the right-inverse, consider similarly the right-inverse of the form $\psi=A^{-1}+g$ with

$$id = f \circ \psi = (A + h) \circ (A^{-1} + g) = id + A \circ g + h \circ (A^{-1} + g)$$

equivalent to

$$G(g,h) := A \circ g + h \circ (A^{-1} + g) = 0.$$

It is similar to show $G \in C^1(X \times X, X)$ and G(0,0) = 0. It is slightly different to show $D_gG(0,0)$ has a bounded inverse. Specifically, for any $v \in X$,

$$D_g G(0,0)v = [A + Dh(A^{-1}\cdot)]v = A[id + A^{-1}Dh(A^{-1}\cdot)]v,$$

which means

$$[D_g G(0,0)v](x) = [A + Dh(A^{-1}x)]v(x) = A[\mathrm{id} + A^{-1}Dh(A^{-1}x)]v(x).$$

So $D_gG(0,0)$ is invertible if $T\in L(X,X)$ with $T(x)=A^{-1}Dh(A^{-1}x)$ is bounded by $\sup_{x\in\mathbb{R}^n}|T(x)|<1$ which holds if $\sup_{x\in\mathbb{R}^n}|Dh(x)|<1/|A^{-1}|:=r$. So if we let $Y=\bar{N}_r(0)\subset X$, then for $G\in C^1(X\times Y,X),\ D_gG(0,0)\in L(X,X)$ has a bounded inverse. Therefore, by IFT there are open neighborhood $V=N_{\delta'_1}(0)\subset Y, U=N_{\delta'_2}(0)\subset X$ for some small numbers $\delta'_1,\delta'_2>0$ and a $w\in C^1(V,U)$ so that G(g,h)=0 for $(g,h)\in U\times V$ iff g=w(h). That is, the right-inverse $\psi(h)=A^{-1}+w(h)$ exists.

Next, to show ϕ and ψ are the same function, let $\delta = \min\{\delta_1, \delta_1'\}$, and $\gamma = \max\{\delta_2, \delta_2'\}$, then both u and w map $V = N_\delta(0) \subset X$ to $U = N_\gamma(0) \subset X$. Because of the continuity, $\lim_{\delta \to 0} \epsilon = 0$ where $\epsilon = \max\{\|u\|_1, \|w\|_1\}$. As a result, both $\phi(h) = A^{-1} + u(h)$ and $\psi(h) = A^{-1} + w(h)$ are defined for $h \in V$ so that $\phi(h) \circ f = \operatorname{id}$ and $f \circ \psi(h) = \operatorname{id}$ imply

$$\phi(h) = \phi(h) \circ id = \phi(h) \circ (f \circ \psi(h)) = \psi(h)$$

by the associative law of composition. By definition, we have $\phi(h) = f^{-1}$.

Finally, if h is C^k for $k \ge 1$ or analytic, then both F and G have the same smoothness, and by IFT both ϕ and ψ have the same smoothness as well. As a consequence, f^{-1} is as smooth as h is.

Lemma 1 (Cut-off Function). For each r > 0 there exists a C^{∞} function $\rho_r : \mathbb{R}^n \to [0,1]$ so that $\rho_r|_{N_r} \equiv 1$ and $\sup\{\rho\} \subset N_{2r}$, where N_r is the Euclidean ball of radius r in \mathbb{R}^n centered at 0.

Proof. Let $|x| = \sqrt{\sum x_i^2}$ be the Euclidean norm for \mathbb{R}^n . Define

$$\phi(x) = \begin{cases} \exp(-1/(1-4|x|^2), & |x| < 1/2 \\ 0, & 1/2 \le |x| \end{cases}$$

Then ϕ is a C^{∞} function with support supp $\{\phi\} \subset N_{1/2}$. Let

$$a = \int_{\mathbb{R}^n} \phi(x) dx,$$

which is a positive number. Let

$$\chi(x) = \begin{cases} 1, & |x| < 3/2 \\ 0, & 3/2 \le |x| \end{cases}$$

be the characteristic function of the radius-3/2 ball $N_{3/2}$ of 0. Define

$$\rho_1(x) = \frac{1}{a}\phi * \chi(x) = \frac{1}{a} \int_{\mathbb{R}^n} \phi(x - y) \chi(y) dy$$

where $\phi * \chi$ is the convolution of ϕ and χ . The integral exists because both functions have a finite support. Also ρ_1 is as smooth as ϕ is. In addition, for any $x \in N_1$, and x - y in the support of ϕ with |x - y| < 1/2, we have that y is in the support of χ because $|y| \le |x| + |x - y| \le 3/2$. So

$$\rho_1(x) = \frac{1}{a} \int_{\mathbb{R}^n} \phi(x - y) \chi(y) dy = \frac{1}{a} \int_{\mathbb{R}^n} \phi(x - y) dy = 1.$$

On the other hand, for |x| > 2 and x - y in the support of ϕ with |x - y| < 1/2, y is outside the support of χ because $|y| \ge |x| - |x - y| > 3/2$. Therefore

$$\rho_1(x) = \frac{1}{a} \int_{\mathbb{R}^n} \phi(x - y) \chi(y) dy = 0.$$

Clearly we also have $0 \le \rho_1(x) \le 1$. Last, for each r > 0, the required function is

$$\rho_r(x) = \rho_1(x/r).$$

This completes the proof.

Theorem 2 (Local Inverse Function Theorem). Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a C^k function for $k \geq 1$. Assume at a point x_0 , $Df(x_0)$ is invertible. Then there is a small open neighborhood U of x_0 , a small open neighborhood V of $y_0 = f(x_0)$ so that $f: U \to V$ is 1-1, onto, and the inverse f^{-1} is also C^k .

Proof. First we claim that $f:U\to V$ is invertible iff $g:U'=U\oplus\{-x_0\}\to V'=V\oplus\{-y_0\}$ is invertible where $\bar{y}=g(\bar{x})=f(\bar{x}+x_0)-y_0, \bar{x}=x-x_0\in U'.$ This can be checked directly as follows. Specifically, if f is invertible with inverse f^{-1} , then $g^{-1}(\bar{y})=f^{-1}(\bar{y}+y_0)-x_0$ because

$$g \circ g^{-1}(\bar{y}) = f(g^{-1}(\bar{y}) + x_0) - y_0 = (\bar{y} + y_0) - y_0 = \bar{y},$$

and similarly $g^{-1} \circ g(\bar{x}) = \bar{x}$. If g is invertible with inverse g^{-1} , then $f^{-1}(y) = g^{-1}(y - y_0) + x_0$ because

$$f \circ f^{-1}(y) = [f(g^{-1}(y - y_0) + x_0) - y_0] + y_0 = g \circ g^{-1}(\bar{y}) + y_0 = y,$$

and similarly $f^{-1} \circ f(x) = x$.

So, without loss of generality, we can assume $x_0 = y_0 = 0$ for $f \in C^k(\mathbb{R}^n, \mathbb{R}^n)$. Now, let A = Df(0), k(x) = f(x) - Ax. Then k(0) = 0, Dk(x) = Df(x) - A and Dk(0) = 0. So by the continuous differentiability of f for any $\delta_1 > 0$ there is a small r-ball N_r of x = 0 so that

$$\sup_{x \in N_r} (|k(x)| + |Dk(x)|) \le \delta_1.$$

Let ρ_r be a cut-off function from the previous lemma. Define

$$h(x) = \rho_{r/2}(x)k(x).$$

Then the support of h is inside N_r , and

$$|Dh(x)| = |D\rho_{r/2}(x)k(x) + \rho_{r/2}(x)Dk(x)| \le K\delta_1$$

for a constant K and all $x \in \mathbb{R}^n$. Hence,

$$\sup_{x \in \mathbb{R}^n} (|h(x)| + |Dh(x)|) \le (K+1)\delta_1 := \delta$$

Therefore, by the Global Inverse Function Theorem, for sufficiently small r > 0, F(x) = Ax + h(x) is C^k invertible in \mathbb{R}^n . For $x \in N_{r/2}$, since $\rho_{r/2}(x) \equiv 1$, we have F(x) = Ax + h(x) = Ax + k(x) = f(x). Hence f is locally invertible from $U = N_{r/2}$ to V = F(U), and the inverse, $f^{-1} = F^{-1}|_V$, is also C^k .

Reference: S.-N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer-Verlag, 1982.