
[Lecture Note 1]

Contraction Mapping Principles
and Implicit Function Theorem

Definition 1. A normed vector space X is a Banach space if it is complete, i.e.,
every Cauchy sequence converges.

Let X, Y be Banach spaces with norms | · |. Let L(X, Y ) denote the set of all
bounded linear operators T from X to Y with the induced operator norm

|T | = sup
|x|≤1

|Tx|,

where |x| is the norm of x in X and |Tx| is the norm of y = Tx in Y . Then it can
be proved that L(X, Y ) is a Banach space.

Lemma 1. Let X be a Banach space with norm | · |. Let T ∈ L(X,X). If
|T | ≤ θ < 1, then the linear operator I − T is invertible, and the inverse is

[I − T ]−1 = I + T + T 2 + · · · =
∞∑
n=0

T n

with bound
|[I − T ]−1| ≤ 1

1− θ
.

Proof. It is left as an exercise.

Definition 2. Let X, Y be Banach spaces. A function f : X → Y is said to be
differentiable at a point x ∈ X if there is a bounded linear map T : X → Y so
that for ∆(x, h) = f(x+ h)− f(x)− Th,

|∆(x, h)| = o(|h|), as h→ 0,

where o(ε) denotes any higher order term satisfying o(ε)/ε → 0 as ε → 0. In
such a case, T is called the derivative of f at x and is denoted by T = Df(x).
Also, f ∈ C1 if f is differentiable at every point of X and the derivative Df(x) is
continuous in x.

Lemma 2. Let X, Y be Banach spaces and V ∈ Y be an open set. Let T : V →
L(X,X). Assume T (·) is in Ck(V, L(X,X)), or Ck,1(V, L(X,X)), k ≥ 0, and is
uniformly contractive, supy∈V |T (y)| ≤ θ < 1. Then the inverse [I − T (y)]−1 is
in Ck(V, L(X,X)), or Ck,1(V, L(X,X)).

Proof. It is left as an exercise. (Hint: Let f, g ∈ C1(V, L(X,X)). Prove first the
product rule: [D(f(y)g(y))]h = [Df(y)h]g(y) + f(y)[Dg(y)h] for y ∈ V and
h ∈ Y . Then apply the product rule to T (y)n to obtain the power-rule.)
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Lemma 3. Let X, Y be Banach spaces and f : X → Y be differentiable at a
point x. Then there is a bound 0 < K(x, h) <∞ so that for sufficiently small |h|
with h ∈ X

|f(x+ h)− f(x)| ≤ K(x, h)|h|
and K(x, h)→ |Df(x)| as h→ 0.

Proof. By assumption,

|f(x+ h)− f(x)| = |f(x+ h)− f(x)−Df(x)h+Df(x)h|
≤ |f(x+ h)− f(x)−Df(x)h|+ |Df(x)h|
≤ (|Df(x)|+ o(|h|))|h|

This proves the result with K(x, h) = |Df(x)|+ o(|h|).

Theorem 1 (Contraction Mapping Theorem). Let {X, d} be a complete metric
space. Assume f : X → X is a contraction mapping in the sense that there is a
constant 0 < θ < 1 so that for every x, y ∈ X ,

d(f(x), f(y)) ≤ θd(x, y).

Then f has a unique fixed point x̄ ∈ X , f(x̄) = x̄, and for any x ∈ X and n ≥ 0,

d(fn(x), x̄) ≤ θn

1− θ
d(x, f(x)).

Proof. Notice first that f is Lipschitz continuous by the contraction mapping as-
sumption. Now by recursion, for any x ∈ X and integers n, k ≥ 0,

d(fn(x), fn+1(x)) ≤ θd(fn−1(x), fn(x))
≤ θnd(x, f(x))

d(fn(x), fn+k(x)) ≤ d(fn(x), fn+1(x)) + d(fn+1(x), fn+2(x)) + · · ·
+d(fn+k−1(x), fn+k(x))

≤ (θn + θn+1 + · · ·+ θn+k−1)d(x, f(x))

= θn(1−θk)
1−θ d(x, f(x))

≤ θn

1−θd(x, f(x))→ 0 as n→∞.

Hence, {fn(x)} is a Cauchy sequence, and by the completeness of X , the limit
limn→∞ f

n(x) = x̄ exists for some x̄ ∈ X . We conclude first that x̄ is a fixed
point because by the continuity of f we have

f(x̄) = f( lim
n→∞

fn(x)) = lim
n→∞

fn+1(x) = x̄.

Also, the fixed point is unique because if x∗ is also a fixed point, then

d(x∗, x̄) = d(f(x∗), f(x̄)) ≤ θd(x∗, x̄)

forcing d(x∗, x̄) = 0 because θ < 1, and x∗ = x̄ for the uniqueness of fixed
point. Last the estimate follows from taking the limit k → ∞ in the inequality
above.
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Theorem 2 (Uniform Contraction Principle I). Let X, Y be two metric spaces
with X being complete. Assume f : X × Y → X is continuous and uniformly
contractive with a contraction constant 0 < θ < 1. Then the unique fixed point
x̄(y) is continuous and

d(x̄(z), x̄(y)) ≤ 1

1− θ
d(f(x̄(y), z), f(x̄(y), y)).

Proof. Let 0 < θ < 1 be the uniform contraction constant. Then for any z ∈ Y

d(x̄(z), x̄(y)) = d(f(x̄(z), z), f(x̄(y), y))
≤ d(f(x̄(z), z), f(x̄(y), z)) + d(f(x̄(y), z), f(x̄(y), y))
≤ θd(x̄(z), x̄(y)) + d(f(x̄(y), z), f(x̄(y), y))

implies

d(x̄(z), x̄(y)) ≤ 1

1− θ
d(f(x̄(y), z), f(x̄(y), y)) (1)

which goes to 0 as z → y. This shows x̄(·) is continuous in y.

Theorem 3 (Uniform Contraction Principle II). Let X, Y be two Banach spaces,
and let U ⊂ X, V ⊂ Y be open subsets. Let f ∈ Ck(Ū × V, Ū), 1 ≤ k < ∞.
Assume f : Ū × V → Ū is a uniform contraction mapping, and |Dxf(x, y)| is
uniformly bounded by a constant θ < 1 in Ū × V . Let x̄(y) be the unique fixed
point of f(·, y) in Ū for y ∈ V . Then x̄(·) ∈ Ck(V, Ū) and the first derivative is

Dx̄(·) =
∞∑
n=0

[Dxf(x̄(·), ·)]nDyf(x̄(·), ·). (2)

If f is Ck,1, then x̄(·) is Ck,1, and if f is analytic in U × V , then x̄(·) is analytic
from V to X .

Proof. Without loss of generality, let 0 < θ < 1 be the uniform contraction
constant as well. Formally, differentiating x̄(y) = f(x̄(y), y), the linear operator
Dx̄(y) should be a solution of the following operator equation in T

[I −Dxf(x̄(y), y)]T = Dyf(x̄(y), y). (3)

Since |Dxf(x̄(y), y)| ≤ θ < 1, this equation has a unique solution T (y) by
Lemma 1. It is left to show Dx̄(y) = T (y), namely

|∆| := |x̄(y + h)− x̄(y)− T (y)h| = o(|h|), as h→ 0, (4)

where o(|h|) denotes an higher order term than h, i.e., o(|h|)/|h| → 0 as h→ 0.
From (1) of the proof for Theorem 2 and Lemma 3 we have

|x̄(y + h)− x̄(y)| ≤ 1

1− θ
|Dyf(x̄(y), y)h+ o(|h|)| ≤ K|h| (5)
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for some constant K and all y, y + h in V . From (3) we have

|[I −Dxf(x̄(y), y)]∆| = |[I −Dxf(x̄(y), y)](x̄(y + h)− x̄(y)− T (y)h)|
= |x̄(y + h)− x̄(y)−Dxf(x̄(y), y)(x̄(y + h)− x̄(y))−Dyf(x̄(y), y)h|
= |f(x̄(y + h), y + h)− f(x̄(y), y)

−Dxf(x̄(y), y)(x̄(y + h)− x̄(y))−Dyf(x̄(y), y)h|
= o(|x̄(y + h)− x̄(y)|+ |h|)

because f ∈ C1(Ū × V, Ū). Because of (5), we have

|[I −Dxf(x̄(y), y)]∆| = o(|h|).

Last by Lemma 1 we have

|∆| = |[I −Dxf(x̄(y), y)]−1[I −Dxf(x̄(y), y)]∆|
≤ 1

1− θ
|[I −Dxf(x̄(y), y)]∆| = o(|h|).

This proves x̄(·) is differentiable in V and Dx̄(y) = T (y). Using identity (3) and
Lemma 1 we obtain identity (2). From (2) we can conclude that Dx̄ is continuous
in V because f ∈ C1 and x̄(·) is continuous in V . This shows Dx̄ ∈ C1.

Suppose f is Ck for k > 1. From identity (2) and the same argument above
we can derive recursively that x̄(·) is C2, C3, etc., until that x̄(·) is Ck.

If f is Ck,1, from identity (2) and the fact that x̄(·) is Ck we can see easily that
x̄(·) is also Ck,1.

In the analytic case, there is a complex neighborhood of (x̄(y), y) in which
f is differentiable and uniformly contracting. The argument above shows that
x̄(y) is also differentiable in the corresponding complex neighborhood, and hence
analyticity of x̄(y).

In applications it is often the case that the uniform contraction of a mapping is
proved by some bound of its derivative. The following is such a typical approach.

Lemma 4. Let X, Y be two Banach spaces, and let U ⊂ X be a convexed open
set. If f ∈ C1(U, Y ), then for any x, y ∈ U

|f(y)− f(x)| ≤ sup
z∈U
|Df(z)||y − x|.

Proof. Let x, y ∈ U . Since U is convexed, x + th ∈ U for t ∈ [0, 1] where
h = y − x. Thus

f(y)− f(x) =

∫ 1

0

d

dt
f(x+ th)dt =

∫ 1

0

Df(x+ th)dt(y − x).

and

|f(y)− f(x)| ≤
∫ 1

0

|Df(x+ th)|dt|y − x| ≤ sup
z∈U
|Df(z)||y − x|

4



Theorem 4 (Implicit Function Theorem I). Let X, Y, Z be Banach spaces, U ⊂
X, V ⊂ Y be open sets. Assume F : U × V → Z is differentiable in x ∈ U
and both F and DxF are continuous in (x, y) ∈ U × V . If there is a point
(x0, y0) ∈ U×V such that F (x0, y0) = 0 andDxF (x0, y0) has a bounded inverse,
then there is a neighborhood U1 × V1 ⊂ U × V of (x0, y0) and a continuous
function f : V1 → U1 with f(y0) = x0 such that F (x, y) = 0 for (x, y) ∈ U1 × V1

iff x = f(y).

Proof. Let T = [DxF (x0, y0)]−1 and G(x, y) = x − TF (x, y). Then x is a fixed
point of G iff (x, y) is a solution of F = 0. The function G is as smooth as F
is, and G(x0, y0) = x0, DxG(x0, y0) = 0. Therefore we can find a neighborhood
U1 × V1 ⊂ U × V of (x0, y0) with U1 = Nδ1(x0) convexed, V1 = Nδ2(y0) and a
constant 0 < θ < 1 so that supŪ1×V1 |DxG(x, y)| ≤ θ < 1. By Lemma 3, G(·, y)
is a uniform contraction in Ū1 for all y ∈ V1. To show G : Ū1×V1 → Ū1, we note
first that for x ∈ Ū1, |G(x, y0)−x0| = |G(x, y0)−G(x0, y0)| ≤ θ|x−x0| ≤ θδ1 <
δ1. Hence by the continuity of G we have |G(x, y)−x0| ≤ δ1 for (x, y) ∈ Ū1×V1

by making δ2 smaller if necessary. Then the result follows from Theorem 2 with
fixed point x = f(y) for G(·, y).

Theorem 5 (Implicit Function Theorem II). Let X, Y, Z be Banach spaces, U ⊂
X, V ⊂ Y be open sets, and F : U × V → Z be continuously differentiable in
both variables. If there is a point (x0, y0) ∈ U × V such that F (x0, y0) = 0 and
DxF (x0, y0) has a bounded inverse, then there is a neighborhoodU1×V1 ⊂ U×V
of (x0, y0) and a continuously differentiable function f : V1 → U1 with f(y0) = x0

such that F (x, y) = 0 for (x, y) ∈ U1 × V1 iff x = f(y). Also,

Df(y) = −[DxF (f(y), y)]−1DyF (f(y), y).

Moreover, if F ∈ Ck(U × V, Z), k ≥ 1 or Ck,1 or analytic in a neighborhood of
(x0, y0), then f ∈ Ck(V1, U1) or Ck,1 or is analytic in a neighborhood of y0.

Proof. The proof is exactly the same as the previous proof except for that the
Uniformly Contraction Principle II (Theorem 3) is applied at the end for the so-
lution x = f(y) for F (f(y), y) = 0. In addition, apply implicit differentiation to
F (f(y), y) ≡ 0 to obtain the derivative formula for Df , which is well-defined by
making V1, U1 smaller if necessary.

Reference: S.-N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer-
Verlag, 1982.
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