Contraction Mapping Principles and Implicit Function Theorem

Definition 1. A normed vector space X is a Banach space if it is complete, i.e., every Cauchy sequence converges.

Let X,Y be Banach spaces with norms $|\cdot|$. Let L(X,Y) denote the set of all bounded linear operators T from X to Y with the induced operator norm

$$|T| = \sup_{|x| \le 1} |Tx|,$$

where |x| is the norm of x in X and |Tx| is the norm of y = Tx in Y. Then it can be proved that L(X,Y) is a Banach space.

Lemma 1. Let X be a Banach space with norm $|\cdot|$. Let $T \in L(X,X)$. If $|T| \le \theta < 1$, then the linear operator I - T is invertible, and the inverse is

$$[I-T]^{-1} = I + T + T^2 + \dots = \sum_{n=0}^{\infty} T^n$$

with bound

$$|[I-T]^{-1}| \le \frac{1}{1-\theta}.$$

Proof. It is left as an exercise.

Definition 2. Let X, Y be Banach spaces. A function $f: X \to Y$ is said to be differentiable at a point $x \in X$ if there is a bounded linear map $T: X \to Y$ so that for $\Delta(x,h) = f(x+h) - f(x) - Th$,

$$|\Delta(x,h)| = o(|h|), \text{ as } h \to 0,$$

where $o(\epsilon)$ denotes any higher order term satisfying $o(\epsilon)/\epsilon \to 0$ as $\epsilon \to 0$. In such a case, T is called the derivative of f at x and is denoted by T = Df(x). Also, $f \in C^1$ if f is differentiable at every point of X and the derivative Df(x) is continuous in x.

Lemma 2. Let X, Y be Banach spaces and $V \in Y$ be an open set. Let $T: V \to L(X, X)$. Assume $T(\cdot)$ is in $C^k(V, L(X, X))$, or $C^{k,1}(V, L(X, X))$, $k \ge 0$, and is uniformly contractive, $\sup_{y \in V} |T(y)| \le \theta < 1$. Then the inverse $[I - T(y)]^{-1}$ is in $C^k(V, L(X, X))$, or $C^{k,1}(V, L(X, X))$.

Proof. It is left as an exercise. (Hint: Let $f, g \in C^1(V, L(X, X))$). Prove first the product rule: [D(f(y)g(y))]h = [Df(y)h]g(y) + f(y)[Dg(y)h] for $y \in V$ and $h \in Y$. Then apply the product rule to $T(y)^n$ to obtain the power-rule.)

Lemma 3. Let X, Y be Banach spaces and $f: X \to Y$ be differentiable at a point x. Then there is a bound $0 < K(x,h) < \infty$ so that for sufficiently small |h| with $h \in X$

$$|f(x+h) - f(x)| \le K(x,h)|h|$$

and $K(x,h) \to |Df(x)|$ as $h \to 0$.

Proof. By assumption,

$$|f(x+h) - f(x)| = |f(x+h) - f(x) - Df(x)h + Df(x)h|$$

$$\leq |f(x+h) - f(x) - Df(x)h| + |Df(x)h|$$

$$\leq (|Df(x)| + o(|h|))|h|$$

This proves the result with K(x, h) = |Df(x)| + o(|h|).

Theorem 1 (Contraction Mapping Theorem). Let $\{X, d\}$ be a complete metric space. Assume $f: X \to X$ is a contraction mapping in the sense that there is a constant $0 < \theta < 1$ so that for every $x, y \in X$,

$$d(f(x), f(y)) \le \theta d(x, y).$$

Then f has a unique fixed point $\bar{x} \in X$, $f(\bar{x}) = \bar{x}$, and for any $x \in X$ and $n \ge 0$,

$$d(f^n(x), \bar{x}) \le \frac{\theta^n}{1 - \theta} d(x, f(x)).$$

Proof. Notice first that f is Lipschitz continuous by the contraction mapping assumption. Now by recursion, for any $x \in X$ and integers $n, k \ge 0$,

$$\begin{split} d(f^{n}(x),f^{n+1}(x)) & \leq \theta d(f^{n-1}(x),f^{n}(x)) \\ & \leq \theta^{n}d(x,f(x)) \\ d(f^{n}(x),f^{n+k}(x)) & \leq d(f^{n}(x),f^{n+1}(x)) + d(f^{n+1}(x),f^{n+2}(x)) + \cdots \\ & + d(f^{n+k-1}(x),f^{n+k}(x)) \\ & \leq (\theta^{n}+\theta^{n+1}+\cdots+\theta^{n+k-1})d(x,f(x)) \\ & = \frac{\theta^{n}(1-\theta^{k})}{1-\theta}d(x,f(x)) \\ & \leq \frac{\theta^{n}}{1-\theta}d(x,f(x)) \to 0 \text{ as } n \to \infty. \end{split}$$

Hence, $\{f^n(x)\}$ is a Cauchy sequence, and by the completeness of X, the limit $\lim_{n\to\infty} f^n(x) = \bar{x}$ exists for some $\bar{x}\in X$. We conclude first that \bar{x} is a fixed point because by the continuity of f we have

$$f(\bar{x}) = f(\lim_{n \to \infty} f^n(x)) = \lim_{n \to \infty} f^{n+1}(x) = \bar{x}.$$

Also, the fixed point is unique because if x^* is also a fixed point, then

$$d(x^*,\bar{x}) = d(f(x^*),f(\bar{x})) \le \theta d(x^*,\bar{x})$$

forcing $d(x^*, \bar{x}) = 0$ because $\theta < 1$, and $x^* = \bar{x}$ for the uniqueness of fixed point. Last the estimate follows from taking the limit $k \to \infty$ in the inequality above.

Theorem 2 (Uniform Contraction Principle I). Let X, Y be two metric spaces with X being complete. Assume $f: X \times Y \to X$ is continuous and uniformly contractive with a contraction constant $0 < \theta < 1$. Then the unique fixed point $\bar{x}(y)$ is continuous and

$$d(\bar{x}(z), \bar{x}(y)) \le \frac{1}{1-\theta} d(f(\bar{x}(y), z), f(\bar{x}(y), y)).$$

Proof. Let $0 < \theta < 1$ be the uniform contraction constant. Then for any $z \in Y$

$$\begin{array}{ll} d(\bar{x}(z), \bar{x}(y)) &= d(f(\bar{x}(z), z), f(\bar{x}(y), y)) \\ &\leq d(f(\bar{x}(z), z), f(\bar{x}(y), z)) + d(f(\bar{x}(y), z), f(\bar{x}(y), y)) \\ &\leq \theta d(\bar{x}(z), \bar{x}(y)) + d(f(\bar{x}(y), z), f(\bar{x}(y), y)) \end{array}$$

implies

$$d(\bar{x}(z), \bar{x}(y)) \le \frac{1}{1 - \theta} d(f(\bar{x}(y), z), f(\bar{x}(y), y)) \tag{1}$$

which goes to 0 as $z \to y$. This shows $\bar{x}(\cdot)$ is continuous in y.

Theorem 3 (Uniform Contraction Principle II). Let X, Y be two Banach spaces, and let $U \subset X, \ V \subset Y$ be open subsets. Let $f \in C^k(\bar{U} \times V, \bar{U}), 1 \leq k < \infty$. Assume $f: \bar{U} \times V \to \bar{U}$ is a uniform contraction mapping, and $|D_x f(x,y)|$ is uniformly bounded by a constant $\theta < 1$ in $\bar{U} \times V$. Let $\bar{x}(y)$ be the unique fixed point of $f(\cdot,y)$ in \bar{U} for $y \in V$. Then $\bar{x}(\cdot) \in C^k(V,\bar{U})$ and the first derivative is

$$D\bar{x}(\cdot) = \sum_{n=0}^{\infty} [D_x f(\bar{x}(\cdot), \cdot)]^n D_y f(\bar{x}(\cdot), \cdot).$$
 (2)

If f is $C^{k,1}$, then $\bar{x}(\cdot)$ is $C^{k,1}$, and if f is analytic in $U \times V$, then $\bar{x}(\cdot)$ is analytic from V to X.

Proof. Without loss of generality, let $0 < \theta < 1$ be the uniform contraction constant as well. Formally, differentiating $\bar{x}(y) = f(\bar{x}(y), y)$, the linear operator $D\bar{x}(y)$ should be a solution of the following operator equation in T

$$[I - D_x f(\bar{x}(y), y)]T = D_y f(\bar{x}(y), y).$$
 (3)

Since $|D_x f(\bar{x}(y), y)| \le \theta < 1$, this equation has a unique solution T(y) by Lemma 1. It is left to show $D\bar{x}(y) = T(y)$, namely

$$|\Delta| := |\bar{x}(y+h) - \bar{x}(y) - T(y)h| = o(|h|), \text{ as } h \to 0,$$
 (4)

where o(|h|) denotes an higher order term than h, i.e., $o(|h|)/|h| \to 0$ as $h \to 0$. From (1) of the proof for Theorem 2 and Lemma 3 we have

$$|\bar{x}(y+h) - \bar{x}(y)| \le \frac{1}{1-\theta} |D_y f(\bar{x}(y), y)h + o(|h|)| \le K|h|$$
 (5)

for some constant K and all y, y + h in V. From (3) we have

$$\begin{aligned} |[I - D_x f(\bar{x}(y), y)] \Delta| &= |[I - D_x f(\bar{x}(y), y)](\bar{x}(y+h) - \bar{x}(y) - T(y)h)| \\ &= |\bar{x}(y+h) - \bar{x}(y) - D_x f(\bar{x}(y), y)(\bar{x}(y+h) - \bar{x}(y)) - D_y f(\bar{x}(y), y)h| \\ &= |f(\bar{x}(y+h), y+h) - f(\bar{x}(y), y) \\ &- D_x f(\bar{x}(y), y)(\bar{x}(y+h) - \bar{x}(y)) - D_y f(\bar{x}(y), y)h| \\ &= o(|\bar{x}(y+h) - \bar{x}(y)| + |h|) \end{aligned}$$

because $f \in C^1(\bar{U} \times V, \bar{U})$. Because of (5), we have

$$|[I - D_x f(\bar{x}(y), y)]\Delta| = o(|h|).$$

Last by Lemma 1 we have

$$|\Delta| = |[I - D_x f(\bar{x}(y), y)]^{-1} [I - D_x f(\bar{x}(y), y)] \Delta|$$

$$\leq \frac{1}{1 - \theta} |[I - D_x f(\bar{x}(y), y)] \Delta| = o(|h|).$$

This proves $\bar{x}(\cdot)$ is differentiable in V and $D\bar{x}(y)=T(y)$. Using identity (3) and Lemma 1 we obtain identity (2). From (2) we can conclude that $D\bar{x}$ is continuous in V because $f \in C^1$ and $\bar{x}(\cdot)$ is continuous in V. This shows $D\bar{x} \in C^1$.

Suppose f is C^k for k > 1. From identity (2) and the same argument above we can derive recursively that $\bar{x}(\cdot)$ is C^2 , C^3 , etc., until that $\bar{x}(\cdot)$ is C^k .

If f is $C^{k,1}$, from identity (2) and the fact that $\bar{x}(\cdot)$ is C^k we can see easily that $\bar{x}(\cdot)$ is also $C^{k,1}$.

In the analytic case, there is a complex neighborhood of $(\bar{x}(y), y)$ in which f is differentiable and uniformly contracting. The argument above shows that $\bar{x}(y)$ is also differentiable in the corresponding complex neighborhood, and hence analyticity of $\bar{x}(y)$.

In applications it is often the case that the uniform contraction of a mapping is proved by some bound of its derivative. The following is such a typical approach.

Lemma 4. Let X, Y be two Banach spaces, and let $U \subset X$ be a convexed open set. If $f \in C^1(U, Y)$, then for any $x, y \in U$

$$|f(y) - f(x)| \le \sup_{z \in U} |Df(z)||y - x|.$$

Proof. Let $x,y\in U$. Since U is convexed, $x+th\in U$ for $t\in [0,1]$ where h=y-x. Thus

$$f(y) - f(x) = \int_0^1 \frac{d}{dt} f(x+th) dt = \int_0^1 Df(x+th) dt (y-x).$$

and

$$|f(y) - f(x)| \le \int_0^1 |Df(x+th)|dt|y - x| \le \sup_{z \in U} |Df(z)||y - x|$$

Theorem 4 (Implicit Function Theorem I). Let X,Y,Z be Banach spaces, $U \subset X, V \subset Y$ be open sets. Assume $F: U \times V \to Z$ is differentiable in $x \in U$ and both F and D_xF are continuous in $(x,y) \in U \times V$. If there is a point $(x_0,y_0) \in U \times V$ such that $F(x_0,y_0) = 0$ and $D_xF(x_0,y_0)$ has a bounded inverse, then there is a neighborhood $U_1 \times V_1 \subset U \times V$ of (x_0,y_0) and a continuous function $f: V_1 \to U_1$ with $f(y_0) = x_0$ such that F(x,y) = 0 for $(x,y) \in U_1 \times V_1$ iff x = f(y).

Proof. Let $T=[D_xF(x_0,y_0)]^{-1}$ and G(x,y)=x-TF(x,y). Then x is a fixed point of G iff (x,y) is a solution of F=0. The function G is as smooth as F is, and $G(x_0,y_0)=x_0$, $D_xG(x_0,y_0)=0$. Therefore we can find a neighborhood $U_1\times V_1\subset U\times V$ of (x_0,y_0) with $U_1=N_{\delta_1}(x_0)$ convexed, $V_1=N_{\delta_2}(y_0)$ and a constant $0<\theta<1$ so that $\sup_{\bar{U}_1\times V_1}|D_xG(x,y)|\leq\theta<1$. By Lemma 3, $G(\cdot,y)$ is a uniform contraction in \bar{U}_1 for all $y\in V_1$. To show $G:\bar{U}_1\times V_1\to \bar{U}_1$, we note first that for $x\in\bar{U}_1$, $|G(x,y_0)-x_0|=|G(x,y_0)-G(x_0,y_0)|\leq\theta|x-x_0|\leq\theta\delta_1<\delta_1$. Hence by the continuity of G we have $|G(x,y)-x_0|\leq\delta_1$ for $(x,y)\in\bar{U}_1\times V_1$ by making δ_2 smaller if necessary. Then the result follows from Theorem 2 with fixed point x=f(y) for $G(\cdot,y)$.

Theorem 5 (Implicit Function Theorem II). Let X, Y, Z be Banach spaces, $U \subset X$, $V \subset Y$ be open sets, and $F: U \times V \to Z$ be continuously differentiable in both variables. If there is a point $(x_0, y_0) \in U \times V$ such that $F(x_0, y_0) = 0$ and $D_x F(x_0, y_0)$ has a bounded inverse, then there is a neighborhood $U_1 \times V_1 \subset U \times V$ of (x_0, y_0) and a continuously differentiable function $f: V_1 \to U_1$ with $f(y_0) = x_0$ such that F(x, y) = 0 for $(x, y) \in U_1 \times V_1$ iff x = f(y). Also,

$$Df(y) = -[D_x F(f(y), y)]^{-1} D_y F(f(y), y).$$

Moreover, if $F \in C^k(U \times V, Z)$, $k \ge 1$ or $C^{k,1}$ or analytic in a neighborhood of (x_0, y_0) , then $f \in C^k(V_1, U_1)$ or $C^{k,1}$ or is analytic in a neighborhood of y_0 .

Proof. The proof is exactly the same as the previous proof except for that the Uniformly Contraction Principle II (Theorem 3) is applied at the end for the solution x = f(y) for F(f(y), y) = 0. In addition, apply implicit differentiation to $F(f(y), y) \equiv 0$ to obtain the derivative formula for Df, which is well-defined by making V_1 , U_1 smaller if necessary.

Reference: S.-N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer-Verlag, 1982.