[Lecture Note 1]

Contraction Mapping Principles
and Implicit Function Theorem

Definition 1. A normed vector space X is a Banach space if it is complete, i.e.,
every Cauchy sequence converges.

Let X, Y be Banach spaces with norms | - |. Let L(X,Y") denote the set of all
bounded linear operators 7' from X to Y with the induced operator norm

T = sup [Tx],

<1

where |z| is the norm of = in X and |T'z| is the norm of y = Tz in Y. Then it can
be proved that L(X,Y") is a Banach space.

Lemma 1. Let X be a Banach space with norm | - |. Let T € L(X,X). If
|T| < 0 < 1, then the linear operator I — T is invertible, and the inverse is
[T ' =T4+T+T* 4+ =) 1"
n=0
with bound .
I-TY < —.

-7 < —

Proof. It is left as an exercise. [

Definition 2. Let X, Y be Banach spaces. A function f : X — Y is said to be
differentiable at a point x € X if there is a bounded linear map T’ : X — Y so
that for A(z,h) = f(x + h) — f(z) — Th,

|A(x,h)| = o(|h]), as h — 0,

where o(¢€) denotes any higher order term satisfying o(€)/e — 0 as e — 0. In
such a case, T' is called the derivative of [ at x and is denoted by T = D f(x).

Also, f € CYif f is differentiable at every point of X and the derivative D f(x) is
continuous in .

Lemma 2. Let XY be Banach spaces and V' € Y be an open set. Let T : V —
L(X, X). Assume T(-) is in C*(V, L(X, X)), or C*\(V, L(X, X)), k > 0, and is
uniformly contractive, sup,cy |T(y)| < 6 < 1. Then the inverse [I — T(y)]~" is
in C*(V, L(X, X)), or C*(V, L(X, X)).

Proof. It is left as an exercise. (Hint: Let f,g € C'(V, L(X, X)). Prove first the

product rule: [D(f(y)g(y))]h = [Df(y)hlg(y) + f(y)[Dg(y)h] fory € V and
h € Y. Then apply the product rule to 7'(y)" to obtain the power-rule.) O



Lemma 3. Let X, Y be Banach spaces and f : X — Y be differentiable at a
point x. Then there is a bound 0 < K (z,h) < oo so that for sufficiently small |h|
with h € X

[f(z+h) = f(z)] < K(z,h)|h]
and K(x,h) — |Df(z)| as h — 0.

Proof. By assumption,

[f(z+h) = f(2)| = [f(z+h) = f(x) = Df(x)h+ Df(x)h|
<|[fle+h) = f(z) = Df(x)h| +|Df(z)h]
< (IDf (@) + o(|h))IA]
This proves the result with K (z, h) = |D f(z)| + o(|h|). O

Theorem 1 (Contraction Mapping Theorem). Let {X,d} be a complete metric
space. Assume f : X — X is a contraction mapping in the sense that there is a
constant 0 < 6 < 1 so that for every x,y € X,

d(f(x), [(y)) < 0d(z,y).

Then f has a unique fixed point & € X, f(Z) = &, and for any x € X and n > 0,

A" (r),7) < 1, 7).

Proof. Notice first that f is Lipschitz continuous by the contraction mapping as-
sumption. Now by recursion, for any x € X and integers n, k > 0,

d(f"(x), frHi(x) < 0d(f*H(x), f(x))
< 0nd(, f(z))
d(f (@), frHE (@) < d(f(@), f @) +d(Fr (), o2 () +
+d(frHE (), o (@)
(gn 5"+1+ + 0" d(x, f ()
CUT)d(x, f ()

(x f(x)) — 0asn — oc.

IA

I/\ ||

Hence, {f™(x)} is a Cauchy sequence, and by the completeness of X, the limit
lim,, o f"(x) = Z exists for some z € X. We conclude first that z is a fixed
point because by the continuity of f we have

f@) = f(lim f*(z)) = lim f"*(z) =

n—o0 n—oo

3]

Also, the fixed point is unique because if x* is also a fixed point, then

d(a*, x) = d(f(«"), f(7)) < 0d(z”, )

forcing d(z*,Z) = 0 because § < 1, and z* = Z for the uniqueness of fixed
point. Last the estimate follows from taking the limit £ — oo in the inequality
above. [



Theorem 2 (Uniform Contraction Principle I). Let X, Y be two metric spaces
with X being complete. Assume f : X XY — X is continuous and uniformly
contractive with a contraction constant 0 < 6 < 1. Then the unique fixed point
Z(y) is continuous and

d(z(2),2(y)) < md(f(ff(y),Z),f(f(y),y))

Proof. Let 0 < 6 < 1 be the uniform contraction constant. Then for any z € Y

A7) 70) = A, 2), £ 0).0)
< d(f(2(2),2), f(2(y), 2)) +d(f(Z(y), 2), F(Z(y), v))
< 0d(z(2), 2(y)) + d(f(Z(y), 2), f(Z(y),y))
implies .
A(3(2).30)) < —d(f(E0). ). F(E(0). ) m
which goes to 0 as z — y. This shows Z(-) is continuous in y. O

Theorem 3 (Uniform Contraction Principle II). Let X, Y be two Banach spaces,
and let U C X, V C Y be open subsets. Let f € C*(U x V,U),1 < k < .
Assume f : U x V. — U is a uniform contraction mapping, and |D, f(z,y)| is
uniformly bounded by a constant 0 < 1in U x V. Let Z(y) be the unique fixed
point of f(-,y) in U fory € V. Then z(-) € C*(V,U) and the first derivative is

o0

Dx(-) = Y _[Duf(@(), )" Dy f (@(),): )

n=0

If fis CML, then Z(-) is C*Y, and if f is analytic in U x V, then Z(-) is analytic
fromV to X.

Proof. Without loss of generality, let 0 < 6 < 1 be the uniform contraction
constant as well. Formally, differentiating Z(y) = f(Z(y), ), the linear operator
Dz (y) should be a solution of the following operator equation in 7’

[ = D.f(2(y),y)|T = Dy f(z(y), y)- 3)

Since |D,f(z(y),y)] < 6 < 1, this equation has a unique solution 7'(y) by
Lemma 1. It is left to show Dz (y) = T'(y), namely

A= 12(y + h) = 2(y) = T(y)h| = o(|hl), as h =0, )

where o(|h|) denotes an higher order term than A, i.e., o(|h|)/|h| — 0 as h — 0.
From (1) of the proof for Theorem 2 and Lemma 3 we have

7y + h) — 7)| < 15Dy f @) b+ B < KBl (5)



for some constant K and all y, y + h in V. From (3) we have

I[I = Do f(z(y), YAl = [[I = Do f(Z(y), y)|(Z(y + h) — Z(y) — T(y)h)|
=|2(y +h) — 2(y) — Do f(Z(y), y)(@(y + h) — Z(y)) — Dy f(Z(y), y)h|
= |f(Z(y+h),y+h)— f(@Y),v)

—D.f(Z(y),y)(@(y + h) — 2(y)) — Dy f(Z(y),y)A|
= o(|z(y + h) — z(y)| + |h])

because f € C*(U x V,U). Because of (5), we have
L = Da f(z(y),»)]Al = o(|h]).

Last by Lemma 1 we have

< |l = D.f(@(y), »)A| = of|h).

This proves Z(-) is differentiable in V' and Dz (y) = T(y). Using identity (3) and
Lemma 1 we obtain identity (2). From (2) we can conclude that Dz is continuous
in V because f € C' and Z(-) is continuous in V. This shows Dz € C'.

Suppose f is C* for k > 1. From identity (2) and the same argument above
we can derive recursively that 7(-) is C?, C3, etc., until that Z(-) is C*.

If f is C™1, from identity (2) and the fact that Z(-) is C* we can see easily that
Z(-) is also C*:1,

In the analytic case, there is a complex neighborhood of (Z(y),y) in which
f is differentiable and uniformly contracting. The argument above shows that
Z(y) is also differentiable in the corresponding complex neighborhood, and hence
analyticity of Z(y). O

In applications it is often the case that the uniform contraction of a mapping is
proved by some bound of its derivative. The following is such a typical approach.

Lemma 4. Let X,Y be two Banach spaces, and let U C X be a convexed open
set. If f € CY(U,Y), then for any x,y € U

£ = £(@)] < sup DAy~ al.

Proof. Let x,y € U. Since U is convexed, x + th € U fort € [0, 1] where
h =y — x. Thus

f(y)—f(x):/o %f(a:%—th)dt:/o Df(x +th)dt(y — x).

and

1
[f(y) = fl)] < /0 |Df(x + th)dtly — x| < Slelngf(Z)lly—xl



Theorem 4 (Implicit Function Theorem I). Let X, Y, Z be Banach spaces, U C
X, V. CY be open sets. Assume F : U XV — Z is differentiable in v € U
and both F and D,F are continuous in (z,y) € U x V. If there is a point
(20, y0) € UXV such that F(xq,yo) = 0and D, F(xq,yo) has a bounded inverse,
then there is a neighborhood Uy x Vi C U x V of (zo,y0) and a continuous
function f : Vi3 — Uy with f(yo) = xo such that F(z,y) = 0 for (z,y) € Uy x V}
iff v = f(y).

Proof. LetT = [D,F(zo,v0)] ' and G(x,y) = x — TF(x,y). Then x is a fixed
point of G iff (z,y) is a solution of I’ = 0. The function G is as smooth as F’
is, and G(zo,yo) = o, D.G(x0,y0) = 0. Therefore we can find a neighborhood
Uy x Vi C U xV of (zg,y0) with Uy = Ny, () convexed, V; = Ns,(yo) and a
constant 0 < 6 < 1 so that supg, ..y, |D.G(z,y)| < 0 < 1. By Lemma 3, G(-, )
is a uniform contraction in U; for all y € V;. To show G : U; x V; — Uy, we note
first that for x € Uy, |G(x, yo) — 20| = |G(2, y0) — G0, y0)| < Olz—20| < 06, <
61. Hence by the continuity of G we have |G(x,y) — x| < §; for (z,y) € Uy x V;
by making d, smaller if necessary. Then the result follows from Theorem 2 with
fixed point x = f(y) for G(-,y). O

Theorem S (Implicit Function Theorem Il). Let XY, Z be Banach spaces, U C
X, V. CY beopen sets,and F : U x V. — Z be continuously differentiable in
both variables. If there is a point (xo,yo) € U x V such that F(x¢,yo) = 0 and
D, F(xo, o) has a bounded inverse, then there is a neighborhood Uy xVy; C U XV
of (o, yo) and a continuously differentiable function f : Vi — Uy with f(yo) = o
such that F(z,y) = 0 for (x,y) € Uy x Vi iffx = f(y). Also,

Df(y) = —[D.F(f(y),y)] " DyF(f(y), ).

Moreover, if F € C*(U x V,Z), k > 1 or C*! or analytic in a neighborhood of
(w0, y0), then f € C*(Vy,Uy) or C*1 or is analytic in a neighborhood of ;.

Proof. The proof is exactly the same as the previous proof except for that the
Uniformly Contraction Principle II (Theorem 3) is applied at the end for the so-
lution = = f(y) for F(f(y),y) = 0. In addition, apply implicit differentiation to
F(f(y),y) = 0 to obtain the derivative formula for D f, which is well-defined by
making V;, U; smaller if necessary. 0

Reference: S.-N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer-
Verlag, 1982.



