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What is modeling?

Mathematical modeling is

to translate nature into mathematics

to be logically consistent

to fit the past and to predict future

to fail against the test of time, i.e. to give way to a better
model
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Human history has two periods – before and after
calculus (1686/1687)

Issac Newton (1642-1727) is the founding father of
mathematical modeling

James Clerk Maxwell (1831-1879), Albert Einstein
(1879-1955), Erwin Schrödinger (1887-1961), Claude
Shannon (1916-2001) are some of the luminary disciples

Calculus is the principle language of nature

This century is the century of mathematical biology, which
is to translate Charles Darwin’s (1809-1882) theory into
mathematics
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Model as approximation – Newton’s planetary
motion

Sun
Planet

~r1
~r2

~r


m1~̈r1 = −Gm1m2

~r1 − ~r2
‖~r1 − ~r2‖3

m2~̈r2 = −Gm1m2
~r2 − ~r1
‖~r2 − ~r1‖3

~r = ~r1 − ~r2

A few calculus maneuvers lead to

r(θ) =
ρ

1 + ε cos θ

with the eccentricity 0 ≤ ε < 1 for elliptic orbits
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Special Relativity – Einstein’s model of space and
time

One Assumption:

The speed of light is constant for every stationary observer

x̄

ȳ

v

0 x

y

0

K K̄

A few calculus maneuvers lead to E = mc2, and more
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Special Relativity — Einstein’s model of space and
time

One Assumption:

The speed of light is constant for every stationary observer

x̄

ȳ

0 x

y

0

K
ct

vt

L

[
√
c2 − v2]t = ct̄

K̄

Prediction: Time dilation for K-frame observer

t =
L

c
√

1− (v/c)2
>
L

c
= t̄
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General Relativity — Model of space and time in
acceleration

x

y

x̄

ȳ

c∆t

v0∆t

c∆t

v1∆t

v1 = a∆t+ v0

Prediction: Light beam bends
under acceleration or near massive
bodies
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Mathematical model need not be mathematical

Gregor Johann Mendel (1822-1884) found the first
mathematical model in biology, leading to the discovery of
gene

Parent Genotype

Offspring

Genotype

m
r
r
×
f r
r

m
r
D
×
f r
D

m
D
D
×
f D

D

m
r
r
×
f r
D

o
r

m
r
D
×
f r
r

m
r
r
×
f D

D
o
r

m
D
D
×
f r
r

m
r
D
×
f D

D
o
r

m
D
D
×
f r
D

z′rr 1 1/4 0 1/2 0 0
z′rD 0 1/2 0 1/2 1 1/2
z′DD 0 1/4 1 0 0 1/2
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One More Example: Structure of DNA by modeling

Rosalind Franklin and Maurice Wilkins had the data, but
James D. Watson and Francis Crick had the frame of
mind to model the data (1953)
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Another More – Predation in Ecology

The mathematical model was discovered by Crawford Stanley
(Buzz) Holling (1930- ) in 1959

Td — average time a predator takes to discover a prey

Tk — average time a predator takes to kill a prey

Td,k = Td + Tk — average time a predator takes to
discovery and kill a prey

Rd =
1

Td
— rate of discovery, i.e. number of preys a

predator would find in a unit time

Rk =
1

Tk
— rate of killing, i.e. number of preys a predator

would kill in a unit time

Rd,k =
1

Td,k
=

1

Td + Tk
— rate of discovery and killing

10 / 24
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Model of Predation in Ecology

And Holling’s predation function form:

Rd,k =
1

Td + Tk
=

1/Td
1 + Tk(1/Td)

=
Rd

1 + TkRd

Prediction: Assume the discovery rate is proportional to
the prey population X, Rd = aX. Then the Holling Type
II predation rate must saturate as X →∞

lim
X→∞

Rd,k = lim
X→∞

aX

1 + TkaX
=

1

Tk

X

Rd,k

0

1
Tk
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Consistency

Not every piece of mathematics can be a physical law or
model. Logical consistency is the first and necessary
constraint

Time Invariance Principle (TIP)

A model must has the same functional form for every time
independent observation

Newtonian mechanics is TIP-consistent:

s
t

x0

x(s, x0)

x(t+ s, x0) = x(t, x(s, x0))

12 / 24
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Special Relativity is self-consistent

Let P be a point, having K = (x, y, z, t) coordinate in the
K-frame and K̄ = (x̄, ȳ, z̄, t̄) coordinate in the K̄-frame.
Then they are exchangeable via a linear transformation
depending the speed v:

K̄ = KL(v)

Let K̃ = (x̃, ỹ, z̃, t̃) be the coordinate of the same point in
a K̃-frame moving at speed u with respect to the
K̄-frame. Then we have

K̃ = K̄L(u) = KL(v)L(u) = KL(w) with w =
u+ v

1 + uv
c2

The operation u⊕ v =
u+ v

1 + uv
c2

for elements u, v ∈ (−c, c)

defines a commutative group

13 / 24
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Holling’s predation model is consistent

Tc — average time to consume a prey

Td,k,c = Td + Tk + Tc — average time to discover, kill,
and consume a prey

Then the rate of predation is self-consistent:

Rd,k,c =
1

Td,k,c
=

1

Td + Tk + Tc

=
Rd,k

1 + TcRd,k
=

Rd
1 + (Tk + Tc)Rd

14 / 24
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Pay the TIP, or else

All differential equation models are TIP-consistent

Most mapping models in ecology are TIP-inconsistent

Example: Logistic map

xn+1 = Qλ(xn) = λxn(1− xn)

cannot be a model for which n represents time

The time n+ 2 observation yields a different functional
form:

xn+2 = Qλ(xn+1) = Qλ(Qλ(xn)) 6= Qµ(xn)

for any value µ. Strike one on the logistic map

15 / 24
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Model Test – Finding the Best Fit

x̄1, . . . , x̄n — Observed states at time t1, . . . , tn for a
natural process which are modeled by competing models
y(t; y0, p) and z(t; z0, q), respectively, with parameter p, q,
and initial state y0, z0

Model selection criterion: All else being equal whichever
has a smaller error is the benchmark model by default:

Ey = min
(y0,p)

n∑
i=1

[y(ti; y0, p)− x̄i]2

Ez = min
(z0,q)

n∑
i=1

[z(ti; z0, q)− x̄i]2

Any parameter is only meaningful to its model, and its
value can only be derived by best-fitting the observed data
to the model

16 / 24
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Model Test – Fit the past, predict the future

Edmond Halley (1656-1742) used Newtonian mechanics to
predict the 1758 return of Halley’s Comet, giving the
comet its name

Arthur Eddington (1882-1944) used the total solar eclipse
of May 29, 1919 to confirm general relativity’s prediction
for the bending of starlight by the Sun, making Einstein an
instant world celebrity

Gregor Mendel’s Laws of Inheritance (1866) was
rediscovered in 1900, ushering in the science of modern
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Mathematical Biology — To Translate Evolution to
Mathematics

Example: One Life Rule

Every organism lives only once and must die in any finite time
in the presence of infinite population density

In math translation: Let xt be the population at time t.
Then the per-capita change must satisfy

xt − x0
x0

=
xt
x0
− 1 ≥ −1

Lead to

One Life Rule ⇐⇒ lim
x0→∞

xt − x0
x0

= −1

and to the logistic equation

ẋ(t) = rx(t)[1− x(t)/K]

with x(t) = xt, r the max per-capita growth rate, and K
the carrying capacity
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Footnote: model or no model, generalization or
relativism is often the problem

Strike two on the logistic map x1 = λx0(1− x0):

lim
x0→∞

x1 − x0
x0

= lim
x0→∞

[λ(1− x0)− 1] = −∞ 6= −1

While the logistic equation, x′(t) = rx(t)(1− x(t)/K),
dogged another consistency bullet

lim
x0→∞

x(t;x0)− x0
x0

= lim
x0→∞

[
K

x0 + (K − x0)e−rt
− 1

]
= −1

There should be no different versions of the same reality,
but refined approximations

19 / 24
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One More Example: Why DNA is coded in 4 bases?

The AT pair has one weak O-H bond but the GC pair has
two O-H bonds. Hence, the GC pair takes longer to
complete binding than the AT pair does
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One More Example: Why DNA is coded in 4 bases?

Start with a conceptual model: DNA replication is a
communication channel

Every communication is characterized by the transmission
data rate in bits per second, i.e. the information entropy
per second
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One More Example: Why DNA is coded in 4 bases?

For 2n paired bases, the replication rate is

R2n =
log2(2n)

τ12+τ34+···+τ(2n−1)(2n)

n

in bits per time

If 5
3 ≤

τGC
τAT
≤ 2.7, then: max

n
R2n = R4

Punch Line: Life is a reality show on your DNA channel
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Closing Comments

Mathematics is driven by open problems, but science is
driven by existing solutions

Mathematical modeling is to find the equation to which
nature fits as a solution

Mathematics is to create more hays but modeling is to
find the needle in haystack

Mathematical biology is not to solve mathematical
problems of models but to find mathematical models for
biological problems

Training to be a mathematical modeler does need to solve
mathematical problems of reasonable models.
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Mathematical modeling is to construct the picture so
that the consequence of the picture is the picture of
the consequence.

– Anonymous or by Heinrich Hertz (1857-1894)
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