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Abstract. A basic food web of 4 species is considered, of which there is a bottom prey X,

two competing predators Y,Z on X, and a super predator W only on Y . The main finding is

that population chaos does not require the existence of oscillators in any subsystem of the web.

This minimum population chaos is demonstrated by increasing the relative reproductive rate of

Z alone without alternating any other parameter nor any nullcline of the system. It occurs as

the result of a period-doubling cascade from a Hopf bifurcation point. The method of singular

perturbation is used to determine the Hopf bifurcation involved as well as the parameter values.

1. Introduction

The development of chaos theory has always intertwined with complex population dynamics

since its inception. The question of under what minimum circumstance can chaos arise in pop-

ulation models was raised in [26] which postulates that it requires at the minimum the coupling

of two oscillators from some shorter predator-prey chains. The main objective of this paper is to

show that this hypothesis is false for a food web of four species in which chaos can occur even

though none of the subchains contains any oscillator.

This paper also aims to address another important issue in population dynamics — the Com-

petition Exclusion Principle ([16, 2, 31, 18]), which states that for most systems where two

predators feed on a prey there cannot be any stable coexisting state. This principle has recently

been shown not to hold for models at the stoichiometry level where nutrient limitation on growth

is a factor (see [19]). It does not apply to such a 3-species competitive web mediated by an addi-

tional super-predator as shown in [1] (see also [17]). The same 4-species model is considered both

in [1] and in this paper. Both lead to the same conclusion of competition inclusion coexistence in

chaotic dynamics. However the main difference lies in whether the corresponding chaos is more

or less likely to occur in real systems. For the dynamics of [1], part of the chaotic attractor lies

precariously close to some species extinction zones because of the particularity of the mathemat-

ical construction via singular perturbation. For the chaotic dynamics considered here however,

it stays considerably far away from these extinction edges, giving a greater plausibility to be

observed in real systems.

Another novel point of this paper is worth mentioning. The prototypical chaos of the logistic

map x 7→ λx(1−x) ([21]) is resulted from changes in the intrinsic growth rate λ. This phenomenon

of prolificacy generated chaos has not been observed previously in continuous population models.

The chaos observed in this paper is indeed of this type, when only the relative intrinsic growth

rate of one competitor varies while all other parameters remain fixed. More interestingly, it takes

place even with all the underpinning structures in nullclines remain unchanged throughout the

prolificacy enhanced route to chaos.
1
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The chaotic dynamics found in this paper is not by an exclusive singular perturbation construc-

tion as with the case of [1]. Instead, it is found by a combination of singular perturbation analysis,

Hopf bifurcation analysis, and a numerical bifurcation study on a period-doubling cascade origi-

nated from the Hopf point. Understanding the system mechanism that creates this phenomenon

is particularly challenging because it seems that the singular perturbation approach alone is not

thoroughly effective, unlike previous successes of the method ([7, 8, 9, 10, 1]).

The paper is organized as follows. Due to the complexity of the problem, a significant amount

of nontechnical but essential background information from [1] is incorporated into to the first 5

sections. In particular, Section 2 gives an overview of the food web model considered. Section

3 reviews the techniques used, particularly the singular perturbation analysis, including the

phenomenon of Pontryagin’s delay of loss of stability. Sections 4 and 5 set up the framework,

in particular, the set of conditions for the result. Section 6 presents the Hopf bifurcation result,

and Section 7 the numerical simulation that leads to the chaotic dynamics. In many places of

this paper, two points of view are presented — a biological one and a purely mathematical one.

This is done to demonstrate not only the realism of the model but also a holistic alternative to

the technical mathematics required. For example, although it is technically correct to state ‘the

derivative of the per-capita growth rate of X with respect to Y is negative’, a paraphrase such

as ‘an increase in predators causes the prey’s per-capita growth rate to decline’ may be more

preferable to a biologically inclined mind. Either way, the two statements are equivalent.

2. Description of the Model

For the mathematical model considered, let the population densities be X for the prey, Y, Z

for the competing predators of the common prey X, and W for the top-predator on Y . We will

assume that X is governed by Verhulst’s logistic growth principle ([29, 20, 30]) in the absence of

the predators, and all predators governed by Holling’s Type II predation functional form ([14]),

two of the most fundamental modelling principles in ecology. Under the assumption that there

are no other forms of competition between Y, Z, the dimensional model is as follows
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Here r is the intrinsic growth rate and and K is the carrying capacity for the prey. Parameter p1

is the maximum predation rate per predator Y and H1 is the semi-saturation density for which

when X = H1 the Y ’s predation rate is half of its maximum, p1/2. Parameter b1 is predator Y ’s

birth-to-consumption ratio and d1 is its per-capita death rate. The remaining parameters have

parallel and analogous meanings.

As a necessary first step for mathematical analysis, we non-dimensionalize Eq.(1) so that

the scaled system contains a minimum number of parameters. It also has the advantage for
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uncovering equivalent dynamical behaviors with changes in different dimensional parameters.

Using the same scaling ideas of [7] and the following specific substitutions for variables and

parameters

(2)
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Eq.(1) is changed to this dimensionless form:
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We refer to [1] for an ecological interpretation of the scaled dimensionless parameters. However,

we need to emphasize the following that parameters, 1/ζ, ǫ1, ǫ2, are the maximum growth rates of

X,Z,W relative to Y , refereed to as the XY -prolificacy, ZY -prolificacy, and the WY -prolificacy

respectively. By the theory of allometry ([4, 5]), these ratios correlate reciprocally well with the

4th roots of the ratios of X,Z,W ’s body masses to that of Y ’s. Thus they may be of order 1

when predator’s and prey’s body masses are comparable or of smaller order if, as in plankton-

zooplankton-fish, and most plant-herbivore-carnivore chains, the body masses are progressively

becoming heavier in magnitude so that ζ and ǫ2 are small parameters. In any case, a given web

will find its corresponding prolificacy characteristics in parameters ζ, ǫi which are now isolated

in plain view in Eq.(3). The main result of this paper is about the bifurcation of the system with

the ZW -prolificacy parameter ǫ1/ǫ2 with all others fixed.

3. Notation and Singular Perturbation Method

To fix ideas and techniques, consider the xy-subsystem of (3) in the absence of the competitor

z (z = 0) and the top-predator w (w = 0):

(4) ζ
dx

dt
= x

(

1 − x −
y

β1 + x

)

,
dy

dt
= y

(

x

β1 + x
− δ1

)

.

It is singularly perturbed if 0 < ζ ≪ 1. Variable y is the slow variable and the equation with

ζ = 0, 0 = xf(x, y, 0) together with dy/dt = yg(x, y, 0), is the slow subsystem. It is a 1-

dimensional equation on the slow manifold 0 = f(x, y, 0) and x = 0. The curve f(x, y, 0) = 0

is referred to as the nontrivial x-nullcline as opposed to the trivial x-nullcline x = 0. Variable
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Figure 1. (a) Typical singular orbits in the case of stable xy-equilibrium state

for which xxfd < xynl < 1. See text for the derivation of yxpd on the phenomenon

of Pontryagin’s delay of loss of stability at which a boom in x population occurs

although the recovery starts after its crossing the dashed threshold on the parabolic

x-nullcline near yxtr. (b) A typical singular orbit in limit cycle and its relaxed cycle

for 0 < ζ ≪ 1 in the case 0 < xynl < xxfd.

x is the fast variable and its equation with y frozen is the fast subsystem. More specifically,

the fast subsystem is obtained by first rescaling the time t/ζ → t to cast the system as ẋ =

xf(x, y, 0), ẏ = ζyg(x, y, 0) and then setting ζ = 0 to get ẋ = xf(x, y, 0), ẏ = 0 for which y is

frozen as a parameter, and the equilibrium states are given by the x-nullcline, 0 = xf(x, y, 0).

Fig.1(a,b) illustrate some essential elements of the singularly perturbed equations. Horizontal

phase lines are fast orbits of the x-equation. Oriented curves on the x-nullclines are slow orbits.

The directions of the these orbits are determined by their corresponding directional fields. More

specifically, the nontrivial x-nullcline 0 = f(x, y, 0) is typically a parabola-like curve with a

maximal vertex. Point (1, 0) in it corresponds to the x-carrying capacity in the absence of the

predator y. As y increases, the capacity continues but decreases. Thus the branch between

the maximal point, denoted by (xxfd, yxfd), and (1, 0) is referred to as the predator-adjusted

carrying capacity, which satisfies analytically f(x, y, 0) = 0, fx(x, y, 0) < 0. It is stable for the

x-equation, attracting fast orbits nearby. The maximum point is called the x-crash-fold point

because for y immediately above it the fast x-solution always tends to the extinction branch

x = 0. Mathematically, the x-equation undergoes a saddle-node bifurcation at the crash-fold

point as y changes. The remaining branch between (0, yxtr) and the crash-fold is unstable for the

fast x-equation. It represents the predator mediated threshold in x. Specifically, for a fixed y, the

corresponding threshold value in x satisfies that above it the prey grows to its predator-adjusted

capacity and below it the prey goes to extinction. As y increases the threshold in x increases

whereas the capacity in x decreases, both coalescing at the crash-fold point.

Typical slow orbits always move down on the depleted resource branch x = 0 and down or up

on the capacity branch f(x, y, 0) = 0 depending on whether the resource amount x is smaller or

larger than xynl, as in the y-nullcline x = xynl, that is a required minimum to sustain predator’s

growth since the per-capita rate g(x, y, 0) > 0 only if the prey supply is sufficient x > xynl.
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A few concepts will be used throughout the paper. Predator y is said to be efficient (or

predatory efficient) if it can make the predator-induced prey capacity equilibrium f(x, y, 0) = 0

to develop a crash-fold point xxfd = (1 − β1)/2 > 0, namely 0 < H1/K = β1 < 1. This means

that the predator is able to reach half of its maximum predation rate at a prey density H1 smaller

than the prey’s carrying capacity. Predator y is said to be strong if it is predatory efficient and

can actually crash the prey. That is, at the crash-fold state (xxfd, yxfd) the predator can grow in

per-capita: g(xxfd, yxfd, 0) > 0, which is solved as xxfd = (1 − β1)/2 > β1δ1/(1 − δ1) = xynl. It is

easy to see that the predator’s relative mortality rate δ1 should be relatively small as part of the

requirement for the predator to be strong besides being efficient. Predator y is said to be weak

if it is not strong.

A notation convention will be adopted throughout the paper. Presented by example, xxfd

means the x-coordinate of the fold point on the x-nullcline, and yxfd is the y-coordinate of the

same point. Thus xynl is the x-coordinate for the y-nullcline.

Another type of points that is critical to the analysis of singular perturbation is the transcritical

point. For the fast x-equation, it is the intersection of the trivial and nontrivial branches of the

nullcline, (0, yxtr). Above the point the extinction branch x is stable and below it it is unstable.

Because of it an important phenomenon occurs, referred to as Pontryagin’s delay of loss of

stability ([25, 28]). It deals with the manner by which fast singular orbits jump away from the

unstable trivial branch of the prey nullclines. In practical terms, the predator declines in a dire

situation of depleted prey x = 0, followed by a surge in the prey’s recovery after the predator

reaches a sufficiently low density yxpd to allow it to happen. The mathematical question is how

the criticality yxpd is determined. More specifically, let (xζ , yζ)(t) be a solution to the perturbed

equation with ζ > 0 and an initial (x0, y0) satisfying 0 < x0 < xxfd and y0 above the threshold

(Fig.1). In the singular limit ζ = 0, the orbit converges to a concatenation of 2 fast orbits and 1

slow orbit. The first fast orbit lies on y = y0, and the second lies on y = yxpd. According to the

theory (see [1] for a derivation), the critical amount yxpd that allows x to recover is determined

by the following integral equation:

∫ y0

yxpd

f(0, s, 0)

sg(0, s, 0)
ds = 0.

By substituting s = y(t), y(0) = y0, the slow orbit on the trivial branch x = 0, and observing

that ds/(sg(0, s, 0)) = dt, the equation changes to
∫ 0

Txpd
f(0, y(t), 0)dt = 0 where Txpd is the

corresponding duration of flight y(Txpd) = yxpd. Because f is the per-capita growth rate of the

prey which has opposite signs around the transcritical point yxtr, and because the integral of f

represents the accumulative per-capita growth rate during the transition, this equation simply

means that the Pontryagin’s delay of loss of stability (PDLS) point yxpd is such that prey’s

accumulative per-capita growth rate over the growing phase y < yxtr cancels it out over the

declining phase y > yxtr. The PDLS point yxpd depends on the initial y0 which will be taken as

the crash point yxfd most of the times. The case illustrated is for the type of transcritical points

at which the fast variable goes through a phase of crash-recovery-outbreak. All the known PDLS

cases of our XY ZW -model are of the crash-recovery-outbreak type.
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Finally, the singular limit cycle ABCD in Fig.1(b) has B the crash-fold point and D the PDLS

point. It exists only if the predator can still grow at the crash-fold point (xynl < xxfd). We point

out that the singular cycle in the case of Fig.1(b) and the equilibrium point in the case of Fig.1(a)

will all persist for small 0 < ζ ≪ 1 because of their hyperbolicity. A proof of this fact as well

as additional expositions on the geometric method of singular perturbations can be found in the

literature, see [25, 24, 12, 11, 28, 3, 22, 6, 7, 18].

4. Preliminary Conditions

Although reducing the system to its dimensionless form greatly reduces the number of para-

meters, the resulting parameter space is still too large to be reasonably manageable. Therefore,

we will impose a set of conditions to define the parameter region and consequently the dynamical

structure considered.

Condition 1. The chain prolific diversification condition: the maximum per-capita growth rates

decrease from the bottom to the top along a food chain, and the differences between the rates are

drastic:

0 ≪ b3p3 ≪ b1p1 ≪ r, equivalently, 0 < ǫ2 ≪ 1 ≪
1

ζ
.

We note that this condition was referred to as ‘trophic time diversification hypothesis’ in [23, 7].

It means that the birthrate of the prey is much higher than that of the competitor Y , and that

the birthrate of Y is much greater than W . By the theory of allometry, this means that the

biomass of each species is strongly diversified. For the ZY -prolificacy parameter ǫ1, it is not

obvious that the prolificacy hypothesis should or should not apply since Y, Z are competitors

rather than chain predators. It can range from very small to very large. However, for this paper

we will assume the following.

Condition 2. Asymmetric competitive prolific diversification condition:

0 ≪ b2p2 ≪ b1p1 ≪ r, equivalently, 0 < ǫ1 ≪ 1 ≪
1

ζ
.

What is left open is the relative maximal birthrate ǫ1/ǫ2 between the competitor Z and the super

predator W . In fact, it is this relative rate ǫ1/ǫ2 that will be used as the effective bifurcation

parameter for this paper.

4.1. Joint yz Weakness. Conditions 1, 2 make the x equation the ζ-fast subsystem and the

yzw equations the ζ-slow subsystem. The next condition guarantees that the flow of the ζ-

slow subsystem will not escape from the stable portion of the x-nullcline, referred to loosely as

being invariant. In the case of the xy-subsystem, for the y-adjusted capacity to be invariant

(non-escaping) it requires the predator to be weak. However, having weak y and z individually

is not enough for the invariance of the yz-adjusted x-capacity state. The stronger condition is

introduced below, referred to as the joint yz-weakness condition.

Because the nontrivial nullclines of both y and z are parallel planes: g(x, y, 0) = 0, h(x) = 0

giving rise to x = xynl = β1δ1/(1−δ1), x = xznl = β2δ2/(1−δ2). We can conclude right away that
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Figure 2. (a) A 3-d view of the nullcline surfaces is shown. The stable branches

of the x-nullcline are outlined in solid bold and unstable branches by dashed bold.

Vertical phase lines are for the x-fast flows. The parallel planes are for the y-

nullcline and z-nullcline surfaces for which for which both y, z are weak. (b) A

reduced 2-d phase portrait view. The outermost dotted line is the crash-fold pro-

jection – any solution curve that touches this line will crash down to the trivial x

nullcline, x = 0. A case of non-competitive z is shown in which z declines in part

of the growing region of y. Solid vector field and curve for a perturbed case ǫ1 > 0

and dotted curves for ǫ1-singular orbits. Both give the same z-extinction scenario.

no coexisting xyz-equilibrium state exists if xynl 6= xznl, the phenomenon of Competition Exclu-

sion Principle mentioned in the introduction. We will assume this inequality hold generically for

the system.

For the singularly perturbed xyz-system, the attracting, nontrivial, slow manifold is part of

the x-nullcline surface f(x, y, z) = 0 for which fx(x, y, z) < 0, the yz-adjusted carrying capacity

of x. For any point of the surface, the x value must decrease with any increase in either y or

z (or both). We denote this surface S and its projection onto the yz-plane D for later usage,

see Fig.3(b). Similar to the 1-dimensional crash-fold point (xxfd, yxfd) of the xy system, a joint

crash-fold point develops at a given pair of (y, z) if at (y, z) there is an adjusted capacity x

which disappears upon any small increase either in y or z. By a typical analysis of singular

perturbation, the increase of a singular orbit over the crash-fold of S causes the singular orbit

to crash in the prey x to zero.

The set of these crash-fold points is a curve whose y-coordinate and z-coordinate are reciprocal

in relation: increasing the z-predation pressure only requires a smaller amount of predator y to

crash the prey, and vice versa. Denote the crash fold points similarly by (xxfd, yxfd, zxfd). The set

of all crash folds points is part of the boundary of the capacity surface S and is determined by

f(x, y, z) = 0, fx(x, y, z) = 0.

Condition 3. The joint yz-weak condition: The y-nullcline plane x = xynl lies above the crash-

fold curve (xxfd, yxfd, zxfd) and analogously the z-nullcline plane x = xznl lies above the crash-fold

curve as well.
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Recall that y is weak if xynl|{z=0} > xxfd|{z=0} and z is weak if xznl|{y=0} > xxfd|{y=0}. Thus the

joint yz-weak condition implies individual weakness but the converse is not necessarily true. The

joint yz-weakness condition can be expressed explicitly as follows

(5) min{xynl, xznl} = min
i=1,2

{

βiδi

1 − δi

}

> max
i=1,2

{

1 − βi

2

}

= max{xxfd|{y=0},{z=0}}.

The derivation can be found in [1]. We note that Condition 3 simply implies that with w = 0

the xyz-subsystem is governed by the Competition Exclusion Principle: the xy-equilibrium point

is globally attracting if xznl > xynl, i.e. z goes to extinction because it is not competitive for

requiring a greater amount of the prey than y does to grow. Similarly, the xz-equilibrium point

is globally attracting if xznl < xynl. We will assume the former for the main result of this paper,

i.e. without w, the only asymptotic state is the xy-equilibrium point.

4.2. Dimension Reduction. In order to apply singular orbit analysis, a thorough understand-

ing of the nullclines is necessary. Here, we aim to reduce the system by showing we just need to

consider the x-nullcline solid. The nontrivial x-nullcline f(x, y, z) = 0, its crash-fold, stable, and

unstable branches are the same for the full system as for its xyz-subsystem because w does not

directly interact with x. As before, the stable branch of the x-nullcline is denoted as S.

Joint weakness implies that everywhere along the crash fold curve, none of the predators can

grow. In other words, once a ζ-slow singular orbit starts on the predator-adjusted carrying

capacity S, the orbit will stay on the surface because along the crash-fold boundary y, z are in

decline, preventing x from crashing. Therefore the surface S ∩{w = 0} is invariant for the ζ-slow

yz-subsystem. With the introduction of w predation, y must be in a steeper decline near the

x-fold than without (as gw(x, y, w) < 0). By the same reasoning crashing in x is impossible.

Hence the solid S is invariant for the full ζ-slow yzw-system.

Mathematically, S is defined by f(x, y, z) = 0, fx(x, y, z) < 0. Because of the hyperbolicity

fx(x, y, z) < 0, variable x can be solved by the Implicit Function Theorem as a function q(y, z)

from f(x, y, z) = 0 with (y, z) from the same set D that is bounded by the y, z axes and the

projected x-crash-fold boundary in the yz-plane. The quantity q(y, z) is the unique, yz-adjusted

carrying capacity of the prey. Also, the function q is decreasing in both y and z (see [1] for

analytical justification) because any additional predatory pressure depresses the adjusted prey

carrying capacity further.

On the trivial x-slow manifold x = 0, the transcritical points for the full 4-species web remain

the same as for the xyz-web subsystem. All ζ-singular orbits must cross it and jump to the solid

S at some x-outbreak PDLS points. Therefore, all nontrivial ζ-singular orbits eventually settle

down in the invariant solid S. And we only need to consider the 3-dimensional yzw-slow system

in S. A dimension reduction is now obtained.

Proposition 4.1. Under the joint yz-weak condition the predator-adjusted prey capacity manifold

S attracts all singular orbits and it is invariant for the yzw-slow subsystem.
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The ζ-slow yzw-system in S can now be expressed explicitly as follows:

(6)































dy

dt
= y

(

q(y, z)

β1 + q(y, z)
−

w

β3 + y
− δ1

)

= yg(q(y, z), y, w)

dz

dt
= ǫ1z

(

q(y, z)

β2 + q(y, z)
− δ2

)

= zh(q(y, z))

dw

dt
= ǫ2w

(

y

β3 + y
− δ3

)

= wk(y)

5. Qualitative Properties of Nullcline Surfaces

Having achieved the dimension reduction to the solid S, we now begin our singular orbit

analysis by first describing the y, z, w nullclines holistically and geometrically. Most mathematical

technicalities can be bound in [1].

5.1. w and z Nullclines. The nontrivial w nullcline for the reduced system (6) is the simplest:

k(y) = 0 giving rise to y = ywnl = β3δ3/(1 − δ3), a plane parallel to the zw-plane in S. Thus,

recovery or decline in w takes place depending entirely on the size of y. If y < ywnl, w decreases

because of insufficient food supply; on the other side of the nullcline, w increases.

The nontrivial z nullcline is slightly more complicated: h(q(y, z)) = 0 gives q(y, z) = xznl =

β2δ2/(1− δ2). It is a plane parallel to the w-axis, through a curve q(y, z) = xznl on the yz-plane.

It defines the y competition-adjusted xz equilibrium state. The z nullcline is also the state where

z either starts rebounding or declining depending on whether or not the competition strength

from y weakens (ẏ < 0) or intensifies (ẏ > 0). We already know the function q decreases in both y

and z. Hence to maintain a constant level q(y, z) = xznl, y and z must behave in opposite manner

along this curve: an increase in y must be counter-balanced by a decrease in z. Therefore, the

curve has negative slopes everywhere in S.

5.2. y Nullcline. The most complex nullcline is the nontrivial y-nullcline surface, g(q(y, z), y, w) =

0. It is more simply expressed when solved for w:

(7) w := p(y, z) =

(

q(y, z)

β1 + q(y, z)
− δ1

)

(β3 + y).

Biologically, the nullcline is the capacity state for y in S, adjusted in the presence of predation

by w and competition from z. Two special cases of this nullcline are well-known. First, when

w = 0, it is a curve in S for the xyz-web case analyzed above. The other special case is the

xyw-chain with z = 0, which is the classic Rosenzweig-MacArthur food chain [27]. It is also a

curve in S, see [7, 8, 9, 10]. Periodic and chaotic oscillations occur only if w is efficient so that

the y-nullcline curve on S develops a crash-fold point. The y-crash-fold points are guaranteed

by a similar but z-mediated condition (see [1] for a proof).

Condition 4. The w is efficient, i.e. max
{

1−βi

2

}

< min
{

βiδi

1−δi

}

, β3 < (β1+1)3

β1

(

1
β1+1

− δ1

)

.

Notice that the first set of the condition is the joint yz-weakness condition, but the second

set says the relative half-saturation constant of w should be small, a requirement for predatory

efficiency, consistent with the efficiency definition for y earlier. In this paper we further require
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(a) (b)

(c) (d)

Figure 3. (a) Nullcline surfaces inside the x-nullcline solid S. Stable branches

of the y-nullcline are shaded for the trivial branch y = 0 and left blank for the

nontrivial part w = p(y, z). The unstable branches are left blank on y = 0 and

shaded slightly for w = p(y, z) between the y crash-fold and the transcritical curve.

Vertical planes are the nontrivial w and z nullcline surfaces respectively. The case

of Condition 6 is shown for which the w-nullcline surface intersects the nontrivial

stable branch of the y-nullcline only. Half-filled circles are transcritical points, and

squares PDLS jump points. (b) The yz-projection view of (a). Left to the y-crash-

fold curve, the y-nullcline surface is unstable, and to its right, it is stable. The

y-nullcline surface is bounded by the coordinate axes and the y-boundary curve,

second right. The yz, yw nullclines intersect at the equilibrium point E . (c) The

zw-projection view of (a) for the case that w has the faster time scale than z does.

The vertical phase curves are the w-fast orbits and the horizontal phase curves are

the z-slow orbits, all eventually converging to the equilibrium point E . (d) The

same structure as (c) except that as the time scale of z increases against that of

w, a y-slow cycle is born through a Hopf bifurcation at E .
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w to be weak by the following condition. That is, although it is possible for w to crash y but in

actuality it cannot because of its relative high death rate.

Condition 5. The w is weak, i.e. ywnl|{z=0} = β3δ3
1−δ3

> yyfd|{z=0}.

Here the parameter value yyfd is implicitly defined by the w-efficiency condition. Notice that this

condition leads to one important aspect of the main result, that is, in the absence of z, the xyw

food chain with the chain prolific time diversification has the xyw-equilibrium point as the only

global asymptotic state, see the yw-section (z = 0) of Fig.3(a). There is no xyw cycles, chaotic or

otherwise. The necessary condition for it to behave otherwise is for w to be strong ([7, 8, 9, 10]).

The effective region of the y-nullcline requires w = p(y, z) to be positive, which in turn imposes

a constraint on variable y, z. That w = p(y, z) > 0 holds precisely in the triangular shaped

region bounded by the y, z axes and its intersection with w = 0 : g(q(y, z), y, 0) = 0. From the

expression of w = p(y, z) above, we see that p(y, z) > 0 if and only if q(y, z)/(β1 + q) − δ1) > 0.

This condition solves as q(y, z) > β1δ1/(1 − δ1) = xynl. As q decreases in both y and z, both

variables must be smaller than at the boundary q(y, z) = xynl. Hence the domain for p(y, z) > 0

is given as ∆ := {(y, z) ∈ S : (y, z) in the first quadrant left of the y-nullcline curve on w = 0}.

Alternatively, for a fixed competition intensity of z, and an elevated predatory pressure w > 0,

the adjusted equilibrium y level must be lower than what would be if the top-predation is absent,

w = 0.

The topography of the surface can be understood holistically as well. For fixed y in Eq.(7),

increasing z decreases q(y, z), the steady x supply in S. This decreases the quantity q(y, z)/(β1 +

q(y, z)), which represents the per-capita catch of the prey x by y. Thus, the increased z decreases

p(y, z). In practical terms, if y is fixed and the competition level of z is increased, then the system

requires a smaller amount of predatory pressure from w to separate the increasing phase ẏ > 0

from the decreasing phase ẏ < 0 of y. Either way, the y-section curves on the surface are all

decreasing in z, all the way down to w = 0 on the boundary of ∆.

It is slightly more complex to visualize the z-section curves on the surface. We begin with the

special case z = 0. By the w-efficiency condition above, the y nullcline has a fold point, and this

fold point is continued as a curve as z increases. This y-fold curve separates the y-nullcline into

the w-adjusted capacity state and the y-threshold state. The former is stable and the latter is

unstable for the y-dynamics. The stable branch is a monotone decreasing function of w: fixed

at a greater w depletes the steady supply y. The unstable, threshold branch is a monotone

increasing function of w: fixed at a greater w requires a greater threshold amount of y for y to

increase. The two branches coalesce at the crash-fold.

The y-crash-fold curve decreases in w as z increases. This is because for an increased value

z > 0, the competition makes fewer resource available for y, and makes y more vulnerable. Hence

it takes a smaller w amount to crash y. In other words, as z increases, both y and w decrease

along the fold curve. A more detailed justification can be made as follows. Since the w-nullcline,

y = ywnl = β3δ3/(1 − δ3), contains parameter δ3 which is independent of the parameters that

defines the y nullcine surface, we can use it to sweep the surface to determine the structure of

the crash-fold. Now if y = ywnl was exactly at the crash-fold yyfd for a given z, then for a larger
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z, the corresponding yw-dynamics should be weaker in w. Since the w-nullcine y = ywnl remains

the same, then for w to be weaker the y-crash-point must drop lower than ywnl so that w cannot

dynamically crash it. What about the crash density wyfd? Since increasing z decreases w along

the surface, the corresponding crash density wyfd is smaller than the w value for the original z

at the smaller crash density yyfd. Since the crash density wyfd at the original z is the largest w

value along the z-section, the crash density wyfd for the larger z must be smaller than that for

the original smaller z. Hence, we can conclude that the y-crash-fold decreases not only in the

w-coordinate wyfd but also in the y-coordinate yyfd when z increases, see Fig.3.

6. Coexisting Cycle via Hopf Bifurcation

Finally, it is left to describe the intersections of these nullcline surfaces. The intersection of the

w-nullcline surface y = ywnl with the y-nullcline w = p(y, z) is a monotone decreasing curve of w

in z as we have already derived this property for all y-section curves on the surface w = p(y, z). It

goes from the section z = 0 to 0 = w = p(ywnl, z) with z > 0. The intersection of the z-nullcline

x = q(y, z) = xznl with the y-nullcline surface is w = p(y, z) = (xznl/(β1 + xznl) − δ1)(β3 + y)

which is, obviously, a monotone increasing line in y. With the constant supply x = q(y, z) = xznl,

increasing z decreases y, which in turn decreases w = p(y, z) = (xznl/(β1 +xznl)− δ1)(β3 + y). So

the intersection curve is a decreasing function of w as z increases. In practical terms, increasing

y decreases z on the fixed supply level x = xznl of x. This improves the status of predator y. As

a result, it would take a greater amount of the top-predator w to flip y from growing (ẏ > 0) into

declining (ẏ < 0). However, unlike the w-nullcline intersection for which y = ywnl is fixed, it goes

from z = 0 to y = 0 with increasing z and decreasing y. Therefore, when yznl|{z=0} is greater

than both ywnl|{z=0} = ywnl and yyfd, the w and z nontrivial nullcines must intersect on the stable

nontrivial y-nullcline surface because they eventually exchange positions in the y variable with

the former y = ywnl > 0 when reaching the boundary of w = p(y, z) and y = 0 for the latter (see

Fig.3(a,b)). Because of the monotonicity of the z-nullcline in y, the intersection is unique. The

intersection is the unique xyzw equilibrium point of the system, denoted by E . Thus we assume

the following:

Condition 6. Equilibrium coexistence condition: ywnl = δ3β3

1−δ3
< yznl|{z=0} = (1− β2δ2

1−δ2
)(β1+ β2δ2

1−δ2
).

Note that this condition means that although z is not competitive against y with w = 0 for

requiring a greater amount of x to grow (resulting yznl|{z=0} < yynl|{z=0}, Fig.2(b), Fig.3(b)), but

the corresponding minimal amount of y, yznl|{z=0}, for it to happen is greater than the minimal

amount of y, ywnl, required by w for w to grow. Because of this extra help from w, it is possible

for z to coexist at the w-induced equilibrium state E . Also, since the y-crash-fold decreases

in y as z increases and y = ywnl > yyfd is a constant, the y-crash-fold always lies left the w-

nullcline (Fig.3(a,b)). Therefore, the xyzw-equilibrium point E is always on the stable part of

the y-nullcline under Condition 6. Fig.3 has incorporated all the descriptions given above. All

analytical justifications can be found from [1].

We are now ready to state part of the main result.
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Theorem 1. Assume the Conditions 1 – 6. Then for each 0 < ǫ2 ≪ 1, there is a value ǫ1 = θ(ǫ2)

such that a pair of eigenvalues of the linearization at E crosses the imaginary axis.

Proof. As concluded above, Conditions 1 - 6 guarantee the existence of the equilibrium point and

force the equilibrium point to be on the stable portion of the y-nullcline. From Conditions 1 and

2, for some neighborhood U of the equilibrium point, all singular orbits will be attracted into the

solid S because x has the fastest time scale. Because the next fastest time scale belongs to y, then

there is some refinement of U , U ′, in which all singular solutions go onto the stable part of the y-

nullcline. By Fenichel’s geometric theory of singular perturbation, the invariant y-slow manifold

in a compact neighborhood near E persists for small 0 < ǫ2 ≪ 1 treating 0 < ǫ1/ǫ2 ≪ 1 as a new

time scale independent of ǫ2. On this 2-dimensional manifold the yzw-system can be projected

onto the zw-plane. In a neighborhood of the E , the zw-phase plane looks qualitatively like

Fig.3(c,d). To analyze the eigenvalues we adopt a more qualitative approach. More specifically,

the linearized equation can be written as follows u̇ = ǫ1c1(au + v), v̇ = −ǫ2c2(bu + v) with

(u, v) = (0, 0) corresponding to the equilibrium point E in (z, w). Here, a, b, c1, c2 are constants

satisfying the following conditions. Because u-equation’s right side is the linearization of the

vector field ǫ1zh restricted on the y-slow manifold, the u-nullcline au + v = 0 is precisely the

tangent line to the z-nullcline at E . Therefore, it has negative slope, forcing a > 0. Exactly

the same argument results in b > 0. In addition, the relative position of these u-, v-nullclines

preserves that of the z-, w-nullclines, we must have b > a > 0 because w decreases faster on

the w-nullcline than on the z-nullcline. Since ż > 0 for points above the z-nullcline, which

include points of large w because a significant presence of w enhances the competitiveness of z.

Since the linearization in terms of u mirrors the same qualitative property, we must have the

constant c1 > 0 to be positive. Exactly the same argument leads to c2 > 0. See Fig.3(c,d) for an

illustration. Since ǫi and ǫici have the same order of magnitude, we will let ǫi := ǫici for simpler

notations in the following calculation. Now the eigenvalues λ1,2 of the linear uv-system are

λ1,2 =
1

2
[ǫ1a − ǫ2 ±

√

(ǫ1a − ǫ2)2 − 4ǫ1ǫ2(b − a)].

We now see easily that the eigenvalues are pure imaginary at ǫ1a − ǫ2 = 0, and their real parts

change from negative to positive as ǫ1 increases above ǫ2/a. This completes the proof. �

Note that we did not verify all the conditions of the Hopf Bifurcation Theorem. The omitted

part addresses whether the limit cycle is stable or unstable for which the computations are

extremely complicated. For this reason we will rely on numerical simulation below.

7. Period-Doubling Bifurcation — Numerical Simulation

We now pick and fix parameter values that satisfy all the Conditions 1 – 6 and change only

the relative ZW prolificacy parameter ǫ1/ǫ2. The chaotic attractor of Fig.4(a) is produced for

these parameter values:

ζ = .1 ǫ1 = .1 ǫ2 = .01

β1 = .3 β2 = .57 β3 = .2

δ1 = .6 δ2 = .52 δ3 = .54
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Figure 4. (a) A phase plot of the attractor at ǫ1 = 0.1. (b) A bifurcation diagram

in the variable ǫ1. It is generated by running a numerical simulation for each

parameter value of ǫ1 and plotting a point in z whenever the solution curve crosss

the z-nullcline from either up or down direction. Thus the simple periodic orbit

from the Hopf bifurcation registers two points on the plot.

Fig.4(b) is a bifurcation diagram with parameter ǫ1 ranging from 0.05 to 0.1 (equivalent with

ǫ1/ǫ2 from 5 to 10). The first bifurcation point is the Hopf bifurcation from the equilibrium

point. It occurs around ǫ1 = 0.053 by AUTO2000. Subsequent bifurcations are the type of

period doubling between ǫ1 = 0.078 and ǫ1 = 0.083. Other notable features include a 3 period

cycle around ǫ1 = .0853, and the onset of chaos which stays at a discernable distance away from

the extinction edge z = 0.
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