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Food chain chaos due to Shilnikov’s orbit
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Assume that the reproduction rate ratioz of the predator over the prey is sufficiently small in a basic
tri-trophic food chain model. This assumption translates the model into a singularly perturbed
system of two time scales. It is demonstrated, as a sequel to the earlier paper of Deng@Chaos11,
514–525~2001!#, that at the singular limitz50, a singular Shilnikov’s saddle-focus homoclinic
orbit can exist as the reproduction rate ratio« of the top-predator over the predator is greater than
a modest value«0 . The additional conditions under which such a singular orbit may occur are also
explicitly given. © 2002 American Institute of Physics.@DOI: 10.1063/1.1482255#
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Ecocomplexity may not be properly understood without
understanding the role chaos plays in food chains. Yet
chaos generating mechanisms have not been systema
cally categorized in the literature. The purpose of this
paper is to continue the chaos classification program ini-
tiated in Ref. 1 and to add a second chaos generation
mechanism to the list.

I. INTRODUCTION

The seminal work of Lotka2 and Volterra3 laid the foun-
dation of mathematical modeling for population dynami
The logistic model has been accepted by modelers for
cies dynamics free of predation but constrained to resou
limited habitats. Holloing’s seminal work4 on predation func-
tional forms provided the biological bases for predator–p
and n-trophic Rosenzweig–MacArthur models5 for food
chains. Plausible population models in continuous tim
from literature are mostly variations of the Rosenzwei
MacArthur models.

Because of their perceived intrinsic relevance to biolo
these models have generated an enormous amount o
search and continue to attract more people to an e
expanding field, not just because there are too nume
types of species interactions to consider, but also beca
even the simplest basic tri-trophic models pose some
tremely challenging mathematical problems. Above
chaos is least understood for these models, at least from
point of view of mathematics—there was not a single th
rem obtained on the existence of any food chain model ch
prior to Ref. 1. In contrast a tremendous amount of rigoro
results have been published on equilibrium and periodic
lutions, see, e.g., Refs. 6–8. This void in theoretical fo
chain chaos is more considerable given the fact that the
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food chain chaos models were discovered almost a qua
century ago in Refs. 9 and 10.

Although chaotic structures were continuously disco
ered, e.g., Refs. 11, 8, 12–16, from numerous food ch
models, systematic approaches to classification were h
pered by a lack of effective handles on the models. Fi
studies are scattered among models as diversified as bio
Second, there was not a single dimensionless form, wh
always constitutes the first step in any mathematical stu
that was used by any competing research groups, rarely
twice within a group, or by an individual. Multi-time scal
approach was first used in Ref. 7 for food chain models,
the lack of a proper transformation that could bring t
multi-time scaled model of Ref. 7 to bear prevented t
approach from taking its hold, at least until the scaling
Ref. 1. Numerical mapping of bifurcation diagrams, two p
rameters at a time, were carried out in Refs. 15 and 16 tha
to the advent of computer computing as a brute force
powerful tool. Results of this kind, however, are mostly o
servational and narrative by nature.

Types of food chain model chaos were limited to t
Rössler type17 of earlier findings,9,10,18 expanded to the tea
cup type of Ref. 11, and the Shilnikov type19 of Ref. 12.
Classification was mostly based on visual inspection. Mec
nistic identification for Shilnikov’s saddle-focus homoclin
orbits was carried out numerically in Ref. 15. The purpose
this paper is to continue the mechanistic approach via
multi-time scale analysis adopted in Ref. 1 and to find s
tem parameter conditions by which the Shilnikov chaos s
nario can take place in the Rosenzweig–MacArthur mod
The parameter region applies to food chains of which,
terms of allometry,20,21 the biomass of the prey is small rela
tive to that of the predator, which in turn is comparable w
the biomass of the top-predator.

II. PRELIMINARY ANALYSIS

We continue to consider the following Rosenzweig
MacArthur model5 for food chains analyzed in Ref. 1:
© 2002 American Institute of Physics
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ẋ5xS r 2
rx

K
2

p1y

H11xD ,

ẏ5yS c1x

H11x
2d12

p2z

H21yD , ~2.1!

ż5zS c2y

H21y
2d2D ,

with a logistic prey (x), a Holloing type II predator (y), and
a Holling type II top-predator (z).4 With the same scaling o
variables and parameters as in Ref. 1,

t→c1t, x→ 1

K
x, y→ p1

rK
y, z→ p2p1

c1rK
z,

z5
c1

r
, «5

c2

c1
, b15

H1

K
, b25

H2

Y0
~2.2!

with

Y05
rK

p1
, d15

d1

c1
, d25

d2

c2
,

Eq. ~2.1! is changed to the following dimensionless form:

z ẋ5xS 12x2
y

b11xDªx f~x,y!,

ẏ5yS x

b11x
2d12

z

b21yDªyg~x,y,z!, ~2.3!

ż5«zS y

b21y
2d2Dª«zh~y!.

Under the drastic trophic time diversification hypothesis1 that
the maximum per-capita growth rate decreases from bot
to top along the food chain, namely

r @c1@c2.0 or equivalently 0,z!1 and 0,«!1,

Eqs. ~2.3! become a singularly perturbed system of thr
time scales, with the rates of change for the prey, preda
and top-predator ranging from fast to intermediate to sl
respectively. Let ȳ be the maximum of the nontrivia
x-nullcline $ f (x,y)50% andyspk be the point of Pontryagin’s
delay of stability loss22–25,1determined from the integral

E
yspk

ȳ f ~0,j!

jg~0,j,z!
dj50. ~2.4!

Then Ref. 1 shows that a period-doubling cascade reve
must occur as the nontrivialz-nullcline h(y)50 crosses the
surface of Pontryagin’s delay of stability lossy5yspk(z)
from below due to the occurrence of junction-fold points
which solutions of the equations have a quadratic-like t
gency with the planey5yspk(z).

In this paper, we assume the time diversification hypo
esis for the prey–predator interaction only:

r @c1.0 or equivalently 0,z!1, ~2.5!

and leave the rate betweenc1 and c2 comparable, which
applies to cases where the body masses of the predato
the top-predator are comparable according to the theor
Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP
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allometry.20,21 Under this assumption, Eq.~2.3! is a two-
time-scale singularly perturbed system whose dynamics
most determined by the predator–top-predator interacti
on the trivialx-nullcline x50 and the attracting part of th
nontrivial x-nullcline parabola$ f (x,y)50% which contains
the nontrivial equilibrium pointpf5(xf ,yf ,zf). We will
demonstrate that the equilibrium pointpf becomes a saddle
focus as« is greater than some value«0 and that under
appropriate conditions there is a singular homoclinic orb26

to pf at z50. Chaotic dynamics ensues both at the singu
limit z50 by the result of Ref. 26 and with perturbation
,z!1 due to the conjectured existence of a persist
Shilnikov’s saddle-focus homoclinic orbit.19,27

III. SINGULAR PERTURBATION

The dimensionless system~2.3! with one singular pa-
rameter 0,z!1 makes it ideal for a singular perturbatio
analysis.7,28,29,26The key is to reduce the dimension of th
system from three to two or one using two different tim
scales and to piece together the lower dimensional struct
to construct a full picture of the three-dimensional system

A. The fast prey dynamics

By rescaling the timet→t/z for Eq. ~2.3! and settingz
50, the rescaled system becomes

x85x f~x,y!, y850, z850.

It is one-dimensional inx variable withy and z as param-
eters. The flow of this so-called fast subsystem is comple
determined by its equilibrium surfacex f(x,y)50, which is
composed ofx50 andf (x,y)50, in particular, by the stable
equilibrium points. The surfacef (x,y)50 is a cylindrical
parabola

y5~12x!~b11x!.

It has its maximum point and maximum value as

x̄5
12b1

2
, ȳ5

~11b1!2

4
.

It intersects the trivial equilibrium surfacex50 at

y5ytrn5b1 .

See Figs. 1 and 2. Of thex-nullcline surfaces only two
branches are attracting, which are$x50,y.b1% and $ f
50,x. x̄%. When the system is in a perturbed state with

FIG. 1. ~a! Phase lines and thex-nullcline surfacesx50 and f 50 for the
fast subsystem. Points ofx50, ytrn,y and f (x,y)50, x̄,x are the only
stable equilibrium points.~b! y-nullclines on variousz sections giving a
geometric illustration to the corresponding expressions inz.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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535Chaos, Vol. 12, No. 3, 2002 Food chain chaos due to Shilnikov’s orbit
,z!1, all solutions are quickly attracted to either$x50,y
.b1% or $ f 50,x. x̄% because the rate of change forx is
much greater than those ofy andz if the starting point is not
near either of these two surfaces.

B. The slow predator and top-predator dynamics

When a solution for the perturbed system with 0,z
!1 is attracted near one of the two surfaces$x50,y.b1%
and $ f 50,x. x̄%, the solution is approximated by the re
duced slow dynamics on either of the surfaces by settinz
50 in Eq. ~2.3!

x f~x,y!50, ẏ5yg~x,y,z!, ż5«zh~y!.

It is a two-dimensional system iny,z restricted on eitherx
50 or $ f (x,y)50%.

On the trivial surfacex50,

ẏ5yg~0,y,z!5yS 2d12
1

b21y
zD,0,

ż5«zh~y!5«zS y

b21y
2d2D .

Becauseẏ,0, all solutions develop downward, attracted
y50. It must cross the transcritical pointytrn5b1 at which
the two branches of thex-nullcline intersect: $x
50%ù$ f (x,y)50%. Once that point is passed, the lowe
trivial branch$x50,y,ytrn% is not attracting anymore. Solu
tions nearby are repelled away toward the stable bra
$ f (x,y)50,x> x̄%. By the theory ofPontryagin’s delay of
stability loss,22–25 the reduced solutions onx50 approxi-
mate the perturbed ones only to a pointyspk,ytrn5b1 , re-
ferred to as the point ofPontryagin’s delay of stability loss.
The point yspk depends on where the perturbed soluti
starts. For example, if it starts with the initialy at ȳ, then
yspk is determined by the integral equation~2.4!. If it starts at
any other initial point iny, then yspk is determined by the
same integral withȳ replaced by that initialy. It is proved in
Ref. 24 thatyspk defined by Eq.~2.4! is a monotone decreas

FIG. 2. Nullcline surfaces drawn in the full three-dimensional phase sp
The jump from the foldy5 ȳ, x5 x̄ to the x-stable part of the manifoldx
50 in the direction ofx is fast, so is the jump fromy5yspk to S. The crawl
on thex-stable part of the parabolaf 50 in y andz is slow compared to the
x-fast jump.G05pfCBApf is a singular homoclinic orbit.
Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP
h

ing function inz. Theyspk depicted in Fig. 2 and throughou
from now on is with the initialȳ value as in the integra
equation~2.4! andS is its horizontally projected point on th
x-attracting surface$ f (x,y)50,x. x̄%.

On the nontrivial, stablex-nullcline surface$ f (x,y)
50,x. x̄%, the slow dynamics in (y,z) is more complex but
two-dimensional nonetheless. Because it is two-dimensio
a phase plane analysis is utilized. The dynamics is de
mined by they-nullcline $y50%, $g(x,y,z)50% and the
z-nullcline $z50%, $h(y)50%. Two of which, $y50% and
$z50%, are invariant and the dynamics on them are sim
one-dimensional. The other two play the essential role.
note the nontrivialy-nullcline on $ f (x,y)50,x. x̄% by g
5$g(x,y,z)50%ù$ f (x,y)50,x. x̄% as shown in Fig. 2. The
nontrivial z-nullcline h(y)50 is solved asy5yf5b2d2 /(1
2d2). If we look at the three-dimensional illustration Fig.
in the direction of thex axis, then Fig. 3 is what it looks like
a projected view to theyz plane.

Conditions on parametersb1 ,d1 ,b2 were given in
Proposition 6.5 of Ref. 1 that give rise to the exact depict
of the y-nullcline g as in Figs. 2 and 3. In particular th
condition

zI,zspk, z̄ ~3.1!

holds. Notice that because the parameterd2 is free from the
above-mentioned condition, it can be changed so thatyspk

5yf5b2d2 /(12d2). That is, when

d25yspk/~b21yspk!, ~3.2!

the equilibrium pointpf falls on the Pontryagin landing
curveS. This fact will be used later.

IV. SADDLE-FOCUS EQUILIBRIUM

In this section we consider in greater detail the reduc
slow yz dynamics on the attractingx-nullcline surface
$ f (x,y)50,x. x̄% and demonstrate that there exists a co
stant «0.0 such that the equilibrium pointpf becomes a
saddle-focus for the reduced system when«.«0 .

Figure 3~a! shows the reduced phase portrait case wh
«50, in which case the slow dynamics is reduced to o
dimensional flow iny parametrized byz and the vertical
phase lines are as shown. In particular, the eigenvalue,l1 , of
the linearized vector field at the equilibrium point that corr
sponds to they dynamics is positive and that corresponds
thez dynamics,l2 , is zero. For«.0, ż.0 for points above
the z-nullcline y5yf , and ż,0 for points below it. There-
fore the equilibrium pointpf is an unstable source as show

e.

FIG. 3. Slow dynamics.~a! «50. ~b! «.«05a/4bm. The dotted curve is
the slow flow segmentBA from the trivial x-nullcline.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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536 Chaos, Vol. 12, No. 3, 2002 B. Deng and G. Hines
That is, the second eigenvaluel2.0 becomes positive fo
small positive«.0, satisfyingl250 as«50. As a result,
the reduced vector field has a tendency to rotate around
equilibrium point pf . Intuitively, the greater«.0 is, the
more pronounced the rotation becomes, and when« is suffi-
ciently away from 0, the eigenvaluesl1 ,l2 become a pair of
complex conjugates with positive real part. When that h
pens,p is an unstable focus.

What is described above can be stated in a more gen
manner. More specifically, the linearized vector field of t
reduced subsystem must have the following form

ẏ5a@~y2yf !2m~z2zf !#, ż5«b~y2yf !, ~4.1!

with positive constantsa,b,m. In fact, the linearized
y-nullcline (y2yf)5m(z2zf) is precisely the tangent line
to the originaly-nullcline g at pf andẏ.0 if and only if the
point is above they-nullcline. Similarly, the linearized
z-nullcline y5yf is the same as the original horizont
z-nullcline and ż.0 if and only if the point is above the
z-nullcline. a,b are parameter-dependent expressions res
ing from the actual linearization. Parameter« is preserved in
the same position as a constant multiple to the originaz
equation. With the general form of the linearization in pla
we can find its characteristic equation asl22al1«abm
50 and the eigenvalues are

l1,25
a6Aa224«abm

2
.

They becomes a pair of complex conjugates whena2

24«abm,0, or equivalently, when

«.«0ª
a

4bm
. ~4.2!

And the equilibrium pointpf becomes an unstable focus o
$ f (x,y)50,x. x̄%.

V. SINGULAR HOMOCLINIC ORBIT

Under the conditions of Eqs.~3.1!, ~3.2!, ~4.2!, and z
50, there must exist a singular homoclinic orbit,G0 , to ei-
ther pf as shown in Fig. 2,or an unstable limit cycle sur
roundingpf on the parabolax-nullcline surface$ f 50,x̄<x
<1%.

More precisely, directly opposite topf is a pointA in the
Pontryagin jumping curvey5yspk in $x50% from which the
fast x flow jumps from A to pf . Going backward in the
reducedyz flow on $x50%, there is a pointB on the liney
5 ȳ from which the slowyz flow connects toA. Similarly,
opposite toB is a point C on the turning point line$y
5 ȳ,x5 x̄% from which the fastx flow connects toB. Let zs

be thez coordinate of the pointC. Then for «50,zs5zspk

, z̄, and for «.0,zs,zspk, z̄ as shown in Figs. 3~a! and
3~b!. The reason thatzs,zspk with «.0 is because the slow
segmentAB lies mostly above thez-nullcline and it flows
rightwards from B to A. Now since C lies left of the
y-nullcline g for zs, z̄, it is connected backward in
asymptotic time either to the unstable spiral sourcepf or an
unstable periodic cycle on the parabolax-nullcline surface
$ f 50,x̄<x<1% that enclosespf . Without such a cycle, the
Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP
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existence of the singular homoclinic orbitG05pfCBApf is
established, as shown in Figs. 2 and 3~b!. If there is an un-
stable limit cycle, it must encircle the equilibrium pointpf

by the Poincare´–Bendixson theorem. Thus the cycle mu
intersect the junction curveS at two points. Substituting the
left intercept of the outermost cycle forpf in the entire
above-presented argument results in the second altern
statement that there exists a singular homoclinic orbit t
periodic orbit. In such a case chaos must occur accordin
the scenario of Ref. 30. Therefore, we have proven the
lowing result.

Theorem 5.1: Under the conditions of (3.1), (3.2), (4.2
and z50, for which pf denotes the left intercept ofS with
the outermost unstable limit cycle, if exists, there exist
singular homoclinic orbit to either the saddle-focus equili
rium pf or to the outermost limit cycle on$ f 50,x̄<x<1%.

In fact, part of the condition~3.1! that zspk, z̄ is more
than necessary for the existence ofG0 . It only requireszI
,zs, z̄.

VI. RETURN MAPS AND CHAOS

The existence of a singular homoclinic orbitG0 to the
unstable spiral equilibrium pointpf guarantees chaotic dy
namics. This can be explained in two ways.

FIG. 4. Singular return mapsp and their bifurcations. Dotted arrow curve
are reduced slowyz flows on the trivialx-nullcline x50.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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The first follows a well-known theorem of Shilniko
from Ref. 19 which states that if there is a homoclinic or
to a saddle-focus equilibrium point having eigenvalu
l1,2,l3 satisfying l1,25a6 ib and l3,2a,0, then in a
neighborhood of the orbit there exists a chaotic orbit~see
also Ref. 27!. In our situation, the singular orbitG0 should
persist asGz for small 0,z!1 by the theory of geometric
singular perturbation.22,31,32,23 The third eigenvaluel3 is
negative corresponding to the fastx dynamics, satisfying
l352O(1/z),2a52a/2 with a as in Eq.~4.1!. Hence
Shilnikov’s eigenvalue conditions are satisfied for small
,z!1. A major shortcoming of this approach is that w
cannot conclude whether or not there is a chaotic attra
that contains the Shilnikov orbit.

The second approach does precisely what the first
proach fails to do. It is based on the idea of Ref. 26, wh
takes advantage of the singular perturbation structure of
system to construct a singular Poincare´ return mapp. The
map is used in turn to capture the chaotic attractor wh
contains the singular homoclinic orbitG0 . More precisely,
let I be the segment ofS left of the equilibrium pointpf ,

FIG. 5. ~Color! Numerical simulation.~a! A perturbed attractor.~b! A Poin-
caré return map. Parameter values arez50.05,«51,b150.25,b250.1,d1

50.2,d250.39
Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP
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and identify each point inI with its z coordinate. Thenp(z)
is defined as the singular flow-induced first return of t
point z from I . Figure 4~a! illustrates the mapp. Note that
the two end points ofI are fixed points ofp, the homoclinic
orbit G0 corresponds to the critical pointcPI , and the point
z̄ corresponds to the other critical pointdPI . The map is
increasing except betweenc and d. The resulting map is
surely chaotic.

One type of bifurcations can also be captured by
return map as shown in Figs. 4~c! and 4~e!. For the case
shown, the z-nullcline y5yf moves up away from the
Pontryagin landing curveS, which takes place whend2 in-
creases. The critical pointc encounters a junction-fold
point28,33,1 and the map becomes differentiable atc. More-
over, increasingd2 drives down the maximump(c) as the
defining flow spends more time under thez-nullcline y
5yf , as illustrated in Figs. 4~c! and 4~e!. Similar to Theorem
6.1 of Ref. 1, a reversed period-doubling cascade34–36 takes
place asyf increases away fromyspk.

Another type of bifurcation corresponds to the ca
whenz̄ moves belowzs , eliminating the singular homoclinic
orbit G0 in the process. This scenario occurs easily by
creasingd1 becausez̄5( x̄/(b11 x̄)2d1)(b11 ȳ) with x̄,ȳ
independent ofd1 . A typical case withz̄,zs is shown in Fig.
4~b!. Chaotic dynamics is clearly evident whenpf lies onS
@Fig. 4~b!# and it bifurcates into a stable period-1 point wh
pf is sufficiently away fromS ~Figs. 4~d! and 4~f!!.

Guided by the conditions of Eqs.~3.1!, ~3.2!, and~4.2!, a
perturbed attractor characteristic of Shilnikov’s saddle-foc
homoclinic orbit was numerically found for Eq.~2.3!. The
attractor and its return map are shown in Fig. 5. T
«-parameter value«51 is of orderO(1), which guarantees
the equilibrium point to be a saddle-focus point.

We omit here a similar analysis for the case when th
exists an unstable limit cycle on$ f 50,x̄<x<1%. In spite of
our diligent searches, both theoretical and numerical,
failed to establish this alternative as a probable event.

VII. CLOSING REMARKS

We have demonstrated that the Rosenzwe
MacArthur’s food chain model Eq.~2.1! can admit a singular
Shilnikov’s saddle-focus homoclinic orbit under the cond
tions that z50,z,zspk<zf< z̄, «>«0 , and d25yspk/(yspk

1b2). In comparison, the reversed period-doubling casc
phenomenon analyzed in Ref. 1 occurs under the same
ditions except that 0,«!1. The same period-doubling cas
cade phenomenon also occurs due to the same junction
structure. Put together, these results cover most of the pa
eter range in« for chaos generation. We leave open the qu
tion of the existence of limit cycles on the parabo
x-nullcline surface$ f 50,x̄<x<1% for which there is little
supporting evidence. Also left open are a collection of qu
tions pertaining to chaotic attractors in terms of, e.g., sy
bolic dynamics, natural measures, Lyapunov exponents, v
ous measurements of dimensions. As to the releva
question of this result to ecological chaos in nature, we w
withhold our commentary until the time when most, if n
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



de

at

nd

nd

in

o
y

ter

ol

od

ra

as

a-

o

r-

or

dic

-

.

r-
ad.

v,

d-

gu-

by

J.

ic

r-

s.

ns-

-

ac-

538 Chaos, Vol. 12, No. 3, 2002 B. Deng and G. Hines
all, and sufficiently many mechanisms for food chain mo
chaos have been properly categorized and analyzed.
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