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Food chain chaos due to Shilnikov’s orbit
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Assume that the reproduction rate rafiof the predator over the prey is sufficiently small in a basic
tri-trophic food chain model. This assumption translates the model into a singularly perturbed
system of two time scales. It is demonstrated, as a sequel to the earlier paper didbeaongll,
514-525(2001)], that at the singular limit=0, a singular Shilnikov's saddle-focus homaoclinic
orbit can exist as the reproduction rate ratiof the top-predator over the predator is greater than

a modest value,. The additional conditions under which such a singular orbit may occur are also
explicitly given. © 2002 American Institute of Physic§DOI: 10.1063/1.1482255

Ecocomplexity may not be properly understood without food chain chaos models were discovered almost a quarter
understanding the role chaos plays in food chains. Yet century ago in Refs. 9 and 10.

chaos generating mechanisms have not been systemati- Although chaotic structures were continuously discov-
cally categorized in the literature. The purpose of this ered, e.g., Refs. 11, 8, 12-16, from numerous food chain
paper is to continue the chaos classification program ini- models, systematic approaches to classification were ham-

tiated in Ref. 1 and to add a second chaos generation Pered by a lack of effective handles on the models. First,
mechanism to the list. studies are scattered among models as diversified as biology.

Second, there was not a single dimensionless form, which
always constitutes the first step in any mathematical study,
I. INTRODUCTION that was used by any competing research groups, rarely used
twice within a group, or by an individual. Multi-time scale
The seminal work of Lotkaand Volterrd laid the foun-  approach was first used in Ref. 7 for food chain models, but
dation of mathematical modeling for population dynamics.the lack of a proper transformation that could bring the
The logistic model has been accepted by modelers for spenulti-time scaled model of Ref. 7 to bear prevented this
cies dynamics free of predation but constrained to resourceapproach from taking its hold, at least until the scaling of
limited habitats. Holloing’s seminal wotlon predation func-  Ref. 1. Numerical mapping of bifurcation diagrams, two pa-
tional forms provided the biological bases for predator—preyameters at a time, were carried out in Refs. 15 and 16 thanks
and n-trophic Rosenzweig—MacArthur modeldor food to the advent of computer computing as a brute force but
chains. Plausible population models in continuous timegfowerful tool. Results of this kind, however, are mostly ob-
from literature are mostly variations of the Rosenzweig—Servational and narrative by nature.
MacArthur models. Types of food chain model chaos were limited to the
Because of their perceived intrinsic relevance to biology,Rossler typé’ of earlier findings)'**®expanded to the tea-

these models have generated an enormous amount of reuP type of Ref. 11, and the Shilnikov ty’ﬁeof Ref. 12.
search and continue to attract more people to an evelclassification was mostly based on visual inspection. Mecha-

expanding field, not just because there are too numerongtiC identification for Shilnikov’s saddle-focus homoclinic
types of species interactions to consider, but also becau&(b'ts was carried out numerically in Ref. 15. The purpose of

even the simplest basic tri-trophic models pose some ext_hlslt_pte_lper IS tlo con:mqe tge rtm(ajchags?clapp(;otac? \(/j'a the
tremely challenging mathematical problems. Above aII,mu -ime scale analysis adopted in Ret. L and 10 find sys-

g tem parameter conditions by which the Shilnikov chaos sce-
chaos is least understood for these models, at least from thée . . .
) : : . nario can take place in the Rosenzweig—MacArthur model.
point of view of mathematics—there was not a single theo- . . . . :
. . . The parameter region applies to food chains of which, in

rem obtained on the existence of any food chain model chags 521 . )
terms of allometry®?'the biomass of the prey is small rela-

prior to Ref. 1. In contrast a tremendous amount of MYOroUSive to that of the predator, which in turn is comparable with

results have been published on equilibrium and periodic S%he biomass of the top-predator.

lutions, see, e.g., Refs. 6-8. This void in theoretical food
chain chaos is more considerable given the fact that the fir§} prE IMINARY ANALYSIS

JElectronic mail: bdeng@math.unl.edu We continue to consider_the foIIowing Rosenzweig—
PElectronic mail: ghines@math.unl.edu MacArthur model for food chains analyzed in Ref. 1:
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with a logistic prey k), a Holloing type Il predatory), and  FiG. 1. () Phase lines and thenullcline surfacex=0 andf=0 for the
a Holling type Il top-predatorz).* With the same scaling of  fast subsystem. Points of=0, y,,<y and f(x,y)=0, X<x are the only

variables and parameters as in Ref. 1, stable equilibrium points(b) y-nuliclines on variousz sections giving a
geometric illustration to the corresponding expressions. in

1 P1 P2P1
t—cqt, X—>RX, y—>my, Z—>C 'K Z,
! allometry?®2! Under this assumption, Eq2.3) is a two-
(o Co H, H, time-scale singularly perturbed system whose dynamics are
{=— &= o Bi=1 ,32=Y—0 (22 most determined by the predator—top-predator interactions
_ on the trivialx-nullcline x=0 and the attracting part of the
with nontrivial x-nullcline parabola{f(x,y)=0} which contains
rK d, d, the nontrivial equilibrium pointp;=(Xs,Ys,2z¢). We will
YOZE’ lzc—l, 2=C—2, demonstrate that the equilibrium poipt becomes a saddle

focus ase is greater than some valug, and that under
Eq. (2.1) is changed to the following dimensionless form: appropriate conditions there is a singular homoclinic &%bit
to ps at {=0. Chaotic dynamics ensues both at the singular

gxzx( 1—x— )zzxf(x'y), limit {=0 by the result of Ref. 26 and with perturbation 0
Bi1tXx <{¢<1 due to the conjectured existence of a persisting
« . Shilnikov’s saddle-focus homoclinic orbit:?
y=y 01— =yg(X,y,2), (2.3
+ +
Butx Baty lll. SINGULAR PERTURBATION
z=¢z —52> =gzh(y). The dimensionless systef2.3 with one singular pa-
B2ty rameter G<{<1 makes it ideal for a singular perturbation

1 ol,28,29,26 H H H
Under the drastic trophic time diversification hypothtgimt ~ analysis. The key is to reduce the dimension of the

the maximum per-capita growth rate decreases from botton3yStém from three to two or one using two different time
to top along the food chajmamely scales and to piece together the lower dimensional structures

to construct a full picture of the three-dimensional system.

r>c,>c,>0 orequivalently 8<{<1 and (Ke<1, .
A. The fast prey dynamics

Egs. (2.3 become a singularly perturbed system of three . . .

time scales, with the rates of change for the prey, predator, By rescaling the time—t/{ for Eq. (2.3 and setting
and top-predator ranging from fast to intermediate to slow, 0, the rescaled system becomes
respectively. Lety be the maximum of the nontrivial x'=xf(x,y), y'=0, z'=0.
x-nullcline {f(x,y) =0} andyg be the point of Pontryagin’s

- . ) It is one-dimensional irx variable withy andz as param-
delay of stability los&2>'determined from the integral y P

eters. The flow of this so-called fast subsystem is completely

v f(0,8) determined by its equilibrium surfacef(x,y) =0, which is
mdg:o- (2.4 composed ok=0 andf(x,y)=0, in particular, by the stable

Yok equilibrium points. The surfacé(x,y)=0 is a cylindrical

Then Ref. 1 shows that a period-doubling cascade reversalarabola

must occur as the nontriviaknulicline h(y) =0 crosses the — (1= X)(B1+X)

surface of Pontryagin’s delay of stability loss=y,(2) y 1 '

from below due to the occurrence of junction-fold points atlt has its maximum point and maximum value as

which solutions of the equations have a quadratic-like tan- 1-8, (1+B,)?

gency with the plang =yg,(z). X= RVES
In this paper, we assume the time diversification hypoth- 2 4

esis for the prey—predator interaction only: It intersects the trivial equilibrium surface=0 at
r>c,;>0 orequivalently 6<{<1, (2.5 Y=Ytm=B1-

and leave the rate between and c, comparable, which See Figs. 1 and 2. Of thg-nulicline surfaces only two
applies to cases where the body masses of the predator ahthnches are attracting, which afg=0y>pg,;} and {f
the top-predator are comparable according to the theory of 0x>X}. When the system is in a perturbed state with 0
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FIG. 3. Slow dynamics(a) £=0. (b) e>¢gy=aldbm. The dotted curve is
the slow flow segmenBA from the trivial x-nullcline.

ing function inz. Theyg depicted in Fig. 2 and throughout
from now on is with the initialy value as in the integral

FIG. 2. Nullcline surfaces drawn in the full three-dimensional phase spaceequatlon(ZA) andZ. is its horizontally projected point on the

The jump from the foldy=y, x=X to the x-stable part of the manifold  X-attracting surfacéf(x,y) =0x>Xj.

=0 in the direction of is fast, so is the jump fromi=yg, to 3. The crawl On the nontrivial, stablex-nulicline surface{f(x,y)
on thex-stable part of the parabofe=0 iny andz is slow compared to the = (Qx>X}, the slow dynamics iny,z) is more complex but
x-fast jump.I'y=p;CBAp is a singular homoclinic orbit. two-dimensional nonetheless. Because it is two-dimensional,

a phase plane analysis is utilized. The dynamics is deter-

. . . mined by they-nulicline {y=0}, X,¥,z)=0} and the
<(¢<1, all solutions are quickly attracted to eithr=0y z-nullclin)é {z=¥)}, {h(y) :{g} 'I}wjg(])g‘ V\)I/hi(zh,{j=0} and

> By} or {f=0x>x} because the rate °f,Cha”€,le 1,30”5 {z=0}, are invariant and the dynamics on them are simple
much greater than those pfandz if the starting point is not one-dimensional. The other two play the essential role. De-

near either of these two surfaces. note the nontrivialy-nulicline on {f(x,y)=0x>Xx} by y
={g(x,y,z) =0}N{f(x,y)=0x>X} as shown in Fig. 2. The

B. The slow predator and top-predator dynamics nontrivial z-nullcline h(y)=0 is solved ag/=y;=8,8,/(1
—J,). If we look at the three-dimensional illustration Fig. 2
in the direction of thex axis, then Fig. 3 is what it looks like:
a projected view to thgz plane.

Conditions on parameterg,,d,,8, were given in
Proposition 6.5 of Ref. 1 that give rise to the exact depiction

When a solution for the perturbed system witk<0
<1 is attracted near one of the two surfag¢gs=0y> B4}
and {f=0x>Xx}, the solution is approximated by the re-
duced slow dynamics on either of the surfaces by setfing

=0in Eq.(2.3 of the y-nulicline y as in Figs. 2 and 3. In particular the
xf(x,y)=0, y=yg(x,y,z), z=ezh(y). condition
It is a two-dimensional system ip,z restricted on eithek Z<Zsn<Z (3.1

=0 or{f(x,y)=0}.

On the trivial surfacex=0, holds. Notice that because the paramdiers free from the

above-mentioned condition, it can be changed so yhgt
=y¢=,6,/(1—6,). That is, when

Y=yg(0,y,2)=Y(—51— Bty <0,

2™y 82=Yspil (Ba+Yspi) (3.2
o . y the equilibrium pointp; falls on the Pontryagin landing
2=ezhly)=e2| 5y = %2 curveS. This fact will be used later.

Becausey<0, all solutions develop downward, attracted to
y=0. It must cross the transcritical poig,,= 31 at which
the two branches of thex-nulicline intersect: {x In this section we consider in greater detail the reduced
=0}N{f(x,y)=0}. Once that point is passed, the lower, slow yz dynamics on the attracting-nullcline surface
trivial branch{x=0,y<y,} is not attracting anymore. Solu- {f(x,y)=0x>X} and demonstrate that there exists a con-
tions nearby are repelled away toward the stable branchtante;>0 such that the equilibrium poirp; becomes a
{f(x,y)=0x=x}. By the theory ofPontryagin's delay of saddle-focus for the reduced system wiene.

stability loss*>~?° the reduced solutions orR=0 approxi- Figure 3a) shows the reduced phase portrait case when
mate the perturbed ones only to a poyL<Yymn=pB1, re-  £=0, in which case the slow dynamics is reduced to one-
ferred to as the point dPontryagin’s delay of stability loss dimensional flow iny parametrized byz and the vertical
The point y, depends on where the perturbed solutionphase lines are as shown. In particular, the eigenvaleof
starts. For example, if it starts with the initiglat'y, then  the linearized vector field at the equilibrium point that corre-
Yspkis determined by the integral equati@h4). If it starts at ~ sponds to thgy dynamics is positive and that corresponds to
any other initial point iny, thenyg is determined by the thez dynamics),, is zero. Fore>0, z>0 for points above
same integral witly replaced by that initiay. It is proved in  the z-nulicline y=y;, andz<0 for points below it. There-
Ref. 24 thatyg,, defined by Eq(2.4) is a monotone decreas- fore the equilibrium poinps is an unstable source as shown.

IV. SADDLE-FOCUS EQUILIBRIUM
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That is, the second eigenvalue>0 becomes positive for
small positivee>0, satisfyingh,=0 ase=0. As a result,

the reduced vector field has a tendency to rotate around th

equilibrium point ps. Intuitively, the greaters>0 is, the
more pronounced the rotation becomes, and whensuffi-
ciently away from 0, the eigenvaluas,\, become a pair of
complex conjugates with positive real part. When that hap
pens,p is an unstable focus.

What is described above can be stated in a more genere o

manner. More specifically, the linearized vector field of the
reduced subsystem must have the following form

y=al(y—y)—m(z—z)], z=eb(y—ys), 4.1

with positive constantsa,b,m. In fact, the linearized
y-nulicline (y—ys)=m(z—z) is precisely the tangent line
to the originaly-nullicline y at p; andy>0 if and only if the
point is above they-nullcline. Similarly, the linearized
z-nullcline y=y; is the same as the original horizontal
z-nullcline andz>0 if and only if the point is above the

z-nulicline. a,b are parameter-dependent expressions result: ¢~ 7

ing from the actual linearization. Parameteis preserved in
the same position as a constant multiple to the original
equation. With the general form of the linearization in place,
we can find its characteristic equation ®é—a\ +sabm
=0 and the eigenvalues are

a+.a’—4gabm
5 .

They becomes a pair of complex conjugates wheen
—4gabm<0, or equivalently, when

Ny o=

a
4bm’

And the equilibrium pointp; becomes an unstable focus on
{f(x,y)=0x>Xx}.

e>gqi= 4.2

V. SINGULAR HOMOCLINIC ORBIT

Under the conditions of Eqg¥3.1), (3.2), (4.2), and ¢
=0, there must exist a singular homoclinic orli, to ei-
ther p; as shown in Fig. 2pr an unstable limit cycle sur-
roundingp; on the parabola-nullcline surface{f=0x=<x
<1}.

More precisely, directly opposite & is a pointA in the
Pontryagin jumping curvg =y in {x=0} from which the
fast x flow jumps fromA to ps. Going backward in the
reducedyz flow on {x=0}, there is a poinB on the liney
=y from which the slowyz flow connects toA. Similarly,
opposite toB is a pointC on the turning point linely
=Yy, x=Xx} from which the fasi flow connects tB. Let zg
be thez coordinate of the poin€. Then fore=0,zs= 2z,
<z, and for e>0,2,<zs<z as shown in Figs. @) and
3(b). The reason that,<z, with £>0 is because the slow
segmentAB lies mostly above the-nulicline and it flows
rightwards fromB to A. Now since C lies left of the
y-nulicline y for z,<z, it is connected backward in
asymptotic time either to the unstable spiral soyse®r an
unstable periodic cycle on the parabolaulicline surface
{f=0x=x=1} that enclose; . Without such a cycle, the
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FIG. 4. Singular return maps and their bifurcations. Dotted arrow curves
are reduced slowz flows on the trivialx-nulicline x=0.

existence of the singular homoclinic orfiiy=p;CBA[y is
established, as shown in Figs. 2 an@)3If there is an un-
stable limit cycle, it must encircle the equilibrium poipt
by the PoincareBendixson theorem. Thus the cycle must
intersect the junction curvE at two points. Substituting the
left intercept of the outermost cycle fgs; in the entire
above-presented argument results in the second alternative
statement that there exists a singular homoclinic orbit to a
periodic orbit. In such a case chaos must occur according to
the scenario of Ref. 30. Therefore, we have proven the fol-
lowing result.

Theorem 5.2 Under the conditions of (3.1), (3.2), (4.2),
and =0, for which p; denotes the left intercept & with
the outermost unstable limit cycle, if exists, there exists a
singular homoclinic orbit to either the saddle-focus equilib-
rium p; or to the outermost limit cycle off =0x<x=<1}.

In fact, part of the condition(3.1) that zs,<<z is more
than necessary for the existenceldf. It only requiresz
<z, <Z.

VI. RETURN MAPS AND CHAOS

The existence of a singular homoclinic orbig to the
unstable spiral equilibrium poirp; guarantees chaotic dy-
namics. This can be explained in two ways.
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and identify each point ih with its z coordinate. Thenr(z)

is defined as the singular flow-induced first return of the
point z from |. Figure 4a) illustrates the mapr. Note that
the two end points of are fixed points ofr, the homoclinic
orbit 'y corresponds to the critical pointe I, and the point

'z corresponds to the other critical poidte . The map is
increasing except betwean and d. The resulting map is
surely chaotic.

One type of bifurcations can also be captured by the
return map as shown in Figs(c} and 4e). For the case
shown, thez-nullcline y=y; moves up away from the
Pontryagin landing curv&, which takes place whea8, in-
creases. The critical point encounters a junction-fold
point®331and the map becomes differentiablecatMore-
over, increasing, drives down the maximumr(c) as the
0.1017 : defining flow spends more time under tlzenullicline y
=y;, as illustrated in Figs.(@) and 4e). Similar to Theorem
6.1 of Ref. 1, a reversed period-doubling cas¢&d® takes
i place asys increases away fromigp.

Another type of bifurcation corresponds to the case
whenz moves belovzg, eliminating the singular homoclinic
orbit I'y in the process. This scenario occurs easily by in-
; . creasingd; becausez=(X/(B,+X)— 61)(B1+Yy) with X,y
oosos} i R ’ ; independent ob; . A typical case witfz<z is shown in Fig.

' ' ] 4(b). Chaotic dynamics is clearly evident when lies onX,
[Fig. 4b)] and it bifurcates into a stable period-1 point when
p; is sufficiently away fron, (Figs. 4d) and 4f)).

Guided by the conditions of Eq3.1), (3.2), and(4.2), a
perturbed attractor characteristic of Shilnikov’s saddle-focus
homoclinic orbit was numerically found for E@2.3). The

n+1

N

S attractor and its return map are shown in Fig. 5. The
0 o e-parameter value =1 is of orderO(1), which guarantees
0 0.0509 0.1017 s . . .
(b) z the equilibrium point to be a saddle-focus point.

n

We omit here a similar analysis for the case when there
FIG. 5. (Color) Numerical simulation(a) A perturbed attractorb) A Poin-  exists an unstable limit cycle dif =0x=<x=<1}. In spite of
carereturn map. Parameter values afe0.05¢=1,8,=0.258,=0.18,  our diligent searches, both theoretical and numerical, we
=0225,=0.39 failed to establish this alternative as a probable event.

The first follows a well-known theorem of Shilnikov
from Ref. 19 which states that if there is a homoclinic orbit\/;; cL0SING REMARKS
to a saddle-focus equilibrium point having eigenvalues
N12,M3 satisfying\; ,=a*iB and A\ 3<—a<0, then in a We have demonstrated that the Rosenzweig—
neighborhood of the orbit there exists a chaotic otbte = MacArthur’s food chain model Eq2.1) can admit a singular
also Ref. 27. In our situation, the singular orblf, should  Shilnikov's saddle-focus homoclinic orbit under the condi-
persist ad’, for small 0<{<1 by the theory of geometric tions that{=0,2<zy<z=<z, £=gq, and 6,=Ysu/(Yspk
singular perturbatio”®313223 The third eigenvaluer; is  +f3,). In comparison, the reversed period-doubling cascade
negative corresponding to the fastdynamics, satisfying phenomenon analyzed in Ref. 1 occurs under the same con-
N3=—0O(1l/)<—a=—al2 with a as in Eq.(4.1). Hence ditions except that &e<1. The same period-doubling cas-
Shilnikov’s eigenvalue conditions are satisfied for small Ocade phenomenon also occurs due to the same junction-fold
<¢<1. A major shortcoming of this approach is that we structure. Put together, these results cover most of the param-
cannot conclude whether or not there is a chaotic attractagter range irs for chaos generation. We leave open the ques-
that contains the Shilnikov orbit. tion of the existence of limit cycles on the parabola

The second approach does precisely what the first apc-nulicline surface{f=0x=<x=<1} for which there is little
proach fails to do. It is based on the idea of Ref. 26, whichsupporting evidence. Also left open are a collection of ques-
takes advantage of the singular perturbation structure of thiéons pertaining to chaotic attractors in terms of, e.g., sym-
system to construct a singular Poincaeturn mapz. The  bolic dynamics, natural measures, Lyapunov exponents, vari-
map is used in turn to capture the chaotic attractor whictous measurements of dimensions. As to the relevance
contains the singular homoclinic orlity. More precisely, question of this result to ecological chaos in nature, we will
let | be the segment ak left of the equilibrium pointps, withhold our commentary until the time when most, if not

Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



538 Chaos, Vol. 12, No. 3, 2002 B. Deng and G. Hines

all, and sufficiently many mechanisms for food chain modelw. M. Schaffer, “Stretching and folding in lynx fur returns: evidence for
chaos have been properly categorized and analyzed. a strange attractor in nature,” Am. Na24, 798-820(1984. o
9L, P. Sil'nikov, “A case of the existence of a denumerable set of periodic

1 “ . ) . o motions,” Sov. Math. Dokl.6, 163—166(1965.
525?(‘32%%3 Food chain chaos due to junction-fold point,” Chaids 514— 20y A calder III, “An allometric approach to population cycles of mam-

2 . . - . . mals,” J. Theor. Biol.100, 275-282(1983.
A. J. Lfst)kza{j; Elements of Physical Biolog§WVilliams and Wilkins, Balti- 21w, A. Calder Ill, “Ecological scaling: Mammals and birds,” Annu. Rev.
more,

3 . . . . . Ecol. Syst.14, 213-230(1983.
V. Volterra, “Fluctuations in the abundance of species, considered mathsz; Pontryagin, “Asymptotic behavior of solutions of systems of differ-
4?:mgtlCgl(ly)lliin,g\]lat‘ysrgg;gngr?gatltgrizﬁgs_soﬁ‘soéiln?ﬁ% types of predation and ential equations with a small parameter at higher derivatives,” 1zv. Akad.
- ! Nauk. SSSR Ser. Matl21, 605-626(1957 (in Russiai.
parasitism,” Can. Entomologi€1, 385—-398(1959. (1957 ( "

23 H
5M. L. Rosenzweig and R. H. MacArthur, “Graphical representation and E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, and N. Kh. Rozov,

. o . - N Asymptotic Methods in Singularly Perturbed SysteiMsnographs in
stability conditions of predator-prey interactions,” Am. N&#, 209-223 Co}rlltepr)nporary Mathematic(ﬁ:?)nsuli/anm Bureau l\xl/ew York %9)54
(1963. 248 piate o At '
. . ) . . S. Rinaldi and S. Muratori, “Slow-fast limit cycles in predator-prey mod-

6 R
;’hi\;\l/alltgﬁ%npompetltlon Models in Population Biolog$IAM, Philadel els,” Ecol. Modell, 61, 287—308(1992.

, . 25 P - I . —
’S. Muratori and S. Rinaldi, “Low- and high-frequency oscillations in E’rs%ﬁz%’ed}):;?;;? u ;StDai?fleEZ?:g(l)brgf n;i4i|((15998f150l’blts o e shad
three-dimensional food chain system,” SIAMsoc. Ind. Appl. Math. J. 26 R el :
Appl. Math. 52, 1688—17061992. K. Taylor and B. Deng, “Chaotic attractors in one-dimension generated by

8H. L. Smith and P. Waltman, “The theory of the Chemostat—Dynamics of & Singular Shilnikov orbit,” Int. J. Bifurcation Chaos Appl. Sci. Erg,
microbial competition,” Cambridge Studies in Mathematical Biology 273059_3083(2009'

(Cambridge University Press, Cambridge, 1094 B. Deng, “On SlI'nikov’'s homoclinic-saddle-focus theorem,” J. Diff.
9P. Hogeweg and B. Hesper, “Interactive instruction on population inter—ZSEan'102“305‘329(_1993' . . . )
actions,” Comput. Biol. Med8, 319-327(1978. B_. Deng, Constructing hor_nocllnlc orbits and chaotic attractors,” Int. J.
OM. E. Gilpin, “Spiral chaos in a predator-prey model,” Am. Nat13 Bifurcation Chaos Appl. Sci. Engt, 823—-841(1991.
306-308(1979. 290. De Feo and S. Rinaldi, “Singular homoclinic bifurcations in tritrophic
A, Hastings and T. Powell, “Chaos in a three-species food chain,” EcoI-BOfOOd gTaIES {\‘ﬂgth. Biosci14g 7_—kﬁ0f(f199£;.| Ao, USSR-Shormic
ogy 72, 896-903(1991). L. P. SI'nikov, “On a Poincare-Birkhoff problem,” Math. USSR-Sborni
12K “McCann and P. Yodzis, “Bifurcation structure of a three-species food 3, 353—371(1967.
chain model,” Theor. Popul. Biol8, 93—-125(1995. 3IN. Fenichel, “Geometric singular perturbation theory for ordinary differ-
18R, K. Upadhyay and V. Rai, “Why chaos is rarely observed in natural _ential equations,” J. Diff. Eqnsz3, 513-527(1979.
populations,” Chaos, Solitons Fracta3s1933-19391997). 32C. Bonet, “Singular perturbation of relaxed periodic orbits,” J. Diff. Egns.
4B, Blasius, A. Huppert, and L. Stone, “Complex dynamics and phase 66, 301-339(1987.
synchronization in spatially extended ecological systems,” Natuos- 33B. Deng,Folding at the genesis of chaoBroceedings of the First World
don) 399 354-359(1999. Congress of Nonlinear Analyst8V de Gruyter, Berlin, 1996 \ol. IV, pp.
By, K)uzngletsov, . D(e Fe%, and S. Rinaldi, “Belyakov homoclinic bifurca- 3763—3777. g 4 PP
tions in a tritrophic food chain model,” SIAMSoc. Ind. Appl. Math. J. 34M. Feigenbaum, “Quantitative universality for a class of nonlinear trans-
Appl. Math. 62, 462—487(2002. formations,” J. Stat. Physl9, 25—-52(1979.
16D, V. Vayenas and S. Pavlou, “Chaotic dynamics of a microbial system of*°P. Collet and J.-P. Eckmantierated Maps of Interval as Dynamical Sys-
coupled food chains,” Ecol. ModellL36, 285—295(2001). tems(Birkhauser, Boston, 1980
0. E. Rwssler, “Chaotic behavior in simple reaction systems,” Z. Natur- **B. Deng, “Glucose-induced period-doubling cascade in the electrical ac-
forsch. A31, 259-264(1976. tivity of pancreaticg-cells,” J. Math. Biol.38, 21-78(1999.

Downloaded 16 Jan 2004 to 129.93.51.85. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



