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Food chain chaos due to junction-fold point
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Consideration is given to a basic food chain model satisfying the trophic time diversification
hypothesis which translates the model into a singularly perturbed system of three time scales. It is
demonstrated that in some realistic system parameter region, the model has a unimodal or
logistic-like Poincare´ return map when the singular parameter for the fastest variable is at the
limiting value 0. It is also demonstrated that the unimodal map goes through a sequence of
period-doubling bifurcations to chaos. The mechanism for the creation of the unimodal criticality is
due to the existence of a junction-fold point@B. Deng, J. Math. Biol.38, 21–78~1999!#. The fact
that junction-fold points are structurally stable and the limiting structures persist gives us a rigorous
but dynamical explanation as to why basic food chain dynamics can be chaotic. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1396340#
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To understand ecosystem complexity, it is necessary t
understand basic food chain dynamics with preys, preda-
tors, and top-predators interactions. Chaos has been
commonly observed in food chain models by means o
numerical simulations. The purpose of this paper is to
start a program to classify and analyze chaos generation
mechanisms for a basic food chain model. The particular
chaos generation mechanism under consideration wa
also found in models for excitable membranes and
neuron cells.1

I. INTRODUCTION

An ecosystem is a web of complex interactions amo
species. Basic food chains can be thought as fundame
building blocks of the web.2 The chaos theory, which ben
efited directly from population dynamics3–5 in its earlier de-
velopment, is viewed as an important part of a paradigm
which ecocomplexity can be understood. Of the many p
sible chaotic dynamics in ecology, none is better known th
the snowshoe hare and the Canadian lynx system6 for which
a time-delayed phase plot7 by Ref. 8 suggested a foldin
structure of the Ro¨ssler type9 that may result in chaotic dy
namics. Although a recent time-series analysis by Ref.
suggested that the field data6 may not be chaotic, the implied
chaos generating mechanism may still be real and it con
ues to generate enormous interests among ecologists an
plied mathematicians.11 Nevertheless, there are other ecos
tems that we are reasonably sure about their chaoticity b
on a collection of different time-series tests on their labo
tory and field data.10 Perhaps a very good reason to stu
ecochaos, beside the pure intellect pursuit, is due to a re
discovery~which may have important management implic

a!Electronic mail: bdeng@math.unl.edu
5141054-1500/2001/11(3)/514/12/$18.00
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tions! that the average top-predator biomass in vario
tritrophic food chain models is maximum at the onset
chaos, see Refs. 12 and 13.

Lotka–Volterra14,15 models for two species interaction
which are spatially homogeneous and time autonomous
not be more complex than steady states, and limiting cyc
Models for tritrophic chains however are extremely rich
complex dynamics. Perhaps the first numerical work t
demonstrated food chain chaos in a tritrophic model was
to Ref. 4. Chaos was also observed in numerical simulati
in other tritrophic models.11–13,16–20Of which a teacup at-
tractor was discovered in Ref. 16, a strange attractor cont
ing Shilnikov’s orbit was found in Ref. 17, and comple
homoclinic and heteroclinic orbits were identified and c
egorized in Refs. 18–20. With progress in classifying
ementary bifurcations for both simple and complex orb
and in developing sophisticated numerical packages for
tecting and continuing these bifurcations, it is now possi
to systematically and numerically map out chaos regions
any parameter space.16,18–20 The phenomemon of Feigen
baum’s period-doubling cascade to chaos3,21 was a common,
often predominant, feature in all these studies. However,
to understandable complexity of tritrophic models there i
lack of understanding in the literature on model mechanis
that are responsible for the period-doubling cascade to ch
The purpose of this paper is to fill a part of this void b
giving a rigorous proof to the existence of period-doubli
cascade to chaos scenario in a time-diversified Rosenzw
MacArthur tritrophic model, which is cast as a singular
perturbed system. The result is obtained at a singular lim
Since singular limiting structures persist in ways conside
natural and can be viewed as the origins for the pertur
structures~e.g., Refs. 22–24!, this result offers a good expla
nation to some of the perturbed chaotic dynamics found
the literature~e.g., Refs. 16, 18, 20!. The mechanism de
scribed should also provide us with a means to interpret
© 2001 American Institute of Physics
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merical findings some of which can be undecipherable o
erwise.

The paper is organized as follows. We will introduce a
properly scale the Rosenzweig–MacArthur model in Sec
Preliminary analysis is given in Sec. III which provides
with a framework for the period-doubling cascade analysis
Sec. IV. A logistic-type unimodal map is obtained in Sec.
and a cascade of period-doubling bifurcations is dem
strated when a parameter is varied. This is perhaps the
time that such a map is rigorously found to be embedde
a tritrophic model. Included is also a numerical simulati
for the cascade in a parameter region where it is predicte
the theory. Technical analyses are delegated to the Appen

II. THE FOOD CHAIN MODEL

In this paper we will consider the Rosenzweig
MacArthur model25 for tritrophic food chains,

ẋ5xS r 2
rx

K
2

p1y

H11xD ,

ẏ5yS c1x

H11x
2d12

p2z

H21yD , ~2.1!

ż5zS c2y

H21y
2d2D .

It is composed of a logistic prey (x), a Holling type II preda-
tor (y), and a Holling type II top-predator (z). Parameterr
is the maximum per-capita growth rate for the prey andK its
carrying capacity. Predator’s per-capita predation rate has
Holling type II functional form26

p1x

H11x
.

Parameterp1 is the maximum per-capita predation rate a
H1 is the semisaturation constant at which the per-ca
predation rate is half of its maximum:p1/2. Parameterc1 is
the maximum per-capita growth rate of the predator. Par
eter d1 is the per-capita natural death rate for the preda
Parameterp2 andH2 have similar meanings asp1 andH1 ,
except that the predatory is the prey for the top-predatorz.
Similar explanations also apply toc2 and d2 . We note that
the Rosenzweig–MacArthur model was developed from
seminal works of Lotka14 and Volterra15 and is very popular
among theoretical ecologists.16–18,20,27–29

A. Dimensionless form

With the following changes of variables and paramete

t→c1t, x→ 1

K
x, y→ p1

rK
y, z→ p2p1

c1rK
z,

z5
c1

r
, «5

c2

c1
, b15

H1

K
, b25

H2

Y0
with Y05

rK

p1
, ~2.2!

d15
d1

c1
, d25

d2

c2
,

Eqs.~2.1! are recast in the following dimensionless form:
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z ẋ5xS 12x2
y

b11xDªx f~x,y!,

ẏ5yS x

b11x
2d12

z

b21yDªyg~x,y,z!, ~2.3!

ż5«zS y

b21y
2d2Dª«zh~y!.

Some remarks about the changes of variables and param
are in order.

The carrying capacityK of the prey is scaled to the
dimensionless number 1 by the renormalization,x→x/K.
ParameterY05rK /p1 can be interpreted as a predator’s pr
dation capacity at which the predator consumes the pre
numbersp1Y0 equal to the prey’s reproduction capacityrK .
This predation capacity is scaled to 1 by the change of v
able y→y/Y0 . Similarly, the scaling parameter for the top
predator is

Z05
c1Y0

p2
,

which can be interpreted exactly the same asY0 for the
predator. That is, sinceY0 is the predation capacity,c1Y0 can
be interpreted as the predator’s reproduction capacity, anZ0

is the predation capacity for the top-predator at which it co
sumes the predator in numbersp2Z0 equal to predator’s re-
production capacityc1Y0 . This predation capacity for the
top-predator is scaled to 1 as well by the renormalizati
z→z/Z0 .

Parametersb15H1 /K is the dimensionless semisatur
tion constant, measured against prey’s carrying capacity,
b25H2 /Y0 is the dimensionless semisaturation constant
the predator, measured against its predation capacityY0 . We
assume throughout that

0,b1,1 and 0,b2,1,

which can be interpreted to mean that both the predator
the top-predator are good hunters, i.e., capable of reac
half of the maximum predation rates at some population l
els smaller than the carrying capacity for the prey and
predation capacity for the predator, respectively.

We also assume throughout that

0,d15
d1

c1
,1 and 0,d25

d2

c2
,1.

This is actually a default assumption because the condi
of eitherd i.1 would lead to collapse of the tritrophic foo
chain. More precisely, withd1.c1 , the predator dies ou
faster than it can reproduce even at its maximum reprod
tion rate. Therefore both predators will die out as well r
gardless their initial populations. Withd2.c2 , the top-
predator must die out by the same reasoning. In either c
we will not have a nontrivial tritrophic food chain, whos
dynamics are completely understood.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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B. Tritrophic time diversification hypothesis

A reasonable assumption to make is to assume
‘‘trophic time diversification hypothesis’’ which states th
the maximum per-capita growth rate decreases from bot
to top along the food chain, namely,

r .c1.c2.0.

In this paper, we actually assume a drastic time diversifi
tion

r @c1@c2.0 or equivalently
~2.4!

0,z!1 and 0,«!1.

Under this condition, Eqs.~2.3! become a singularly per
turbed system of three time scales. The rates of change
the prey, predator, and top-predator range from fast to in
mediate to slow, respectively. Three-time-scale trophic m
els were introduced in Ref. 27. They took the same form
Eq. ~2.1! except thatẏ, ż were replaced bye ẏ, e2ż, respec-
tively for a small time scaling factore.0. Our changes of
variables and parameters as in~2.2! together withz5« pro-
duce the same time-diversified models as in Ref. 27,
course under appropriate readjustments on other parame

We note that the period-doubling cascade to chaos i
be found at the singular limitz50.

III. FAST-INTERMEDIATE-SLOW ANALYSIS

Because of the ways the two small parameters 0,z
!1,0,«!1 appeared in Eqs.~2.3!, we are dealing with a
three-time-scale system. Such multitime scaled systems
be analyzed by reducing the full three-dimensional dynam
to two dimension first and then to one dimension, un
some appropriate conditions, see, e.g., Refs. 27–30. An
ementary tutorial can be found in Ref. 30. The key lies in o
understanding about the nullcline surfacesx f(x,y)
50,yg(x,y,z)50,zh(y,z)50. We note that all discussion
below are confined to the first quadrantx>0,y>0,z>0.

A. Prey dynamics: Fast

By rescaling the timet→t/z for Eq. ~2.3! and settingz
50 for the new equations, we obtain the fast prey s
system,

x85x f~x,y!, y850, z850.

It is one-dimensional and its flow is completely determin
by its equilibrium surfacex f(x,y)50, which is composed o
x50 and f (x,y)50. The surfacef (x,y)50 is a cylindrical
parabola,

y5~12x!~b11x!.

It has its maximum point and maximum value as

x̄5
12b1

2
, ȳ5

~11b1!2

4
. ~3.1!

It intersects the trivial equilibrium surfacex50 at

y5ytrn5b1 ~3.2!

~see Figs. 1 and 2!.
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The fast dynamics is determined depending the value
y. For any fixed 0<y<ytrn , the trivial equilibrium pointx
50 is unstable, and the nontrivial one on the slow manifo
f 50 is stable. In addition, for the same range 0<y<ytrn , all
fast orbits converge to the latter with initial valuex0.0. On
the other hand, forytrn<y< ȳ, there are three equilibrium
points. The trivial solutionx50 is stable, the middle one o
the parabolaf 50 between 0<x< x̄ is unstable, and the on
on the right branch of the parabolaf 50 is stable. Fory
. ȳ, x50 is the only equilibrium point which is globally

FIG. 1. ~a! x-phase lines and thex-nullcline surfacesx50 andf 50 for the
fast subsystem. Points ofx50, ytrn,y and f (x,y)50,x̄,x are the only
stable equilibrium points.~b! The type ofy-nullclines that is considered in
this paper.~c! Singular relaxation cycleRMȳyspk for the predator–prey
subsystem.~d! The cycle disappear through the bifurcationz5zspk. Solid
nullclines are for attracting equilibrium manifolds and dash nullclines
for unstable equilibrium manifolds.

FIG. 2. Nullcline surfaces drawn in the full three-dimensional phase sp
The jump from the foldy5 ȳ, x5 x̄ to the x-stable part of the manifoldx
50 in direction ofx is the fastest. The crawl on thex-stable part of the
parabolaf 50 in the direction ofy is slow comparing to thex-fast jump but
fast comparing to the slow drift in thez-direction.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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517Chaos, Vol. 11, No. 3, 2001 Food chain chaos
stable. Thus,y5 ȳ is a fold bifurcation point~or saddle-node
bifurcation point! for the fast prey system, andy5ytrn is a
transcritical bifurcation point~see Figs. 1 and 2!.

B. Predator dynamics: Intermediate

Settingz5«50 in Eq. ~2.3! gives rise to the predato
subsystem

x f~x,y!50,ẏ5yg~x,y,z!,ż50, ~3.3!

which has the intermediate time scale. Orbits of this s
system lie either on the trivial manifoldx50 or on the pa-
rabola f (x,y)50 with variablez frozen at a constant.

Again, the intermediate prey dynamics is determined
its equilibrium statesy50 andg50, in particular the stable
equilibrium states. The intermediate orbits develop upwa
if g.0 and downwards ifg,0. Figure 1~b! illustrates sev-
eral y-nullcline curvesg50 that define many paramete
dependent variable values we will use throughout the pa
Since f is independent ofz, theseg50 curves are plotted
against one parabolaf 50. Notice that the variabley can be
solved fromg50 to get

y52b21z Y S x

b11x
2d1D if g50.

It decreases inx and increases inz. Thus, the nullcline curve
g50 of a higher value ofz lies above the nullcline curve
g50 of a lower value ofz. With the valueyspk to be ex-
plained below, the correspondingy-nullcline g(x,y,zspk)
50 with z5zspk shown in Fig. 1~b! has the property that i
intersects both the stable and the unstable branches o
parabola f 50. This property is equivalent to that th
y-nullcline g(x,y,z̄)50 with z5 z̄.zspk intersects the
x-stable branch of the parabolaf 50 at ay-level higher than
y5yspk, in addition to its intercept with the maximum poin
( x̄,ȳ) of the parabola. We note that the configurations of F
1~b! correspond to the kind of parameter region under c
sideration and the relationship between them will be de
mined throughout the discussion and mostly in the Appen

C. Relaxation oscillations in predator–prey

With eachz fixed in the predator subsystem~3.3! we
have a singular limiting system in the predator and prey. T
perturbed system~2.3! with 0,z!1 and«50 is well ap-
proximated by the singular predator–prey Eqs.~3.3! ~e.g.,
Ref. 22!. Three cases need to be distinguished: 0<z,zspk,
z5zspk, andz.zspk.

Figure 1~c! illustrates the case of 0<z,zspk. On the
trivial manifold x50, the intermediatey-dynamics has only
one equilibrium pointy50, which is stable. On the parabo
manifold f 50, it has three equilibrium points, labeled 1,A,
B. A, B are unstable and 1 is stable. It is important to not
that for 0<z,zspk, the saddle pointA lies below the plane
y5yspk.

A typical intermediate orbit in this case behaves li
this: If it starts onf 50 and from, say, the pointR, it crawls
upwards. When it reaches the fold pointM , it jumps instan-
taneously, or is concatenated by a fastx-orbit, to the
x-attracting trivial manifoldx50 and lands at a pointȳ from
Downloaded 02 Nov 2001 to 129.93.51.85. Redistribution subject to AIP
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which a new intermediatey-orbit on x50 develops down-
wards, heading to the stable equilibrium pointy50. It must
cross the transcritical pointytrn and stay onx50 for awhile
until reaching a pointyspk. At this pointyspk, the intermedi-
ate segment encounters a phenomenon referred to
Pontryagin’s delay of lost stability,22,28,31,32and see more ex
planation below. Simply put, the theory says that the int
mediatey-orbit must be concatenated by a fastx-orbit from
the point yspk on x50 to the pointyspk on the parabola
x-equilibrium manifoldf 50, which is the pointR. SinceR
is where the first intermediatey-orbit started, the concat
enated fast and intermediate singular orbits form a cy
RMȳyspk, representing a relaxation oscillation for th
predator–prey interaction with any frozen 0<z,zspk. Also,
for any point started above the planey5A and away from
x50, the predator–prey singular orbit is always attracted
the singular cycle. That is, the basin of attraction of the s
gular cycle is$x.0,y.A%. However, for any orbit started
below the planey5A and away fromx50, it is attracted to
the stable equilibrium pointy50 with x51.

In the second case withz5zspk, the predator–prey sin
gular cycleRMȳyspk is interrupted by the saddle pointA, a
singular homoclinic orbit is formed. It is a point of bifurca
tion. For the third case withz.zspk, illustrated in Fig. 1~d!,
the singular cycle is gone. Every point with a nonvanishi
initial x value is attracted to the equilibrium pointx51 and
y50.

D. Pontryagin’s delay of lost stability

The point of Pontryagin’s delay of lost stabilityyspk is
determined by the following integral:22,28,31,32

E
yspk

ȳ f ~0,j!

jg~0,j,z!
dj50, ~3.4!

with each given value ofz. Although the integration is el-
ementary, the equation foryspk is transcendental. Neverthe
less, the functionyspk(z) can be proven to be decreasing
z.28 One intuitive explanation~e.g., Ref. 30! to why the in-
termediate orbit does not jump at the transcritical poiny
5ytrn instead aty5yspk goes as follows. In az-neighborhood
of the point (0,ytrn), both x and f are orderz so thatẋ is
orderz and ẏ is order 1. It develops further downwards un
both x and f is order 1 so thatẋ is order 1/z to initiate the
jump. Pontryagin’s theory says two things. First, any p
turbed predator–prey orbitGz with initials havingy5 ȳ, 0
,z!1,«50, Gz has limitG0 asz→0, and the limitG0 is the
concatenated fast and intermediate orbit described ab
having a Pontryagin turning point at (0,yspk). Second, the
theory says that the turning point depends on the initial va
in y. Qualitatively, the farther away from the transcritic
point ytrn the initial y-value is, the farther down below it th
Pontryagin turning point locates.

E. Top-predator dynamics: Slow

The top-predator dynamics is determined by t
z-nullcline which is the union ofz50 and h(y)50. The
equationh(y)50 defines a plane
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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y5yfª
d2b2

12d2
~3.5!

parallel to the (x,z)-plane, see Fig. 2. Above the plane th
top-predator populationz(t) decreases, and below the plan
z(t) increases.

F. Predator-top-predator interaction on fÄ0

On the x-stable branch of the parabolaf 50, the
intermediate-slow dynamics

x f~x,y!50, ẏ5yg~x,y,z!, ż5«zh~y!

is only two-dimensional. Its vector field and phase portr
can be easily described. Figure 3 is a phase portrait. Fig
3~a! is for the case«50, in which the portrait consists o
phase lines parameterized by thez-variable, with the
y-nullclinesy50 andg50 determining the directions of th
phase line flows. For small 0,«!1, the phase lines of Fig
3~a! are no longer vertical lines because of the slow drift
the z-variable. They become solution curves of the tw
dimensional predator-top-predator system on the manifof
50 as illustrated in Fig. 3~b!. The intermediate-slow orbits
must cross they-nullcline g50 horizontally and the
z-nullcline h50, or y5yf vertically. Above thez-nullcline
y5yf , they move to the right, and below the line, they mo
to the left. Right of they-nullcline g50, they move down,
and left of it, they move up. With the configurationzI,zspk

, z̄ under consideration, the equilibrium pointpf

5(xf ,yf ,zf) is a source onf 50 as shown. The equilibrium
point can become a sink with some other configurations
the predator and top-predator nullclines.27

In comparison, we note that the predator-top-preda
interaction on the trivialx-nullcline surfacex50 is simpler:
All orbits develop downward and encounter their Pontrya
turning points.

G. Bursting-spiking phenomenon

Some typical scenarios are worth mentioning here
the perturbed system withz50,0,«!1. Suppose a singula
orbit is started at (x0 ,y0 ,z0) which is on thex-stable branch
of the parabolaf 50 and to the right of they-unstable branch
of the curveg5$g50%ù$ f 50%. Then the fast-intermediat
singular segment moves quickly to they-stable branchx
51, y50, z.zI . Once it is near that slow segment, it mov
in the decreasing direction ofz as it is below thez-nullcline
plane y5yf . There is little change in the preyx and the

FIG. 3. Phase portraits for the reduced vector field on thex-stable branch of
the parabolaf 50. ~a! «50; ~b! 0,«!1.
Downloaded 02 Nov 2001 to 129.93.51.85. Redistribution subject to AIP
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predatory populations. The pointzI is a transcritical point for
the slowz-equation. The Pontryagin theory described abo
again applies. Thus, the slow singular orbit will first cross t
pointzI, stay along they-unstable branchx51, y50, z,zI for
awhile until reaching a Pontryagin turning pointzp(z0), at
which the intermediate singular orbit iny takes over. The
subsequent fast-intermediate-slow development of the o
is almost exactly the same as in the case of Fig. 1~c!, with
possible exceptions that the fast-intermediate relaxation
cillation may not close on itself since the variablez is not
frozen. It is easy to see that if thez-nullcline planeh50,
which is y5yf , lies belowy5yspk ~i.e., yf,yspk!, then the
fast-intermediate cycles stay above the planey5yf and
therefore will form a train of cycles that moves with ev
increasing value inz, and eventually enter the region right o
the y-nullcline g50. By a train of cycles we mean there a
no fewer than two cycles riding on the orbit before enteri
the region$g(x,y,z),0%, see, e.g., Fig. 5~d!. Notice that
once the spike train enters the region$g(x,y,z),0%, the
spikes must eventually be terminated as all intermedia
slow orbits on f 50 head down to they-stable branchx
51, y50, z.zI again. Also, a spike train always forms fo
sufficiently small 0,«!1 because the predator–prey osc
lation is much faster than the top-predator evolution who
rate of change is only order«. This phenomenon of fast spik
trains punctuated with quiescent phases is called burst
spiking in the context of neuronal dynamics, see, e.g., R
1 and 33. Foryf slightly aboveyspk, the same bursting-
spiking phenomenon may occur as the train progresses
wardsz5zspk by spending more time in the region abovey
5yf than below it. Bursting-spiking phenomenon was d
covered in neuronal dynamics, long before being recogni
and analyzed for the Rosenzweig–MacArthur food ch
model.16,18,20,27,29

FIG. 4. Projected phase portraits onto the (y,z)-plane. Oriented solid curves
are the intermediate-slow orbits on thex-stable parabolaf 50 and those of
dotted ones are the the intermediate-slow orbits on the trivial manifolx
50. A point of return takes exactly one solid intermediate-slow orbit on
parabola and one dotted intermediate-slow orbit onx50 to complete. The
fast jump from a solid to a dotted takes place at the fold liney5 ȳ, whereas
the jump from a dotted to a solid takes place along the Pontryagin dela
stability curvey5yspk which is a function of both« and z. The inserted
diagram is a schematic for the unimodal return map.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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The question of how the orbit will behave after enteri
the regionz.zspk leads to the main discussion of the ne
section as to how chaotic dynamics and period-doubling c
cade take place in the parameter region defined by the
lowing relation:

zI,zspk,zf, z̄. ~3.6!

Proposition 6.5 of the Appendix gives a set of sufficient p
rameter constraints that guarantees the relation above.

We conclude this section by pointing out that for para
eter values which makeyf5yspk, singular homoclinic orbit
may occurs if the relaxation oscillation train originated fro
the equilibrium point (xf ,yf ,zf) returns and hits precisel
itself. This type of homoclinic orbits can be degenerate i
arises from the strong unstable manifold of the equilibriu
point. ~The strong unstable manifold at the limit«50 is
simply z5zf .! It was pointed out in Ref. 34 that the exis
tence of such an orbit can lead to complex dynamics i
vicinity of the orbit. The existence of such orbits for th
food-chain model was first demonstrated geometrically
Ref. 30. Our remark above follows the spirit of that pap
Studying food chain dynamics from the view of homoclin
and heteroclinic orbits can also be found in Refs. 18–20

IV. PERIOD-DOUBLING CASCADE

A. Junction-fold point

We begin with a few remarks about the Pontryagin de
of stability at the transcritical pointy5ytrn . We pointed out
in the previous section that forz5«50 and with any frozen
value z>0, the intermediate orbit segment starting aty5 ȳ
on x50 moves down and initiates an instantaneous jump
point y5yspk. The valueyspk is a function ofz>0, decreas-
ing in z by Ref. 28. By the singular perturbatio
theory,22,31,32this curve can be continued for 0<«!1, with
z50. We denote byS the curve that the fastx-orbits land on

FIG. 5. ~a! A 1-cycle of kneading sequenceC. ~b! A period-2 cycle of
kneading sequenceRC. ~c! A period-4 cycle of kneading sequence
RLRC. ~d! A bursting-spiking orbit of kneading sequenceRLL¯ . The yf

ranges from high to low, giving rise to a reversed period-doubling casc
bifurcation.
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the x-stable part of the parabolaf 50 concatenated from the
Pontryagin turning curvey5yspk, see Fig. 2. We will call it
the junction curve.

By Proposition 6.6 of the Appendix, the junction curveS
and the intermediate-slow vector field onf 50 with «.0 has
this important property: in a parameter region there is
unique point, denoted bypspk5(xspk,yspk,zspk) and referred
to as the junction-fold point,1,24 such that for any pointp
PS left of pspk, the intermediate-slow vector field in (y,z)
on f 50 points aboveS whereas for any point onS and right
of the junction-foldpspk it points belowS. In other words,
pspk is the only point on S at which the perturbed
intermediate-slow vector field with 0,«!1 has a quadratic-
like tangent toS.

B. Unimodal return map

We are now ready to examine singular orbits withz
50,0,«!1 that are originated from the junction curveS.
We simplify the illustration by viewing thex-stable part of
the parabolaf 50 in terms of its projection to theyz-plane as
in Fig. 4 and exam the three-species interactions on the t
dimensional projection. In this way the fast jumps in the pr
x-dynamics are either going into the page from the foldy
5 ȳ to x50 or out of it from the Pontryagin turning poin
y5yspk on x50 to the junction curveS on the parabolaf
50. Since yspk is a decreasing function ofz>0, we can
parameterizeS by thez variable, and suffice to denote poin
on S by their z-values.

The parameter region that is under consideration is
fined by ~3.6!, i.e.,

zI,zspk,zf, z̄.

There are two distinct cases to consider: Points left of
junction-fold: z,zspk and points right of the junction-fold
z.zspk. The condition zspk,zf , equivalently yspk,yf ,
plays an important role in the discussion below.

If z,zspk, the intermediate-slow orbit~solid curve! on
the parabolaf 50 moves upwards away fromS. Drift left
first because it is belowy5yf ; crossy5yf vertically; and
then drift right because it is abovey5yf . Sincez̄.zspk, it
must hit the turning fold$y5 ȳ% strictly left of z̄ for small
«.0. Continuity is the reason, because for«50 the inter-
mediate singular orbit will hit the foldy5 ȳ at exactly the
same frozenz5constant value strictly left ofzspk, z̄, see
Fig. 3~a!. Therefore the relationz,zspk, z̄ on the fold y
5 ȳ will be preserved for the orbit when«.0 is sufficiently
small, see Fig. 3~b!. We note thatz5 z̄ for «50 is acanards
point35,36 for the predator–prey subsystem. This point is n
made accessible to any orbit originated from the junct
curve S by the conditionzspk, z̄. Hence, once the orbi
reaches the foldy5 ȳ, it is joined by a fastx-orbit to the
planex50. Onx50, another intermediate-slow orbit~dotted
curve onx50! takes over and moves down until it reach
its Pontryagin turning pointy5yspk. At that point, it is taken
over by another instantaneous jump inx to the junction line
S and the point this concatenated singular orbit lands is
noted by p(z). In this manner we have defined a on
dimensional Poincare´ return mapp.

e
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For junction points right of the junction-foldz.zspk, the
description for the Poincare´ return map is somewhat differ
ent. Again, the relationyspk,yf plays the determinant role
First all intermediate-slow orbits originated right of th
junction-fold move left and belowS. Each of them must
crosshorizontally on they-nullcline g50 in a manner that
the crossing is continuously dependent of the initial po
and is continuously extendable to includez5zspk at which
both the initial and the crossing points coalesce. After
crossing, it moves up and leftwards until it crosses the ju
tion curveS from below andleft of the junction-fold point
zspk. After this crossing, it then moves in exactly the sam
way as described above for points left of the junction-fo
zspk and returns toS by a concatenated singular orbit. In th
way, we define the Poincare´ returnp(z) for z.zspk.

The inset of Fig. 4 shows a schematic of the mapp:S
→S. It is important to point out that for 0,«!1, the return
mapp is continuous based on the continuity property of t
intermediate-slow orbits on their initial conditions. Mo
specifically, it is continuously differentiable at any pointz
Þzspk because the intermediate-slow vector field is transv
sal toS at such a point. Atz5zspk, the vector field is tangen
to S. Although the transversality-implies-differentiability a
gument does not apply to this point, one can still show by
elementary calculus argument thatp is also differentiable at
z5zspk and the derivative is 0, so long as the tangency of
vector field toS at zspk is quadratic-like.~For a proof of this
fact, see Ref. 1.! Though obvious, it is important to point ou
that the map is unimodal, i.e., increasing in the left inter
z,zspk and decreasing in the right intervalz.zspk.

C. Kneading sequences and period-doubling cascade

The most important property pertinent to a perio
doubling cascade to chaos is the following. If thez-nullcline
y5yf is just slightly above the junction curveS,y5yspk,
then leftward drift by the intermediate-slow orbits below t
planey5yf is small comparing to its rightward drift abov
the planey5yf on both the parabolaf 50 and the planex
50. Thereforep(z).z for z,zspk, see Fig. 4. In particular
this also holds for the critical pointp(zspk).zspk. If, how-
ever, the parameter valueyf , which defines thez-nullcline
y5yf , increases sufficiently aboveyspk so that the leftward
drift cannot compensate the rightward drift, then the relat
p(zspk).zspk will be reversed top(zspk)<zspk. In other
words, asyf increases away fromyspk, the maximum point
of p moves down and crosses the diagonalp5z. This is, in
a reversed manner, very similar to the logistic mapx
→lx(12x) when it goes through the period-doubling ca
cade as its maximum point (1/2,l/4) moves through the di
agonal withl going through 2.

This reversal for our mapp signals a qualitative chang
or bifurcation in the kneading sequence of the unimodal m
between parameter values for whichyf is just slightly above
yspk and parameter values for whichyf is sufficiently above
yspk.

By definition, the kneading sequence of a unimodal m
is the itinerary of the orbit $z0 ,z1 ,z2 , . . . % with the initial
point z05p(zspk), andzi 115p(zi). The critical pointzspk is
Downloaded 02 Nov 2001 to 129.93.51.85. Redistribution subject to AIP
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denoted by the symbolC for its itinerary. Any point right of
the critical pointzspk is designated by the itinerary symbolR
whereas any point left of it is denoted by the symbolL. For
example, ifp(zspk)5zspk, then the kneading sequence is ju
CC¯ , see Fig. 5~a!. In this case,yf is sufficiently greater
thanyspk as described above. On the other hand, ifyf is just
slightly greater thanyspk so that the rightward drift of the
singular orbit fromzspk is far greater than the leftward drift
resulting the return pointp(zspk) on S significantly farther
right of the critical pointzspk, see Figs. 5~b!–5~d!. The first
itinerary symbol is thus anR. The next return pointp2(zspk)
can be left ofzspk precisely because the first iteratep(zspk) is
farther right ofzspk. To see this, notice thatz50 is the other
z-nullcline. Thus the change inz is slower when nearer the
planez50 than father away from it. Therefore, ifp2(zspk) is
sufficiently nearz50, the next iteratep3(zspk) will still be to
the left of the critical pointzspk, giving rise to a spike train.
In other words, the two subsequent itinerary symbols c
both beL, and the kneading sequence may take the fo
RLL¯ , see Fig. 5~d!.

According to the kneading sequence theory@e.g., for a
general treatment37 and for a tailored treatment,1 respec-
tively#, the kneading sequence difference between be
CC¯ andRLL¯ along a one-parameter path in the para
eter space is sufficient to result in a cascade of peri
doubling to chaos along the one-parameter path, which
responds to drivingyf down and towardyspk in our case.
~See more detailed discussion below, as well as the Appe
and Ref. 1.! Figure 5 illustrates part of the cascade wi
various configurations inyspk and yf that give rise to
period-1, -2, -4 orbits going through the critical point. Th
kneading sequences in these three cases areCC¯ , RCRC,
andRLRCRLRC. Figure 5~d! illustrates a bursting-spiking
orbit whose kneading sequence takes the formRLL¯ .

The only question left now is in what parameter regi
does the described kneading sequence bifurcation occur

D. Parameter region for the cascade

We note first that parameterd2 is special. It appears only
in the top-predator equation. Therefore it does not appea
neither thex-nullcline manifold f 50 nor the y-nullcline
manifold g50. Hence the parameter valueszI , zspk, z̄ from
the relation~3.6! that defines the region of our discussion
not depend ond2 . Second, we note that by Proposition 6
of the Appendix there is a functionb(b1 ,d1) satisfying b
→` asb1→0 so that the following part of the relation~3.6!,

zI,zspk, z̄ ~4.1!

holds if

0,b1, 1
3 , 0,d1,

123b1

12b1
, and 0,b2,b~b1 ,d1!.

Therefore, to ensure relation~3.6!, we only need to ensure

zspk,zf, z̄. ~4.2!

This is where the parameterd2 plays an important role.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 6. A chaotic attractor ford2

50.62 in the top-left figure. The curve
g and thez-nullcline on f 50 are the
dash curves. The top-right figure is th
z-projection of the Poincare´ return
map which is shown to be close to
the one-dimensional, limiting Poincar´
map. The remaining figures show tha
the system goes through a reverse
period-doubling cascade for paramet
values d250.677 85,0.678 23,0.68
0.7155 for period 8, 4, 2, 1 orbits, re
spectively.
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By Proposition 6.2 of the Appendix a point (x,y,z) from
the y-nullcline curveg5$g50%ù$ f 50% has the property
that increase inz in the interval@zI ,z̄# corresponds to increas
in y in the corresponding interval@yI ,y* #. Therefore, the
required relationzspk,zf is equivalent toyspk,yf for which
yf5d2b2 /(12d2) from the z-nullcline Eq. ~3.5!. Solving
the inequalityyspk,d2b2 /(12d2) we have that in order for
zspk,zf, z̄ to hold it is sufficient to have

d2.b0ª
yspk

yspk1b2
. ~4.3!

This relation can always be obtained by changing the va
of d2 becauseyspk does not depend ond2 .

In conclusion, relation~4.1! always holds for sufficiently
smallb1 . Once that part of~3.6! is secured, we can increas
d2 so that~4.3! holds, thus making the remaining part~4.2!
of ~3.6! hold. In other words, as we increased2 through the
point b05yspk/(yspk1b2), the maximum point of the Poin
caré return map p will change from p(zspk).zspk to
p(zspk)<zspk, not at the valued25b0 but at some greate
valued2.b0 . As we concluded in the previous section th
Downloaded 02 Nov 2001 to 129.93.51.85. Redistribution subject to AIP
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this reversal only creates a condition necessary for a per
doubling cascade to occur and that we also need the kn
ing sequence to beRLL¯ for d2 just slightly aboveb0 so
that a cascade does occur.

This is where the parameter 0,«!1 comes in to satisfy
the kneading sequence conditions. For the type of sing
Poincare´ return mapsp that arise from three-time-scale sin
gularly perturbed systems such as Eq.~2.3!, it was estimated
quantitatively in Ref. 1 that within an order ofyf2yspk

5O(1/u ln «u), not only p(zspk) will change from p(zspk)
.zspk to p(zspk),zspk but also this change will give rise to
the required kneading sequence bifurcation fromRLL¯ to

CC̄, therefore guaranteeing the period-doubling cascad
take place. Because of this order estimate and the fact
ȳ2yspk5O(1) and b0,1, the transition is guaranteed fo
b0,d2,1 and sufficiently small 0,«!1. In other words,
the transition is completed for sufficiently small 0,«!1 far
beforeyf hits its definition limit ȳ or equivalently befored2

hits its definition limit 1. These facts are established in The
rem 6.1 in the Appendix.
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We also point out that there is this chaotic point at wh
the period-doubling cascade sequence converges and m
other complex points such as period-three points during
transition, typical of the logistic map.

E. Numerical simulation

In theory we should look for the period-doubling ca
cade at the singular limitz50 and with the conditiond2

.b0 . We should also expect the cascade to persist fo
,z!1. In fact, near the junction-fold pointpspk, the per-
turbed map becomes a two-dimensional horseshoe-like
as proven in Sec. IV of Ref. 1~see Fig. 4.1 of the reference!.
For z.0, however, we should actually expect the cascade
d2'b0 , and more likelyd2<b0 . The reason is two-fold
First, for z.0, orbits coming from a neighborhood of th
x-stable part of the parabolaf 50 commence the first fas
jump at points higher than the foldy5 ȳ and therefore the
second jump at points lower than the curve of Pontryag
delay of lost stabilityy5yspk. That in turn lowers the actua
junction lineS. As a result,$y5yf% crosses the ‘‘perturbed’
junction line at a lower value ofd2 .

Figure 6 consists of some numerical simulations for
system with parameter valuesz50.1, «50.4, b150.3, b2

50.1, d150.1, and various parameter values ofd2 . The
predicted transition atz50 should start aboved25b0

5yspk/(yspk1b2) and below the valueytrn /(ytrn1b2)
5b1 /(b11b2)50.75 sinceyspk,ytrn for sufficiently small
0,«!1. In fact, the transition withz50.1 is ended before
d250.7155: the attractor changes to a period-1 high f
quency oscillation in variablesx, y with z changing little.
The simulations were done with Matlab. For technical re
sons bothy andz variables were rescaled by a factor 0.2
i.e., y→y/0.25,z→z/0.25.

V. CLOSING REMARKS

We have demonstrated that the dimensionless food c
model Eq.~2.3! admits chaotic dynamics at the singular lim
z50, under the conditionz,zspk<zf< z̄ and withd2 above
yspk/(yspk1b2) but within a range of order 1/lnu«u. The
period-doubling cascade is in the form of high-frequen
oscillations. The mathematical mechanism responsible
the chaotic dynamics and their transitions is independen
«, as long as it is sufficiently small 0,«!1. The parameter
range for which such complex dynamics take place conta
an open neighborhood of the origin inb1 , d1 , b2 . Notice
that smallb is can be interpreted as predation efficiency. A
though the parameterd1 is required to be small by our the
oretical result, the phenomenon can still persist for mode
value ofd1 as long as there is a unique junction-fold point
S. With increase in«.0, which gives rise to a widene
window in the period-doubling cascade bifurcation as i
plied by the main result, the range ford2 can also be small to
produce chaotic dynamics.

We did not explore other parameter regions for chao
dynamics and there are such regions but with chaos gen
ing mechanisms different from what we discussed above
fact our preliminary analysis shows that for the same par
eter regionzI,zspk<zf< z̄ but with d2 belowb0 , the system
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can be chaotic by a mechanism exclusively due to the e
tence of the Pontryagin delay of stability atz5zI for the
intermediate predator subsystem. In addition, so long
zspk,z* andyf'yspk there should exist Shilnikov’s saddle
focus homoclinic orbits17,20for parameter 0,«,1 not small
but moderate. Also, in the region for whichzI, z̄,zspk there
exist the teacup attractors,16,18,38again for« not near 0 but
moderate. The chaos generating mechanism for the la
seems to enlist acanard.35,36 All these cases can be treate
by a similar approach of this paper. However, each cas
complex enough that it should be dealt elsewhere. Also,
did not explore any biological significance of the perio
doubling cascade considered here. That too should be d
somewhere else.
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APPENDIX

To find a parameter region in which the relation~3.6!
holds, we consider instead a closely related region as
lows:

Lª$~b1 ,b2 ,d1!:zI,ztrn, z̄%, ~A1!

where thez values are summarized as follows, see also F
2:

pI 5~xI ,yI ,zI !5S 1,0,S 1

b111
2d1Db2D ,

ptrn5~xtrn ,ytrn ,ztrn!

5~12b1 ,b1 ,~12b12d1!~b11b2!!, ~A2!

p̄5~ x̄,ȳ,z̄!5S 12b1

2
,
~11b1!2

4
,S 12b1

11b1
2d1D

3S b21
~11b1!2

4 D D .

We note that to derive thez values above, we used the fun
tion

z5c~x,y!ªS x

b11x
2d1D ~b21y!

which solves they-nullcline g(x,y,z)50, and is non-
negative forx>x*ªd1b1 /(12d1).0. Since all the points
pI , ptrn , p̄ are on thex-stable branch of the parabolaf 50,
we also used the function,

y5f~x!ª~12x!~b11x!,

which solves the parabolaf (x,y)50 for x>0. In what fol-
lows, the intersection of the two nullclinesf 50, g50 is
denoted as

z5g~x!ªc~x,f~x!!, for x* <x<1.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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We now describe the parameter regionL of ~A1! by a
sequence of Propositions.

Proposition 6.1: zI, z̄ if

0,b1,1, 0,d1,
12b1

11b1
,

0,b2,b1~b1 ,d1!ª
~12b12d1~11b1!!~11b1!2

8b1
.

Proof: Because

zI5S 1

11b1
2d1Db2

and

z̄5S 12b1

11b1
2d1D S b21

~11b1!2

4 D .

Solving the inequalityzI, z̄ for b2 gives rise to the stated
inequalities. h

Proposition 6.2: If the condition zI, z̄ of Proposition 6.1
holds, then there is a unique critical point x,̄x* ,1 for z
5g(x) and it is the absolute maximum in the interval x<̄x
<1. In particular, zI, z̄,z* 5g(x* ).

Proof: Recall that

g~x!5S x

b11x
2d1D ~b21~12x!~b11x!!,

for x̄5
12b1

2
<x<1.

So it suffices to showg has a unique critical point in the
interval and it is a maximum point. To this end, we calcula

g8~x!5
1

~b11x!2 $b1b21@~12d1!~122x!1d1b1#

3~b11x!2%ª
Q~x!

~b11x!2 .

Hence it suffices to show that the cubic polynomialQ(x) is
monotone decreasing and has a unique root in@ x̄,1#, or
equivalently Q8(x),0,xP( x̄,1),Q( x̄).0, and Q(1),0.
Calculating the derivative, we have

Q8~x!52~b11x!@~12d1!~12b123x!1d1b1#

,0 for x̄,x,1 and 0,d1,
12b1

11b1
.

We have also

Q~ x̄!5b1b21@~12d1!b11d1b1#~b11 x̄!2.0.

To show

Q~1!5b1b21@2~12d1!1d1b1#~b11x!2,0,

we use the conditionzI, z̄. In fact, we can rewrite

0, z̄2zI5
2Q~1!23b1b22b1~11b1!2

4~11b1!
,

which implies what we wanted asQ(1),23b1b22b1(1
1b1)2,0. h
Downloaded 02 Nov 2001 to 129.93.51.85. Redistribution subject to AIP
Proposition 6.3: If the condition zI, z̄ of Proposition 6.1
holds, then

zI,zspk,ztrn .

Proof: In fact, by Proposition 6.2,z5g(x) is increasing
in @ x̄,x* # and decreasing in@x* ,1#. Thus, zI5g(1) is the
absolute minimum sincez̄5g( x̄).zI by assumption andzI
,ztrn5g(xtrn) follows automatically sincextrn512b1

P( x̄,1)5((12b1)/2,1). Similar, becauseyspk is between
the yI 50 and ytrn , the monotonicity also implieszI,zspk

,ztrn .
Proposition 6.4: Suppose the condition zI, z̄ of Proposi-

tion 6.1 holds. Then the condition

ztrn, z̄

holds if

0,b1, 1
3, 0,d1,

123b1

12b1
,

and

0,b2,2~b1 ,d1!

ª

11b1

b1~12b1! F S 12b1

11b1
2d1D ~11b1!2

4

2~12b12d1!b1G .
Proof: Recall that

ztrn5~12b12d1!~b11b2!.

One solves formally forb2 from the equationztrn, z̄ as fol-
lows:

b2,b2~b1 ,d1!5
11b1

b1~12b1! F S 12b1

11b1
2d1D ~11b1!2

4

2~12b12d1!b1G
ª

11b1

b1~12b1!
u~b1 ,d1!.

It is straightforward to check the following:

]u

]d1
~b1 ,d1!52

~12b1!2

4
,0,

u~b1,0!5
12b1

4
~123b1!,

and

u~b1 ,d1!50 if d15
123b1

12b1
.

Therefore,d1.0 and 0,b2,b2(b1 ,d1) if b1,1/3,0,d1

,(123b1)/(12b1). We note that 0,d1,(123b1)/(1
2b1) automatically implies 0,d1,(12b1)/(11b1). h

Summarizing the results above, we have
Proposition 6.5: zI,ztrn, z̄ if
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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0,b1, 1
3, 0,d1,

123b1

12b1
,

0,b2,b~b1 ,d1!ªmin$b1~b1 ,d1!,b2~b1 ,d1!%,

with b1 as in Proposition 6.1 and b2 as in Proposition 6.4.
And zI,zspk, z̄ as required in (4.1) and (3.6).

Notice the following fact for Eq.~3.4! that defines the
Pontryagin turning pointy5yspk. When«50 andd150, the
denominator of the integrant isjg(0,j,z)5j(2z/(b2

1j)). Thus theyspk-defining equation becomes

2
1

z Eyspk

ȳ ~b21j! f ~0,j!

j
dj

50 if E
yspk

ȳ ~b21j! f ~0,j!

j
dj50,

an equation independent ofz. Therefore, we can conclud
that for «5d150 the junction curveS is a line parallel to
the z-axis and lies below the line$x5xtrn5f21(ytrn),y
5ytrn5b1% on the parabolaf 50. Thus,S must intersect the
curve g5$g50,f 50% at a point called pspk

5(xspk,yspk,zspk). @If it is clear from the text, we will not
make the distinction betweenyspk which is for the curve of
Pontryagin’s delay of lost stabilityy5yspk(c) parameterized
by a variablec diffeomorphically related to thez-coordinate
of points onS andyspk which is for they-coordinate of the
point pspk.# By the properties ofg and the parabola
x-nullcline surfacef 50, we can conclude that the interse
tion is unique and transversal. More importantly, we have
following result:

Proposition 6.6: For 0,«!1 and d1.0 small, the
point pspk5(xspk,yspk,zspk) persists with the property that i
is the unique point on the junction curveS over the bounded
segment0<z<z* at which the reduced vector field on
50 is tangent toS and changes its direction with respect
the junction curve, i.e., at points on opposite sides of pspk on
S the vector field points to opposite sides ofS.

Proof: Note first that the junction curveS can be param-
eterized by thez variable for small 0<«!1 and 0<d1,0.
Thus in what follows, we will denote the junction curve b
x5f21(y),y5yspk(z,«,d1) in terms of the parameterizatio
in zP@0,z* #. Denote the reduced vector field that is r
stricted on the curveS by v(z,«,d1). Let n(z,«,d1) denote a
continuous normal vector of the junction curve and

m~z,«,d1!5^v,n&

be the inner product ofv andn. Then we already know tha
m(zspk,0,0)50. The persistence part of the result follow
from the implicit function theorem if we can show th
(]/]z) m(zspk,0,0)Þ0. To this end, we note first that since
«5d150, S is a line parallel to thez-axis, the normal vector
n is a constant vector. So (]/]z) m(zspk,0,0)5^v8,n&, where
v8 denotes the partial derivative ofv in z at z5zspk with «
5d150. Expressingv in its components, we have

v5~Df21~y!

3~yg~f21~y!,y,z!!,yg~f21~y!,y,z!,«zh~y,z!!.
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Using the facts that at«5d150 the junction curveS is a
line parallel to thez-axis, i.e.,y5yspk is independent ofz,
we have

v85
]v
]z

~z,0,0!5S 2Df21~y!
y

b21y
,2

y

b21y
,0D .

Becausen(z,0,0) is a normal vector toS that is also on the
tangent space of the parabolaf 50,

n~z,0,0!5~Df21~y!b,b,0!

for some nonzero constantb. Putting these facts together, w
have that at«5d150 andz5zspk,

]

]z
m~zspk,0,0!5^v8,n&

52~Df21~y!211!b
y

b21y
Þ0.

This proves the persistence ofpspk for small «.0 and d1

.0. Using the fact that the reduced the vector field is tra
versal to S at any other point over the compact segme
Sù$0<z<z* %, pointing down forz.zspk and upz.zspk,
the uniqueness of pointpspk follows in the compact inter-
val. h

Recall the definition of the Poincare´ return mapp de-
fined in the text. The main result of this paper is as follow

Theorem 6.1: At z50 and for sufficiently small0,«
!1 and 0,d1 , there exists a one-dimensional Poincare´ re-
turn map p for the limiting system of Eq. (2.3) under th
conditions (3.6). This map undergoes a reversed peri
doubling cascade to chaos ford2 within anO(1/u ln «u) above
b05yspk/(yspk1b2).

Proof: The existence and smoothness of the return m
p is established in the main text. We only need to prove t
it goes through a reversed period-doubling cascade of bi
cations within the ranged22b05O(1/u ln «u). The argument
is similar to the proof of Theorem 1.1 of Ref. 11. The ne
essary modifications are as follows. First, we consider o
the limiting casez50 not the full-fledged case 0,z!1.
Because of this, we do not need the smoothness of the
y5 ȳ on f 50 nor the smoothness of thex-nullcline manifold
$ f 50%ø$x50% along the transcritical liney5ytrn as re-
quired for the hypothesesH.1–H.4 of Theorem 4.1 of Ref.
11. The smoothness of these turning points are required
for the persistence argument of Theorem 1.1, Lemma
and Theorem 4.1 for 0,z!1. It is not needed for the limit-
ing return map. Therefore the part of proof of Theorem 1
that is for the limiting map applies with one modificatio
left. This modification again has to do with the type of tur
ing point for the (y,z)-dynamics. In the Ref. 11 case, th
turning point labeled (C2 ,V2) in Fig. 5.1 of Ref. 11 is again
a differentiable saddle-node type. In contrast, the turn
point pI of Eq. ~2.3! is of Pontryagin’s type. However, thi
type of turning point or the saddle-node type considered
Ref. 11 has no effect on thetopologyof kneading sequence
calculations of Sec. 5.3 in Ref. 11. The estimate that
period-doubling cascade takes place within an interval
d22b05O(1/u ln «u) depends only on the existence of th
junction-fold pointpspk on the junction lineS at which there
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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is a limiting homoclinic orbit to it at«50. Specifically, see
the proof of Theorem 1.2 about the derivation part for t
bifurcation value ofyf ~which is equivalent to% in Ref. 11!
at which the critical pointpspk is mapped to itself by the
return map. h

We end this appendix by pointing out that the theor
can be extended to any 0,d1,1 so long as the conclusio
of Proposition 6.6 is satisfied, that is, the existence o
unique junction-fold point onS.
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