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Consideration is given to a basic food chain model satisfying the trophic time diversification
hypothesis which translates the model into a singularly perturbed system of three time scales. It is
demonstrated that in some realistic system parameter region, the model has a unimodal or
logistic-like Poincarereturn map when the singular parameter for the fastest variable is at the
limiting value 0. It is also demonstrated that the unimodal map goes through a sequence of
period-doubling bifurcations to chaos. The mechanism for the creation of the unimodal criticality is
due to the existence of a junction-fold po[f. Deng, J. Math. Biol38, 21-78(1999]. The fact

that junction-fold points are structurally stable and the limiting structures persist gives us a rigorous
but dynamical explanation as to why basic food chain dynamics can be chaot200®American
Institute of Physics.[DOI: 10.1063/1.1396340

To understand ecosystem complexity, it is necessary to tions) that the average top-predator biomass in various
understand basic food chain dynamics with preys, preda- tritrophic food chain models is maximum at the onset of
tors, and top-predators interactions. Chaos has been chaos, see Refs. 12 and 13.

commonly observed in food chain models by means of Lotka—Volterrd**® models for two species interactions
numerical simulations. The purpose of this paper is to which are spatially homogeneous and time autonomous can-
start a program to classify and analyze chaos generation not be more complex than steady states, and limiting cycles.
mechanisms for a basic food chain model. The particular Models for tritrophic chains however are extremely rich in
chaos generation mechanism under consideration was complex dynamics. Perhaps the first numerical work that
also found in models for excitable membranes and demonstrated food chain chaos in a tritrophic model was due
neuron cells? to Ref. 4. Chaos was also observed in numerical simulations
in other tritrophic model$!~1316-200f which a teacup at-
tractor was discovered in Ref. 16, a strange attractor contain-
ing Shilnikov’s orbit was found in Ref. 17, and complex

homoclinic and heteroclinic orbits were identified and cat-

'A_‘n ecosy;tem IS a V‘{eb of complex interactions amontyorized in Refs. 18—20. With progress in classifying el-
species. Basic food chains can be thought as fundamentgl,oniary pifurcations for both simple and complex orbits
building blocks of the weB_.The chaos theory, which ben- o4 in developing sophisticated numerical packages for de-
efited directly from population dynamis'in its earlier de- tecting and continuing these bifurcations, it is now possible

velppment, s viewgd as an important part of a paradigm by, systematically and numerically map out chaos regions in
which ecocomplexity can be understood. Of the many pos(;jmy parameter spad®8-2°The phenomemon of Feigen-

sible chaotic dynamics in ecology, none is better known than, s period-doubling cascade to chisdsvas a common
the snowshoe hare and the Canadian lynx syStemwhich often predominant, feature in all these studies. However, due

a time-delayed phase pfoéJy Ref. 8 suggested a folding 4 nderstandable complexity of tritrophic models there is a
structure of the Resler type that may result in chaotic dy- 3¢k of understanding in the literature on model mechanisms

namics. Although a recent time-series analysis by Ref. 1y5¢ are responsible for the period-doubling cascade to chaos.
suggested that the field d&may not be chaotic, the implied rhe purpose of this paper is to fill a part of this void by
chaos generating mechanism may still be real and it contingjying a rigorous proof to the existence of period-doubling
ues to generate enormous interests among ecologists and scade to chaos scenario in a time-diversified Rosenzweig—
plied mathematician§. Nevertheless, there are other ecosys-\jacArthur tritrophic model, which is cast as a singularly
tems that we are reasonably sure about their chaoticity basgfbrtyrbed system. The result is obtained at a singular limit.
on a collection of different time-series tests on their laborajnce singular limiting structures persist in ways considered
tory and field daté- Perhaps a very good reason to studynatyral and can be viewed as the origins for the perturbed
ecochaos, beside the pure intellect pursuit, is due to a recegfryciureqe.g., Refs. 22—24this result offers a good expla-
discovery(which may have important management implica-nation to some of the perturbed chaotic dynamics found in
the literature(e.g., Refs. 16, 18, 20 The mechanism de-
dElectronic mail: bdeng@math.unl.edu scribed should also provide us with a means to interpret nu-

I. INTRODUCTION
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merical findings some of which can be undecipherable oth- _ y

erwise. §X=X( 1-x— Bt x
The paper is organized as follows. We will introduce and !

properly scale the Rosenzweig—MacArthur model in Sec. Il.

=xf(x,y),

Preliminary analysis is given in Sec. Ill which provides us y=y X - z =yg(X,Y,2), (2.3
with a framework for the period-doubling cascade analysis in B1tX B2ty

Sec. IV. A logistic-type unimodal map is obtained in Sec. IV

and a cascade of period-doubling bifurcations is demon- 5= g7 _s ):zszh(y)

strated when a parameter is varied. This is perhaps the first Bty 2 '

time that such a map is rigorously found to be embedded in

a tritrophic model. Included is also a numerical simulationSome remarks about the changes of variables and parameters

for the cascade in a parameter region where it is predicted bgre in order.

the theory. Technical analyses are delegated to the Appendix. The carrying capacityK of the prey is scaled to the
dimensionless number 1 by the renormalizatign; x/K.
Parametelf ,=rK/p,; can be interpreted as a predator’s pre-

II. THE FOOD CHAIN MODEL dation capacity at which the predator consumes the prey in
numbersp,Y, equal to the prey’s reproduction capaaity.

In this paper we will consider the Rosenzweig— This predation capacity is scaled to 1 by the change of vari-

MacArthur modet® for tritrophic food chains, abley—y/Y,. Similarly, the scaling parameter for the top-
rx p.y predator is
X=X|r——— ,
K Hi+x B 1Yo
. [ CiX P2z  p
y=y Hoaix %1 H2+y)' (2.1

which can be interpreted exactly the sameYasfor the
Cy ) predator. That is, sSinc¥, is the predation capacitg; Y, can
2 be interpreted as the predator’s reproduction capacityZgnd
is the predation capacity for the top-predator at which it con-
sumes the predator in numbearsZ, equal to predator’s re-
production capacityc,Y,. This predation capacity for the
predator is scaled to 1 as well by the renormalization,

It is composed of a logistic prex], a Holling type Il preda-
tor (y), and a Holling type Il top-predatorz). Parameter
is the maximum per-capita growth rate for the prey &nits
carrying capacity. Predator’s per-capita predation rate has tHEP-

Holling type Il functional fornt® z=2Z,. _ _ _ _
Parameterg,=H,/K is the dimensionless semisatura-
P1X tion constant, measured against prey’s carrying capacity, and
Hi+x’ B>=H,/Y, is the dimensionless semisaturation constant for

Parametep; is the maximum per-capita predation rate andthe predator, measured against ts predation capgity\ve
assume throughout that

H, is the semisaturation constant at which the per-capita
predation rate is half of its maximunp;/2. Parametec, is

the maximum per-capita growth rate of the predator. Param-
eterd, is the per-capita naFur_aI death rate for the IOerator\‘/vhich can be interpreted to mean that both the predator and
Parametep, andH, have similar meanings g5 andH,

: the top-predator are good hunters, i.e., capable of reaching
e>.(c<_apt that the [_)redattyrls the prey for the top-predatar half of the maximum predation rates at some population lev-
Similar explanations also apply @ andd,. We note that

the Rosenzweig—MacArthur model was developed from théaIS smaller than the carrying capacity for the prey and the

. 5 ) predation capacity for the predator, respectively.
seminal works of Lotk¥ and Yf)slltze()’rzréﬁgnd is very popular We also assume throughout that

among theoretical ecologist$:

0<pB1<1 and 0<pB,<1,

A. Dimensionless form d; d,
i _ ) 0<6;=—<1 and KH=—<1.
With the following changes of variables and parameters, C1 C2

1 P1 P2P1 This is actually a default assumption because the condition
t—cit, X=X, y—=—V, z— Z, . . .
K rK c.rK of either 6,>1 would lead to collapse of the tritrophic food
. c H H (K chain. More precisely, witld;>c;, the predator dies out
(= g _2, 1:_1, 32:_2 with Y,=—, (2.2 faster than it can reproduce even at its maximum reproduc-
r Cy K Y 1 tion rate. Therefore both predators will die out as well re-
d, d, gardless their initial populations. Witll,>c,, the top-
51:C—, 52:C—, predator must die out by the same reasoning. In either cases
1 2

we will not have a nontrivial tritrophic food chain, whose
Eqgs. (2.1 are recast in the following dimensionless form:  dynamics are completely understood.
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B. Tritrophic time diversification hypothesis

A reasonable assumption to make is to assume the 7
“trophic time diversification hypothesis” which states that e
the maximum per-capita growth rate decreases from bottom ¥Y{= =
to top along the food chajmamely,

r>c,>c,>0. Yk N

In this paper, we actually assume a drastic time diversifica-
tion

r=c;>c,>0 or equivalently y

0<{¢<1 and Ke<1. (24 _
Under this condition, Eqs(2.3) become a singularly per-
turbed system of three time scales. The rates of change fo
the prey, predator, and top-predator range from fast to inter-~
mediate to slow, respectively. Three-time-scale trophic mod-
els were introduced in Ref. 27. They took the same form as
Eq. (2.1) except thaty, z were replaced byy, €z, respec-
tively for a small time scaling factoe>0. Our changes of FIG. 1. (a) x-phase Ii_nes and the-nulicline surfaceS(:B andf=0 for the
variables and parameters as(h?) together with;=¢ pro- ~ [ast subsystem. Points of=0,yi=y and f(x,y)=0x<x are the only

. . o . table equilibrium points(b) The type ofy-nulliclines that is considered in

duce the same time-diversified models as in Ref. 27, Othis paper.(c) Singular relaxation cycleRMyygy for the predator—prey
course under appropriate readjustments on other parameteggbsystem(d) The cycle disappear through the bifurcatipa zgy. Solid

We note that the period-doubling cascade to chaos is toullclines are for attracting equilibrium manifolds and dash nuliclines are
be found at the singular limig=0. for unstable equilibrium manifolds.

tm

The fast dynamics is determined depending the value of
y. For any fixed Gsy<y,,, the trivial equilibrium pointx

Because of the ways the two small parameters(0 =0 is unstable, and the nontrivial one on the slow manifold
<1,0<e<1 appeared in Eq42.3), we are dealing with a f=0 is stable. In addition, for the same range ¥<y,, all
three-time-scale system. Such multitime scaled systems c4ast orbits converge to the latter with initial valug>0. On
be analyzed by reducing the full three-dimensional dynamicéhe other hand, foy,,<y<y, there are three equilibrium
to two dimension first and then to one dimension, undei0ints. The trivial solutiorx=0 is stable, the middle one on
some appropriate conditions, see, e.g., Refs. 27—30. An elhe parabold =0 between 8x<Xx is unstable, and the one
ementary tutorial can be found in Ref. 30. The key lies in ouron the right branch of the parabofa=0 is stable. Fory
understanding about the nullcline surfacesf(x,y) =Y. X=0 is the only equilibrium point which is globally
=0yg(x,y,2)=0,zh(y,z)=0. We note that all discussions
below are confined to the first quadraet0,y=0,2=0.

Ill. FAST-INTERMEDIATE-SLOW ANALYSIS

A. Prey dynamics: Fast

By rescaling the timé—t/{ for Eq. (2.3) and setting?
=0 for the new equations, we obtain the fast prey sub-
system,

x'=xf(x,y), y'=0, z'=0. Y
It is one-dimensional and its flow is completely determined ;
by its equilibrium surfacef(x,y) =0, which is composed of
x=0 andf(x,y)=0. The surfacd(x,y)=0 is a cylindrical

parabola,

y=(1-x)(B1tX).
It has its maximum point and maximum value as
1-p81 — (1+By)?

X 5 7 (3.2
It intersects the trivial equilibrium surface=0 at FIG. 2. Nullcline surfacesﬂrawnin the full three-dimensional phase space.
The jump from the foldy=y, x=X to the x-stable part of the manifola
Y=Yin=B1 (3.2 =0 in direction ofx is the fastest. The crawl on thestable part of the
parabolaf =0 in the direction ofy is slow comparing to th&-fast jump but
(see Figs. 1 and)2 fast comparing to the slow drift in thedirection.
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stable. Thusy=Y is a fold bifurcation pointor saddle-node which a new intermediatg-orbit on x=0 develops down-
bifurcation poinj for the fast prey system, ang=y,, is a wards, heading to the stable equilibrium poyrt 0. It must

transcritical bifurcation pointsee Figs. 1 and)2 cross the transcritical point,, and stay orx=0 for awhile
until reaching a poiny. At this pointyg, the intermedi-
B. Predator dynamics: Intermediate ate segment encounters a phenomenon referred to as

Pontryagin’s delay of lost stabilit§??®3!%*%and see more ex-
planation below. Simply put, the theory says that the inter-
mediatey-orbit must be concatenated by a fasorbit from
xf(x,y)=0y=yg(X,y,z),z=0, (3.9  the pointyg, on x=0 to the pointyg, on the parabola

. . . . . . x-equilibrium manifoldf =0, which is the poinR. SinceR
which has the intermediate time scale. Orbits of this subjg \here the first intermediatg-orbit started, the concat-
system lie either on the trivial manifolkl=0 or on the pa-

. . enated fast and intermediate singular orbits form a cycle
rabolaf(x,y) =0 with variablez frozen at a constant. g Y

\ ) . L . RMvyy.., representing a relaxation oscillation for the
Again, the intermediate prey dynamics is determined by Wepk: P g

Setting{=¢=0 in Eq. (2.3) gives rise to the predator
subsystem

its equilibrium statey=0 andg=0, in particular the stable ]E)Orre (;z;\]t;)rp O?;?ngégcgggvvevm : T)Sl/af;::t?; ;S\f\;(éyA;fgr’n
_equilibrium states. The iptermed?ate orbits_ develop upward§:0’ the predator—prey singular orbit is always attracted to
i g>0 and.downwards i§=<0. F|gur(_a 1b) illustrates sev- the singular cycle. That is, the basin of attraction of the sin-
eral y-nulicline curvesg=0 that define many parameter- ular cycle is{x>0y>A}. However, for any orbit started
dependent variable values we will use throughout the papegeIOW the pIaney=A and .away from’<=0 it is attracted to
Sincef is independent of, theseg=0 curves are plotted the stable equilibrium poing=0 with x=i
against one paraboliz=0. Notice that the variablg can be In the second case with= 2z, the prédator—prey sin-
solved fromg=0 to get gular cycleRMyyg, is interrupted by the saddle poiAt, a
X ] singular homoclinic orbit is formed. It is a point of bifurca-
y==—patz / ,81+x_51> if g=0. tion. For the third case with> zgy, illustrated in Fig. 1d),
) . . . the singular cycle is gone. Every point with a nonvanishing
It decreases in and increases in. Thus, the nulicline curve jnitial x value is attracted to the equilibrium poirt 1 and
g=0 of a higher value of lies above the nulicline curve ,,_q
g=0 of a lower value ofz. With the valueyg, to be ex-
plained below, the corresponding-nulicline g(X,y,zsy9
=0 with z=zg, shown in Fig. 1b) has the property that it D. Pontryagin's delay of lost stability
intersects both the stable and the unstable branches of the The point of Pontryagin's delay of lost stabilig,, is
parabola f=0. This property is equivalent to that the yotarmined by the following integrf28:31:32 P
y-nulicline g(x,y,z)=0 with z=z>zy, intersects the B
x-stable branch of the parabdia= 0 at ay-level higher than fy f(0,) dé=0 3.4
)(/z_y)spk, in addition to its intercept with the maximum point ypé9(0.£,2) ¢=0, @4
x,y) of the parabola. We note that the configurations of Fig. . . . L
1(b) correspond to the kind of parameter region under conWIth each given valqe oL. Alt_hough the integration is el-
sideration and the relationship between them will be deterSmentary, the.equatlon [fspic i transcendental. Nevgrthg-
mined throughout the discussion and mostly in the Appendixl.ess’ the functiorys;(2) can be proven to be decreasing in

2.2 One intuitive explanatiorte.g., Ref. 3D to why the in-
termediate orbit does not jump at the transcritical pgint
=Yun instead ay =y, goes as follows. In g-neighborhood

With eachz fixed in the predator subsysteB.3) we  of the point (Oyy,), bothx andf are order{ so thatx is
have a singular limiting system in the predator and prey. The@rder andy is order 1. It develops further downwards until
perturbed systeni2.3) with 0</<1 ande=0 is well ap- bothx andf is order 1 so thak is order 1{ to initiate the
proximated by the singular predator—prey E(.3) (e.g., jump. Pontryagin's theory says two things. First, any per-
Ref. 22. Three cases need to be distinguishee:z8< zyy, turbed predator—prey orblt, with initials havingy=Yy, 0
Z=Zgp, andz> zgp. <{<1e=0,I'; has limitI'y as{—0, and the limitl", is the

Figure Xc) illustrates the case of 9z<zg,. On the concatenated fast and intermediate orbit described above,
trivial manifold x=0, the intermediatg-dynamics has only having a Pontryagin turning point at {Q,). Second, the
one equilibrium pointy =0, which is stable. On the parabola theory says that the turning point depends on the initial value
manifold f =0, it has three equilibrium points, labeledA, in y. Qualitatively, the farther away from the transcritical
B. A, B are unstable and 1 is stable. It is important to noticepoint yy, the initial y-value is, the farther down below it the
that for O<z<zg,, the saddle poin& lies below the plane Pontryagin turning point locates.

Y= Yspk-

A typical intermediate orbit in this case behaves like
this: If it starts onf =0 and from, say, the poirR, it crawls
upwards. When it reaches the fold poMt, it jumps instan- The top-predator dynamics is determined by the
taneously, or is concatenated by a fasbrbit, to the z-nullcline which is the union oz=0 andh(y)=0. The
x-attracting trivial manifoldk=0 and lands at a poitfrom  equationh(y)=0 defines a plane

C. Relaxation oscillations in predator—prey

E. Top-predator dynamics: Slow

Downloaded 02 Nov 2001 to 129.93.51.85. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



518 Chaos, Vol. 11, No. 3, 2001 Bo Deng
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FIG. 3. Phase portraits for the reduced vector field orxtiseable branch of
the parabold =0. (a) £=0; (b) 0<e<1.

_ 6282
Y=VYi =13, (3.5

parallel to the %,z)-plane, see Fig. 2. Above the plane the F1G. 4. Projected oh traits onto tyez)-pl oriented solid

. . 4. Projected phase portraits onto tlyez]-plane. Oriented solid curves
top—predator populatior(t) decreases, and below the plane, are the intermediate-slow orbits on tkestable parabold=0 and those of
z(t) increases. dotted ones are the the intermediate-slow orbits on the trivial mansold
=0. A point of return takes exactly one solid intermediate-slow orbit on the
parabola and one dotted intermediate-slow orbitxer0 to complete. The
fast jump from a solid to a dotted takes place at the fold yirey, whereas

On the x-stable branch of the parabold=0, the thejump from a dotted to a solid takes place along the Pontryagin delay of
intermediate-slow dynamics stability curvey=ygy which is a function of botre andz. The inserted

diagram is a schematic for the unimodal return map.
xf(x,y)=0, y=yg(x,y,z), z=ezh(y)

is only two-dimensional. Its vector field and phase portrait . . . :
can be easily described. Figure 3 is a phase portrait. Figur%redatory populations. The poirt s a transcritical point for

3(a) is for the cases=0, in which the portrait consists of the slowz-equation. The Pontryagin theory described above
phase lines parameterized by thevariable, with the again applies. Thus, the slow singular orbit will first cross the
y-nullclinesy=0 andg=0 determining the directions of the POINtZ stay along thg-unstable branck=1,y=0, z<z for
phase line flows. For small0z <1, the phase lines of Fig. awhile until reaching a Pontryagin turning poirj(z), at
3(a) are no longer vertical lines because of the slow drift inWhich the intermediate singular orbit i takes over. The
the z-variable. They become solution curves of the two-Subsequent fast-intermediate-slow development of the orbit
dimensional predator-top-predator system on the manffold IS almost exactly the same as in the case of Fig), with
=0 as illustrated in Fig. ®). The intermediate-slow orbits possible exceptions that the fast-intermediate relaxation os-
must cross they-nullcline g=0 horizontally and the cillation may not close on itself since the varialdds not
z-nulicline h=0, or y=y; vertically. Above thez-nulicline ~ frozen. It is easy to see that if trenulicline planeh=0,
y=y;, they move to the right, and below the line, they moveWhich isy=y;, lies belowy=ygp (i.e., yi<Yspd, then the
to the left. Right of they-nulicline g=0, they move down, fastintermediate cycles stay above the planey; and
and left of it, they move up. With the configuratia zg, therefore will form a train of cycles that moves with ever
<z under consideration, the equilibrium E)oint?f increasing value iz, and eventually enter the region right of
= (X¢,Ys,2;) is a source orfi=0 as shown. The equilibrium they-nulicline g=0. By a trgip of cycles we mean there are
point can become a sink with some other configurations ofl® fewer than two cycles riding on the orbit before entering
the predator and top-predator nullclirfés. the region{g(x,y,2)<0}, see, e.g., Fig. (B). Notice that

In comparison, we note that the predator-top-predatoPNce the spike train enters the regign(x,y,z) <0}, the
interaction on the triviak-nulicline surfacex=0 is simpler: ~ SPikes must eventually be terminated as all intermediate-

All orbits develop downward and encounter their PontryaginSIOW Orbits onf=0 head down to the/-stable branchx
turning points. =1, y=0, z>z again. Also, a spike train always forms for

sufficiently small 6<e<1 because the predator—prey oscil-
lation is much faster than the top-predator evolution whose
rate of change is only ordet This phenomenon of fast spike
Some typical scenarios are worth mentioning here fottrains punctuated with quiescent phases is called bursting-
the perturbed system witf=0,0<e<<1. Suppose a singular spiking in the context of neuronal dynamics, see, e.g., Refs.
orbit is started atXy,yo,2o) Which is on thex-stable branch 1 and 33. Fory; slightly aboveygy, the same bursting-
of the parabold =0 and to the right of thg-unstable branch spiking phenomenon may occur as the train progresses to-
of the curvey={g=0}N{f=0}. Then the fast-intermediate wardsz= 2z, by spending more time in the region aboye
singular segment moves quickly to thyestable branchx =y; than below it. Bursting-spiking phenomenon was dis-
=1,y=0,z>z. Once it is near that slow segment, it moves covered in neuronal dynamics, long before being recognized
in the decreasing direction afas it is below thez-nullcline  and analyzed for the Rosenzweig—MacArthur food chain
planey=vy;. There is little change in the prey and the mode|*6:18:20.27.:29

F. Predator-top-predator interaction on  f=0

G. Bursting-spiking phenomenon

Downloaded 02 Nov 2001 to 129.93.51.85. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 11, No. 3, 2001 Food chain chaos 519

the x-stable part of the parabofa=0 concatenated from the
Pontryagin turning curvg =y, see Fig. 2. We will call it
the junction curve
By Proposition 6.6 of the Appendix, the junction cuive
and the intermediate-slow vector field 65 0 with e>0 has
z this important property: in a parameter region there is a
unique point, denoted b= (Xspk, Yspk: Zspd @nd referred
® ®) to asthe junction-fold point'?* such that for any poinp
e left of pgy, the intermediate-slow vector field iy z)
on f =0 points above: whereas for any point oB and right
of the junction-foldpgy it points belowX. In other words,
Pspk iS the only point on2 at which the perturbed
z intermediate-slow vector field with0e <1 has a quadratic-
like tangent toX..

P it S

Y, spk

N,

Y B F
! o B¢ 9 I S S O S

= yspk

Y, spk

© @

FIG. 5. (8 A 1-cycle of kneading sequenc@. (b) A period-2 cycle of ~ B. Unimodal return map
kneading sequenc®C. (c) A period-4 cycle of kneading sequence of

RLRC (d) A bursting-spiking orbit of kneading sequen@é.L--- . Theys We are now ready_ tP examine smgylar Ql’blts with
ranges from high to low, giving rise to a reversed period-doubling cascade= 0,0<e<1 that are originated from the junction curle
bifurcation. We simplify the illustration by viewing the&-stable part of

the parabold =0 in terms of its projection to thgz-plane as
in Fig. 4 and exam the three-species interactions on the two-

The question of how the orbit will behave after enteringdimensional projection. In this way the fast jumps in the prey
the regionz>z, leads to the main discussion of the next X-dynamics are either going into the page from the fpld
section as to how chaotic dynamics and period-doubling cas=Yy to Xx=0 or out of it from the Pontryagin turning point
cade take place in the parameter region defined by the foll=Yspk ON X=0 to the junction curveX on the parabold
lowing relation: =0. Sinceygy is a decreasing function af=0, we can
parameteriz&, by thez variable, and suffice to denote points
on 3, by their z-values.

Proposition 6.5 of the Appendix gives a set of sufficient pa-  The parameter region that is under consideration is de-
rameter constraints that guarantees the relation above.  fined by(3.6), i.e.,

We conclude this section by pointing out that for param-
eter values which makg; =y, singular homoclinic orbit
may occurs if the relaxation oscillation train originated from There are two distinct cases to consider: Points left of the
the equilibrium point X;,y¢,2z;) returns and hits precisely junction-fold: z<zg, and points right of the junction-fold:
itself. This type of homoclinic orbits can be degenerate if itZ>Zspk- The condition zs,<z;, equivalently ysp<ys,
arises from the strong unstable manifold of the equilibriumplays an important role in the discussion below.
point. (The strong unstable manifold at the limit=0 is If z<zgy, the intermediate-slow orbisolid curvg on
simply z=z;.) It was pointed out in Ref. 34 that the exis- the parabolaf =0 moves upwards away from. Drift left
tence of such an orbit can lead to complex dynamics in dirst because it is below=y;; crossy=y; vertically; and
vicinity of the orbit. The existence of such orbits for the then drift right because it is abowe=y;. Sincez>zgy, it
food-chain model was first demonstrated geometrically inmust hit the turning foldly=Yy} strictly left of z for small
Ref. 30. Our remark above follows the spirit of that paper.c>0. Continuity is the reason, because for0 the inter-
Studying food chain dynamics from the view of homoclinic mediate singular orbit will hit the folg=y at exactly the

and heteroclinic orbits can also be found in Refs. 18-20. same frozerz=constant value strictly left ofs,<z, see
Fig. 3(@). Therefore the relatiorz<zg, <z on the foldy

=Yy will be preserved for the orbit whesn>0 is sufficiently

IV. PERIOD-DOUBLING CASCADE small, see Fig. ®). We note thaz=7z for e=0 is acanards
point®>3® for the predator—prey subsystem. This point is not
made accessible to any orbit originated from the junction

We begin with a few remarks about the Pontryagin delaycurve % by the conditionzg,<z. Hence, once the orbit
of stability at the transcritical point=vy,,. We pointed out reaches the fold/=Y, it is joined by a fastx-orbit to the
in the previous section that f@r=¢ =0 and with any frozen planex=0. Onx=0, another intermediate-slow orlfdotted
value z=0, the intermediate orbit segment startingyaty  curve onx=0) takes over and moves down until it reaches
on x=0 moves down and initiates an instantaneous jump aits Pontryagin turning poing =y, At that point, it is taken
pointy=ygy. The valueyg, is a function ofz=0, decreas- over by another instantaneous jumpxitto the junction line
ing in z by Ref. 28. By the singular perturbation X and the point this concatenated singular orbit lands is de-
theory??3132this curve can be continued fore <1, with  noted by 7(z). In this manner we have defined a one-
,=0. We denote by the curve that the fast-orbits land on  dimensional Poincaresturn maps.

Z2<Zep<2<Z. (3.6

Z2<Ze<Z<Z.

A. Junction-fold point
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For junction points right of the junction-fold> zy,, the  denoted by the symbd for its itinerary. Any point right of
description for the Poincaneturn map is somewhat differ- the critical pointzg, is designated by the itinerary symuel
ent. Again, the relatiorys,<y; plays the determinant role. whereas any point left of it is denoted by the symbolFor
First all intermediate-slow orbits originated right of the example, ifm(zsy) = Zspk, then the kneading sequence is just
junction-fold move left and belov®. Each of them must CC:---, see Fig. ). In this casey; is sufficiently greater
crosshorizontally on they-nulicline g=0 in a manner that thanyg, as described above. On the other hangj fs just
the crossing is continuously dependent of the initial pointslightly greater tharyg, so that the rightward drift of the
and is continuously extendable to include zg, at which  singular orbit fromzg, is far greater than the leftward drift,
both the initial and the crossing points coalesce. After itsresulting the return pointr(zs,) on 2 significantly farther
crossing, it moves up and leftwards until it crosses the juncright of the critical pointzgy,, see Figs. 8)-5(d). The first
tion curve from below andleft of the junction-fold point itinerary symbol is thus aR. The next return pointrz(zspk)

Zgpk- After this crossing, it then moves in exactly the samecan be left ofzg, precisely because the first iterat€zgy) is
way as described above for points left of the junction-foldfarther right ofzg,.. To see this, notice that=0 is the other
zgpand returns t& by a concatenated singular orbit. In this z-nulicline. Thus the change inis slower when nearer the
way, we define the Poincareturn(z) for z>zgy. planez=0 than father away from it. Therefore,ﬁfz(zspk) is

The inset of Fig. 4 shows a schematic of the maX sufficiently nearz= 0, the next iteraters(zspk) will still be to
—2. Itis important to point out that for @¢ <1, the return  the left of the critical pointzgy, giving rise to a spike train.
map 7 is continuous based on the continuity property of theln other words, the two subsequent itinerary symbols can
intermediate-slow orbits on their initial conditions. More both belL, and the kneading sequence may take the form
specifically, it is continuously differentiable at any point RLL---, see Fig. &).

# Zsp because the intermediate-slow vector field is transver- ~ According to the kneading sequence thepeyg., for a
sal toX at such a point. Az= zg, the vector field is tangent general treatmeft and for a tailored treatmehtrespec-
to 2. Although the transversality-implies-differentiability ar- tively], the kneading sequence difference between being
gument does not apply to this point, one can still show by arCC--- andRLL:-- along a one-parameter path in the param-
elementary calculus argument thais also differentiable at eter space is sufficient to result in a cascade of period-
z=zg,.and the derivative is 0, so long as the tangency of theloubling to chaos along the one-parameter path, which cor-
vector field to2, at z is quadratic-like(For a proof of this  responds to drivingy; down and towardy, in our case.
fact, see Ref. 1.Though obvious, it is important to point out (See more detailed discussion below, as well as the Appendix
that the map is unimodal, i.e., increasing in the left intervaland Ref. 1). Figure 5 illustrates part of the cascade with
z2<Zzgp and decreasing in the right intervak z. various configurations inyg, and y; that give rise to
period-1, -2, -4 orbits going through the critical point. The
kneading sequences in these three case§@re- , RCRC,

C. Kneading sequences and period-doubling cascade andRLRCRLRC Figure §d) illustrates a bursting-spiking
The most important property pertinent to a period-Orbit whose kneading sequence takes the férbri. -- . .
doubling cascade to chaos is the following. If thaullcline The only question left now is in what parameter region

y=ys is just slightly above the junction curk,y=ygpy, does the described kneading sequence bifurcation occur.

then leftward drift by the intermediate-slow orbits below the
planey=y; is small comparing to its rightward drift above
the planey=y on both the parabol&a=0 and the plan&  p parameter region for the cascade

=0. Thereforem(z) >z for z<z,, see Fig. 4. In particular, . ) )
this also holds for the critical poink(zqy) > zep. If, how- We note first that parametéy is special. It appears only

ever, the parameter valyg, which defines the-nulicline in Fhe top—predator_ equation. Therefore it does not appear in
y=y;, increases sufficiently abowg,, so that the leftward nelther thex-nullcline manifold f=0 nor the y-nu_HcIme
drift cannot compensate the rightward drift, then the relatiofanifold g=0. Hence the parameter valueszg, z from
7(Zepd > Zepc Will be reversed tom(zg) <zgp. In other the relation(3.6) that defines the region of our dlscu§_5|on do
words, asy; increases away fromigy, the maximum point not depend ort?z. Secqnd, we nqte that by PI’OPOS.IIIOH 6.5
of =~ moves down and crosses the diagomatz. This is, in ~ Of the Appendix there is a functiob(,,46,) satisfyingb
a reversed manner, very similar to the logistic map —% asB1—0 so that the following part of the relatidB.6),
—AX(1—x) when it goes through the period-doubling cas-
cade as its maximum point (1X24) moves through the di-
agonal with\ going through 2. holds if
This reversal for our magr signals a qualitative change
or bifurcation in the kneading sequence of the unimodal map
between parameter values for whighis just slightly above
Yspk and parameter values for whigh is sufficiently above
Yspk-
_ ’ By_qlefinition, the knegding sequence of_a unim_oqlz_il map 2 <Z1<Z. 4.2)
is the itinerary of the orbit{z,,z;,2z,, ...} with the initial
point o= m(zsp), andz; = m(z;). The critical pointzg,is  This is where the parametép plays an important role.

2<Zew<Z (4.7)

1-3p;
1-p1

Therefore, to ensure relatidB.6), we only need to ensure

0<pB,<3, 0<§,< , and 0<B,<b(B;,8,).
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2 2 FIG. 6. A chaotic attractor fors,
=0.62 in the top-left figure. The curve
y and thez-nullcline onf=0 are the
4 18 dash curves. The top-right figure is the
z-projection of the Poincarereturn
map which is shown to be close to
! ! the one-dimensional, limiting Poincare
map. The remaining figures show that
J the system goes through a reversed
o o period-doubling cascade for parameter
od (4] ) o4 06 values 52= 0.677 85,0.678 23,0.68,
08 TR o os 0.7155 for period 8, 4, 2, 1 orbits, re-
spectively.

By Proposition 6.2 of the Appendix a poirnt,f/,z) from  this reversal only creates a condition necessary for a period-
the y-nullcline curve y={g=0}N{f=0} has the property doubling cascade to occur and that we also need the knead-
that increase iz in the interval z,z] corresponds to increase ing sequence to bRLL:-- for &, just slightly aboves, so
in y in the corresponding intervdly,y*]. Therefore, the that a cascade does occur.
required relatiorzsy,,<z; is equivalent toys,<y; for which This is where the parameterx®: <1 comes in to satisfy
Y= 62B82/(1~8,) from the z-nullcline Eq. (3.9. Solving  the kneading sequence conditions. For the type of singular
the inequalityysp< 5,82/(1— ;) we have that in order for  poincafereturn mapsr that arise from three-time-scale sin-
Zspz¢<<Z to hold it is sufficient to have gularly perturbed systems such as E2j3), it was estimated

Yspk quantitatively in Ref. 1 that within an order of;—Yygy
Yoot Ba (43 =0(1/Inel), not only m(zepy will change from 7(zgp)
> <
This relation can always be obtained by changing the valuﬁqzs‘;;;%iréjsiﬂ o azéiprfgbl;teZfsnlhésb?fr;?ggt?oylpﬁggi ‘r‘ls; 0

of &, becausey gy does not depend o8, . — : . .
In conclusion, relatiori4.1) always holds for sufficiently CC. therefore guaranteeing the period-doubling cascade to

small B;. Once that part of3.6) is secured, we can increase take place. Because of this order estimate and the fact that

8, so that(4.3) holds, thus making the remaining pat2 Y~ Yspk= O(1) and Bo<1, the transition is guaranteed for
of (3.6) hold. In other words, as we increasg through the ~ Bo<9,<1 and sufficiently small &.¢<1. In other words,
point Bo=Yspk/ (Yspkt B2), the maximum point of the Poin- the transition is completed for ﬂn‘ficiently smak@ <1 far
care return map « will change from m(zg,)>zs to  beforeyy hits its definition limity or equivalently before5,
(Zspd < Zspk, NOL at the values,= B, but at some greater hits its definition limit 1. These facts are established in Theo-
value 6,> . As we concluded in the previous section thatrem 6.1 in the Appendix.

02> Boi=
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We also point out that there is this chaotic point at whichcan be chaotic by a mechanism exclusively due to the exis-
the period-doubling cascade sequence converges and matgnce of the Pontryagin delay of stability atz for the
other complex points such as period-three points during thintermediate predator subsystem. In addition, so long as
transition, typical of the logistic map. Z<Z* andyi=~yqp there should exist Shilnikov's saddle-
focus homoclinic orbits?°for parameter &£ <1 not small
but moderate. Also, in the region for whid<z< zg, there

In theory we should look for the period-doubling cas- exist the teacup attractot$18*8again fore not near 0 but
cade at the singular limif=0 and with the condition5,  moderate. The chaos generating mechanism for the latter
>Bo- We should also expect the cascade to persist for Geems to enlist @anard®®* All these cases can be treated
<{¢<1. In fact, near the junction-fold poimgy, the per- by a similar approach of this paper. However, each case is
turbed map becomes a two-dimensional horseshoe-like magomplex enough that it should be dealt elsewhere. Also, we
as proven in Sec. IV of Ref. (see Fig. 4.1 of the reference  did not explore any biological significance of the period-
For {>0, however, we should actually expect the cascade fodoubling cascade considered here. That too should be dealt
8,~ By, and more likelys,<pB,. The reason is two-fold. somewhere else.

First, for {>0, orbits coming from a neighborhood of the

x-stable part of the parabolt=0 commence the first fast

jump at points higher than the folg=Yy and therefore the

second jump at points lower than the curve of Pontryagin’'s  The author thanks Dr. S. Rinaldi for his constructive

delay of lost stabilityy =y, That in turn lowers the actual criticisms of the submitted draft. His input made a tremen-

junction line3. As a result{y=y;} crosses the “perturbed” dous improvement possible for this paper in print. The author

junction line at a lower value o8, . also thanks his colleague Dr. G. Hines for her valuable com-
Figure 6 consists of some numerical simulations for thements throughout the preparation of the manuscript.

system with parameter valués=0.1, e=0.4, 8,=0.3, 3,

=0.1_, 6:=0.1, _a_nd various parameter values &. The APPENDIX

predicted transition atf=0 should start above’,= B,

=Yspi! (Yspkt B2) and below the valuey,/(Yin+ B2) To find a parameter region in which the relati(®6)

= B1/(B1+ B2) =0.75 sinceys, <Yy for sufficiently small  holds, we consider instead a closely related region as fol-

0<e<1. In fact, the transition withi’'=0.1 is ended before lows:

8,=0.7155: the attractor changes to a period-1 high fre- - .

quency oscillation in variables, y with z changing little. As={(Br, B2, 01222}, (AD)

The simulations were done with Matlab. For technical reawhere thez values are summarized as follows, see also Fig.

sons bothy andz variables were rescaled by a factor 0.25, 2:

i.e.,y—y/l0.25,2—2/0.25.

E. Numerical simulation

ACKNOWLEDGMENTS

1
p=(Xy,2)= ( 1,0(m - 51) ﬁz) :

Pin= (Xtrn»Yirn » Ztm)
We have demonstrated that the dimensionless food chain

model Eq.(2.3) admits chaotic dynamics at the singular limit =781 B (1= A= o) (Bt B2)), (A2)

¢=0, under the conditioz<zy,<z;<z and with 5, above _

Yspr! (Yspit B2) but within a range of order 1/g. The p=(xy2)=

period-doubling cascade is in the form of high-frequency

oscillations. The mathematical mechanism responsible for

the chaotic dynamics and their transitions is independent of

g, as long as it is sufficiently small<Qs<1. The parameter

range for which such complex dynamics take place contain

an open neighborhood of the origin 8y, &6,;, B,. Notice

that smallB;s can be interpreted as predation efficiency. Al-

though the parametet; is required to be small by our the- Z=§(Xy)= Bi+X

oretical result, the phenomenon can still persist for moderate

value of§; as long as there is a unique junction-fold point onWh'Ch_ solves they-nulicline g(x,y,z)=_0, and is non-
3. With increase ine>0, which gives rise to a widened negative forx=x, :=8,6,/(1~6;)>0. Since all the points

window in the period-doubling cascade bifurcation as im-P» P, P are on thex-stable branch of the parabola-0,

plied by the main result, the range 65 can also be small to we also used the function,
produce chaotic dynamics. y=(X):=(1—X)(B1+X),

We did not explore other parameter regions for chaotic hich solves the parabolE(x,y) =0 for x=0. In what fol-

namics and there ar ch regions but with ch neral- . . . :
_dy a ar ere are stich regions b . aos gene afows, the intersection of the two nullclines=0, g=0 is
ing mechanisms different from what we discussed above. Ir(]:ienoted as
fact our preliminary analysis shows that for the same param-

eter regionz<zgp=z¢=<z but with 5, below 3, the system z=y(X):=(X, (X)), for x,=x=<1.

V. CLOSING REMARKS

1-B1 (1+p8y)? (1_,31_5 )
2 4 \1+p; 1

(1+B1)°

X| Byt ————
Bot——

gVe note that to derive the values above, we used the func-
jon

—01|(B2tY)
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We now describe the parameter regianof (Al) by a
sequence of Propositions.
Proposition 6.1 z<z if

1—
O=pi=t 0<51<1+§1’
1
1—B1— 81(1+ B1))(1+81)?
0<182<b1(,31,51)‘:( = 18,81,81 (1+5, .
Proof. Because
1
= 1+—,31_51 B2
and
(1P (1+B1)?
(el )

Solving the inequalityz<z for B, gives rise to the stated
inequalities. - O
Proposition 6.2: If the condition <z of Proposition 6.1
holds, then there is a unique critical pointx* <1 for z
=y(x) and it is the absolute maximum in the intervakx
<1. In particular, z<z<Zz* = y(x*).
Proof. Recall that

y(X)= = 61| (B2 (1=X)(B1+X)),

B1t+X

1_
for x= 2B1 =x=<1.

So it suffices to showy has a unique critical point in the

Food chain chaos 523
Proposition 6.3: If the condition €z of Proposition 6.1
holds, then

§< Zspk< Zirn -

Proof. In fact, by Proposition 6.2z2= y(X) is increasing
in [x,x*] and decreasing ifix*,1]. Thus,z=y(1) is the
absolute minimum since= y(X)>z by assumption anda
<zum=7y(Xy,) follows automatically sincexy,=1—p8;
e (x,1)=((1—B1)/2,1). Similar, becausegs, is between
the y=0 andy,y,, the monotonicity also implieg<zg
<Zim- -

Proposition 6.4: Suppose the conditior.z of Proposi-
tion 6.1 holds. Then the condition )

Zy<Z
holds if
1-38;
0< B,<i 0<8<———7,
ﬁl 3 1 1_61
and
0<B,<,(B1,01)
o 1+B (1_,31_ (1+B1)?
Bi(1-By)\1+B; F 4

_(1_:81_51)31}-
Proof. Recall that
Zin=(1—B1— 61)(B1+ B2).

interval and it is a maximum point. To this end, we calculategne solves formally fo, from the equatiore,,<z as fol-

1
Y (X)= (Bl—+)()z{ﬁlﬂz+[(1— 61)(1=2x)+ 61B1]

Q(x)
(B2
Hence it suffices to show that the cubic polynon@¥(x) is
monotone decreasing and has a unique roofxyi], or
equivalently Q'(x)<0xe (x,1),Q(x)>0, and Q(1)<O0.
Calculating the derivative, we have

Q'(X)=2(B1+x)[(1~61)(1~B1—3x)+ 51 581]

1-5
1+B4°

X(B1+x)%}:=

<0 for x<x<1 and 0<é6;,<

We have also
Q(X)=B1Bo+[ (1= 81) B1+ 5:1811(B1+X)*>0.
To show
Q(1)=B1Bo+ [~ (1= 81) + 81811(B1+x)?<0,

we use the conditiog<f In fact, we can rewrite
_ —Q(1)—3B1B2— B1(1+B1)?
0<z—2z= ,
- 4(1+B1)

which implies what we wanted a®(1)<—38,8,— B1(1
+8,)?<0. 0

lows:
1+5; 1-5 (1+81)?
e br00= i | 1% a
_(1_,31_51),31}
1+
"By P
It is straightforward to check the following:
a0 _ (1-B1)?
5_51(’81'61)__T<0’
1_
0(B1,0)= f S(1-38y),
and
. 1-3B4
,00)=0 if 6=——7—.
0(B1,61) if &; 15,

Therefore,5,>0 and 0<B,<b,(B1,8,) if B1<1/3,0<68;

<(1-3B1)/(1—pB1). We note that 66;<(1—3B1)/(1

— 1) automatically implies &6,<(1—84)/(1+B4). O
Summarizing the results above, we have
Proposition 6.5 z<z,,<Z if
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1-381

0<B;<3 0<68,< ,
1-8

0<B,<b(B1,61):=min{b;(B1,61),b2(B1,61)},

with b; as in Proposition 6.1 and jas in Proposition 6.4.
And z<z, <7 as required in (4.1) and (3.6).

Notice the following fact for Eq(3.4) that defines the
Pontryagin turning poiny=yg,,. Whene =0 andé; =0, the
denominator of the integrant i£g(0,£,2)=¢&(—2/(B2
+£)). Thus theyg,-defining equation becomes

1 (7 (Bt ©)F(0)
Efyspk g U

o JV (B2+)1(0)

dé=0,
Yspk g

an equation independent af Therefore, we can conclude
that for e = §,=0 the junction curveX is a line parallel to
the z-axis and lies below the lingx=Xyn=¢"1(Yir),Y
=Yun=B1} on the parabold=0. Thus,> must intersect the
curve  y={g=0f=0} at a point called pgy
= (Xspk:Yspk:Zspid - LI it is clear from the text, we will not
make the distinction betweey, which is for the curve of
Pontryagin’s delay of lost stability=y,{c) parameterized
by a variablec diffeomorphically related to the-coordinate
of points onX andys, which is for they-coordinate of the
point psy.] By the properties ofy and the parabola

x-nullcline surfacef =0, we can conclude that the intersec-

Bo Deng

Using the facts that at = 5;=0 the junction curveX is a
line parallel to thez-axis, i.e.,y =Ygy iS independent of,
we have
YooY,
Baty' Baty' )
Becausen(z,0,0) is a normal vector t& that is also on the
tangent space of the parabdla 0,

n(z,0,00=(D¢ *(y)b,b,0)

for some nonzero constahnt Putting these facts together, we
have that ak= ;=0 andz=zg,

Jv _ 1
E(Z,0,0)— _D¢ (y)

U/

J
5m(zspk,0,0):<u’,n)

— (D¢ Hy)*+1)b

B2ty 70

This proves the persistence pf for small >0 and ;

>0. Using the fact that the reduced the vector field is trans-

versal to3 at any other point over the compact segment

2N{0=z=z"}, pointing down forz>zy, and upz>zgy,

the uniqueness of pointg, follows in the compact inter-

val. O
Recall the definition of the Poincareturn map= de-

fined in the text. The main result of this paper is as follows:
Theorem 6.1 At {=0 and for sufficiently smalD<e

<1 and0< §,, there exists a one-dimensional Poincaee

turn map = for the limiting system of Eqg. (2.3) under the

tion is unique and transversal. More importantly, we have th&onditions (3.6). This map undergoes a reversed period-

following result:

Proposition 6.6: For0<e<1 and §;>0 small, the
point pspi= (Xspk: Yspki Zspld PEIrSists with the property that it
is the unique point on the junction cureover the bounded
segment0<z=<z* at which the reduced vector field on f

doubling cascade to chaos fép within anO(1/|In &) above
Bo= yspk/(yspk+ B2).

Proof. The existence and smoothness of the return map
7 is established in the main text. We only need to prove that
it goes through a reversed period-doubling cascade of bifur-

—0 is tangent taS, and changes its direction with respect to Cations within the rangé, — Bo=0O(1/In ). The argument

the junction curve, i.e., at points on opposite sides gf pn
2, the vector field points to opposite sidesof

Proof. Note first that the junction curv® can be param-
eterized by the variable for small Bse<1 and 0< §;<0.

is similar to the proof of Theorem 1.1 of Ref. 11. The nec-
essary modifications are as follows. First, we consider only
the limiting case{=0 not the full-fledged case <0{<1.
Because of this, we do not need the smoothness of the fold

Thus in what follows, we will denote the junction curve by Y=Y onf=0 nor the smoothness of thenulicline manifold
x=¢"Y(y),y=Yspiz,£,81) in terms of the parameterization {f=0}U{x=0} along the transcritical lingy=yy, as re-

in ze[0,z*]. Denote the reduced vector field that is re-

stricted on the curv& by v(z,e,8;). Letn(z,e,8;) denote a
continuous normal vector of the junction curve and

m(z,e,81)=(v,n)

be the inner product af andn. Then we already know that

quired for the hypothesdd.1-H.4 of Theorem 4.1 of Ref.

11. The smoothness of these turning points are required only
for the persistence argument of Theorem 1.1, Lemma 3.2,
and Theorem 4.1 for € {<<1. It is not needed for the limit-

ing return map. Therefore the part of proof of Theorem 1.1
that is for the limiting map applies with one modification
left. This modification again has to do with the type of turn-

M(Zspi,0,0)=0. The persistence part of the result follows jg point for the §,2)-dynamics. In the Ref. 11 case, the
from the implicit function theorem if we can show that turning point labeled€,,V,) in Fig. 5.1 of Ref. 11 is again

(9/9z) m(zgp,0,0)# 0. To this end, we note first that since at

e=8,=0,2 is aline parallel to the-axis, the normal vector
n is a constant vector. S@(dz) M(zsp,0,0)=(v',n), where
v’ denotes the partial derivative ofin z at z=zg, with &
= 6,=0. Expressing in its components, we have

v=(D¢ 1y)
X(ya(¢ 1y).y,2).y9(¢ (y).y.2),ezN(y,2)).

a differentiable saddle-node type. In contrast, the turning
point p of Eq. (2.3) is of Pontryagin's type. However, this
type of turning point or the saddle-node type considered in
Ref. 11 has no effect on thtepologyof kneading sequence
calculations of Sec. 5.3 in Ref. 11. The estimate that the
period-doubling cascade takes place within an interval of
8,— Bo=0(1/|Ine|) depends only on the existence of the
junction-fold pointpg, on the junction line at which there
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