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The “tea-cup” attractor of a classical prey–predator–superpredator food chain model is studied
analytically. Under the assumption that each species has its own time scale, ranging from fast for
the prey to intermediate for the predator and to slow for the superpredator, the model is transformed
into a singular perturbed system. It is demonstrated that the singular limit of the attractor contains
a canard singularity. Singular return maps are constructed for which some subdynamics are shown
to be equivalent to chaotic shift maps. Parameter regions in which the described chaotic dynamics
exist are explicitly given. ©2004 American Institute of Physics. [DOI: 10.1063/1.1814191]

The ecosystem is a web of predator–prey food chains.
Studying how complex dynamics arise from food chains
is without doubt critical to any attempt to understand
ecocomplexity. This paper is the last in a series of four
papers devoted to categorizing and analyzing chaos gen-
erating mechanisms for the Rosenzweig–MacArthur food
chain model.

I. INTRODUCTION

Chaotic population dynamics was first discovered in the
mid-1970s from the classical logistic map.1 Chaos for con-
tinuous ecological models was discoverd soon after.2,3 At-
tractors of these early types can be classified as the type of
Rössler’s attractor.4 A second generation of food chain chaos
was discovered by Hastings5 more than a decade later. An-
other type containing Shilnikov’s homoclinic saddle-focus
orbit6 was found by McCann and Yodzis.7 All these discov-
eries were made numerically from mathematical models.
Hastings’ attractor looks like a “tea-cup” and it has been
figuratively referred to as such in the literature.8,7,9

A geometric model was proposed for the tea-cup attrac-
tor by Kuznetsov and Rinaldi in Ref. 9. The two authors
treated the food chain model under the assumption that the
top-predator’s population is slowing varying. When the top-
predator variable is frozen as a parameter, the system can be
viewed as a family of two-dimensional predator–prey sys-
tems parametrized by the top-predator density. They demon-
strated that this one-parameter family of systems undergoes a
supercritical Hopf bifurcation at some top-predator density,
see Fig. 1(a). The Hopf bifurcation gives rise to a family of
predator–prey periodic cycles for all top-predator densities
below the bifurcation point and a family of stable equilib-
rium states over a finite range above the bifurcation point.
The parametrized cycles form a paraboloid-shaped surface
whose vertex is at the bifurcation point, and the stable equi-
librium states form a curve from the vertex at one end and go
through a saddle-node bifurcation at the higher end of the
top-predator density range. The unstable equilibrium branch
from the saddle-node point folds backward and reinjects it-

self back to the paraboloid surface. In this way a tea-cup is
formed with the periodic branch from the Hopf bifurcation
being the cup and the equilibrium branch being part of the
handle. The tea-cup attractor can then be envisioned by fol-
lowing a typical orbit of the system when the singular pa-
rameter, which represents the slow reproduction rate of the
top-predator is made to be small. In fact one can arrange the
top-predator’s nullcline in such a way so that for the relaxed
full system such an orbit winds around the periodic surface
in the predator–prey directions and at the same time slowly
drifts in the increasing direction of the top predator. In a
finite time the orbit reaches the cup’s base and tightly hugs
the stable equilibrium branch until it falls off the fold point at
which the density of the top-predator is high enough to cause
the predator density to collapse. This sends the orbit to the
decreasing side of top-predator’s nullcline with low predator
density. As a result the orbit drifts down in both the predator
and the top-predator’s densities until the latter becomes low
enough to allow the predator to recover. At the predator’s
recovery point the orbit goes up in the predator direction and
reconnects the predator–prey cycle surface again. At this
point the whole process starts anew, giving rise to the won-
dering feature of the attractor. In this way Kuznetsov and
Rinaldi obtained a good qualitative description of the attrac-
tor. However the authors did not show why their geometric
prototype must lead to chaotic dynamics or to periodic
cycles.

The paper is organized as follows. We start with some
preliminary properties of the model and introduce the param-
eter region under consideration in Sec. II. We then review the
theory of canard explosion and the theory of Pontryagin’s
delay of loss of stability in Sec. III that are essential for the
construction of the singular Poincaré return maps in Sec. IV.
The return maps are constructed, analyzed in Sec. IV. Clos-
ing remarks are given in the last section. A technical result is
proved in the Appendix.

II. PRELIMINARY ANALYSIS

We continue to consider the following Rosenzweig–
MacArthur model10 for food chains analyzed in Refs. 5, 7, 9,
and 11–15:a)Electronic mail: bdeng@math.unl.edu

CHAOS VOLUME 14, NUMBER 4 DECEMBER 2004

1054-1500/2004/14(4)/1083/10/$22.00 © 2004 American Institute of Physics1083

Downloaded 16 Dec 2004 to 129.93.181.195. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp

http://dx.doi.org/10.1063/1.1814191


ẋ = xSr −
rx

K
−

p1y

H1 + x
D ,

ẏ = yS c1x

H1 + x
− d1 −

p2z

H2 + y
D , s2.1d

ż= zS c2y

H2 + y
− d2D ,

for a logistic preysxd, a Holling type II predatorsyd, and a
Holling type II top predator szd.16 With the following
changes of variables and parameters,

t → c1t, x → 1

K
x, y → p1

rK
y, z→ p2p1

c1rK
z,

z =
c1

r
, « =

c2

c1
, b1 =

H1

K
, b2 =

H2

Y0
with Y0 =

rK

p1
,

s2.2d

d1 =
d1

c1
, d2 =

d2

c2
,

which were first used in Ref. 13 and subsequently in Refs. 14
and 15, Eqs.(2.1) are changed to the following dimension-
less form:

zẋ = xS1 − x −
y

b1 + x
Dª xfsx,yd,

ẏ = yS x

b1 + x
− d1 −

z

b2 + y
Dª ygsx,y,zd, s2.3d

ż= «zS y

b2 + y
− d2Dª «zhsyd.

Under the drastic trophic time diversification hypothesis12,13

that themaximum per-capita growth rate decreases from bot-
tom to top along the food chain, namely

r @ c1 @ c2 . 0 or equivalently 0, z ! 1

and 0, « ! 1,

Eq. (2.3) becomes a singularly perturbed system of three
time scales, with the rates of change for the dimensionless
prey, predator, and top predator ranging from fast to interme-
diate to slow, respectively.

Geometric theory of singular perturbation thus is readily
applicable to Eq.(2.3). In particular, nullcline analysis will
be used extensively throughout. Nullclines are surfaces along
which one of the derivatives is 0. Thex-nullcline sẋ=0d con-
sists of two smooth surfaces: the trivial branchx=0, and the
nontrivial branchSªhfsx,yd=0j on which we can solve for
y as a quadratic functiony=fsxd=s1−xdsb1+xd. The graph
of the nontrivial branch is the cylindrical parabola shown in
Fig. 1. The fold ofS is given bysx̄, ȳd, also the maximum
point of y=fsxd, where x̄=s1−b1d /2, ȳ=s1+b1d2/4. It di-
vides S into two parts: Saªhf =0,fx,0j and Srªhf
=0,fx.0j, consisting of, respectively, attracting and repel-
ling equilibrium points for thex equation. The trivial and
nontrivial x-nullclines meet along the lineSr ù hx=0j=hx
=0,y=ytrnj, ytrn=b1, consisting of transcritical points which
are double zero points forẋ.

Similarly, they-nullcline sẏ=0d consists of two surfaces:
the trivial one,y=0, and the nontrivial onegsx,y,zd=0 (not
shown here but in Refs. 13–15). The intersection, denoted by
g, of g=0 andf =0 is a curve on the cylindrical parabolaS,
see Fig. 1(b). A few points ong are essential for our con-
struction later. First, by definition, any intersection of the
cylindrical parabola foldhx= x̄,y= ȳj with they-nullcline is a
canard point. Our system has a unique canard denoted byp̄
=sx̄, ȳ, z̄d=gù hx= x̄,y= ȳj. More discussions will follow in

FIG. 1. (Color online). Nullcline surfaces and bifurcation surfaces whenz is fixed as a parameters«=0d. (a) The perturbed case, 0,z!1. (b) The limiting
case,z=0. (a) Point p̄= p̄szd is a Hopf bifurcation point and the paraboloidlike surface is the corresponding bifurcation branch for periodic orbits.(b) Point
p̄ is the canard point, which is the limiting point of the Hopf bifurcation point whenz→0. Oriented lines are singular orbits at the limitz=«=0. The periodic
bifurcation surface of(a) is torn wide open at the canard pointp̄ at the limit z=0, the canard explosion phenomenon. The curveL is the intersection of the
canard-Hopf periodic surface with the attracting part of thex-nullcline Sa.
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the subsequent sections on canard points. Second, under the
conditions that

x̄ =
1 − b1

2
,

b1d1

1 − d1
= x*

and

b2 ,
sb1 + 1d3

b1
S 1

b1 + 1
− d1D ,

the curve g must develop a unique fold pointp*
=sx* , y* , z* d over the interval 0,y* , ȳ at which z is
maximal alongg (see Proposition 6.1). Last, the intersection
of the trivial y-nullcline with the nontrivialy-nullcline on the
cylindrical parabola fsx,yd=0 at pI =sxI ,yI ,zId
=s1,0,b2s1/sb1+1d−d1dd is the transcritical point for they
equation on the cylindrical parabola. As we will demonstrate
below, it is because of the canard that the attractor has a cup,
the y-fold as the handle, and they-transcritical point as the
chaos.

The z-nullcline consists of the trivial nullclinez=0 and
the nontrivial onehsyd=0, which is a planey=yf =b2d2/ s1
−d2d parallel to thexz plane. The intersection of the three
nontrivial nullclines gives the unique nontrivial equilibrium
point, pfsxf ,yf ,zfd=hy=yfjùg. This point is stable if and
only if it lies on the solid part ofg between the canard point
p̄ and they-fold point p*.

Similarly defined as in Refs. 13 and 15, letyspkszd be the
value of Pontryagin’s delay of loss of stability(PDLS), see
Refs. 11, 13, 15, and 17–19, determined by the integral

E
yspk

ȳ fs0,jd
jgs0,j,zd

dj = 0. s2.4d

The relationy=yspkszd defines a monotone decreasing curve
in z (see Ref. 12). Let sxspk,yspk,zd denote the intersection of
the planar surfacey=yspkszd with Sa, i.e., the projection of
the curves0,yspkszd ,zd to thex-attracting nullclineSa in the
direction ofx. Let pspk=sxspk,yspk,zspkd be the intersection of
this curve with the curveg as depicted in Fig. 1(b), see also
Fig. 7 of Ref. 12. For points left ofpspk on the curve the
vector fields are positive iny, and negative iny right of pspk.

Conditions and mechanisms analyzed in our previous
works are summarized in the text below and in Fig. 2.

Deng13 proved that under the conditionzspk, z̄, which
defines a region of the original parameter space, a period-
doubling cascade to chaos must take place as the nontrivial
z-nullcline planey=yf crosses the pointpspk from above for
sufficiently small 0,«!1 andz=0. This scenario persists to
some extent for sufficiently small 0,z!1. The cascade bi-
furcation is due to the existence of a junction-fold point,20,21

at which the reduced vector field on the cylindrical parabola
Sa for «.0 is tangent to the junction Pontryagin curve
sxspk,yspk,zd. A similar junction-fold point will also appear
later in our construction of the current chaos generating
mechanism. Asy=yf moves further up, the cascade turns
into a period-1 cycle with little change inz but large swings
in x andy.

The work of Ref. 14 demonstrated instead that the non-
trivial equilibrium pointpf must become an unstable spiral if

« increases beyond a modest value«0. This occurs in another
domain of the original parameter space. When coupled with
the same condition thatzspk, z̄, it was proven that at the
point wherepf crossespspk, a singular Shilnikov saddle-focus
homoclinic orbit22 exists forz=0 and persists for all suffi-
ciently small 0,z!1. Chaotic dynamics occurs as the result
of such an orbit.

The work of Ref. 15 considered the same conditions as
of Ref. 13 except that the nontrivialz-nullcline y=yf lies
below the pointpspk: that iszf ,zspk, z̄. It was demonstrated
that chaos occurs only because of the PDLS property of the
y equation.

In this paper, we will consider the parameter region con-
sidered in Ref. 15 except thatz̄øzspk, namely

0 , z̄ø zspk, zf , zspk, 0 , « ! 1, 0, z ! 1. s2.5d

We will construct chaotic one-dimensional return maps for
the system.

III. SINGULAR PERTURBATION

The dimensionless system(2.3) with singular parameters
0,«!1,0,z!1 permits a singular perturbation approach
by which a full picture of the three-dimensional system can
be constructed by piecing together lower dimensional sys-
tems at the singular limits when eitherz=0, «=0 or both.

Relaxation cycles:Consider Eq.(2.3) as a singularly per-
turbed system in 0,«!1 for which z is slowly varying.
Setting«=0 gives rise to the«-fast xy subsystem

zẋ = xfsx,yd = xS1 − x −
y

b1 + x
D ,

ẏ = ygsx,y,zd = yS x

b1 + x
− d1 −

1

b2 + y
zD , s3.1d

ż= 0,

which is a family of two-dimensional systems in variablesx
andy with eachz frozen as a parameter. The phase portrait

FIG. 2. Useuªz̄−zspk, vªzf −zspk as new parameters. Then the various
chaos generating mechanisms can be qualitatively summarized according to
parameter partition insu,vd. This depiction holds for small 0,z!1,
0,«!1 except for the Shilnikov chaos case for which«,Os1d. The result
for the regions whereyz-fast cycles,xyzsteady states exist can be found in
Ref. 12. The parameter region that is under consideration is the third
uv-quadrant where the canard chaos and burst-spike cycles are found.
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for all fixed z can be easily constructed from thex and y
nullclines. The Eq.(3.1) phase portraits are shown in Figs.
3(b) and 1(b). Figure 3(b) is for 0,z, z̄ for which the equi-
librium point B is left of the fold-pointsx̄, ȳd. It depicts the
condition (2.5), z̄,zspk, showing that the other equilibrium
point A lies below the PDLS liney=yspk. For z from this
region, thexy system has a singular limit cycle atz=0 that
starts at the fold and returns to itself by following the singu-
lar z-fast orbits parallel to thex axis and the singularz-slow
orbits on thez-slow manifoldsx=0 andSa=hf =0,fx,0j.
Singular limit cycles of this kind are referred to as full cycles
in contrast to canard cycles which we will introduce later. All
nonequilibrium singular orbits are attracted to either the full
singular cycle or the steady statesx,yd=s1,0d for z,zspk.
The turning pointyspk is determined by the PDLS integral
equation(2.4). For 0,z!1 the full singular cycles persist in
forms referred to as relaxation cycles.

Canard explosion:It is a singular perturbation phenom-
enon for a one-parameter family of two-dimensional sys-
tems. In our case, the singular perturbation parameter in
question is 0,z!1, the two-dimensional systems are thexy
systems, and the parameter isz, corresponding to the other
singular perturbation limit at«=0. Under this setting, the
point p̄=sx̄, ȳ, z̄d with z= z̄ for thexy equation is a nondegen-

erate canard point by definition because the following con-
ditions are satisfied:

fsp̄d = 0, gsp̄d = 0, fxsp̄d = 0,

fxxsp̄d Þ 0, fysp̄d Þ 0, gxsp̄d Þ 0, gzsp̄d Þ 0.

These conditions imply23,24 that for small 0,z!1 there
must be a Hopf bifurcation point denoted byp̄szd. Since we
know for Eq. (3.1) a stable branch of equilibrium points
arises fromp̄ for z. z̄ along the curveg, the Hopf bifurca-
tion must be supercritical. According to the theory of nonde-
generate canard points and in the notation of Ref. 24 the
quantityA must beA,0 for our xy system, whereA,0 iff
the Hopf bifurcation is supercritical from a nondegenerate
canard. Hence the results of Theorems 3.2, 3.3 of Ref. 24
should be applied to Eq.(3.1) although the latter theorem
needs some modifications to account for singular cycles go-
ing through transcritical points rather than all fold points as
assumed for the established theory. Hence, we will treat the
description below as conjectured rather than proven. The
conjectured will only be used in Theorem 4.2 of this paper.

The canard-Hopf periodic surface bifurcating fromp̄szd
can be continuously extended from the bifurcation pointz̄szd
to the lower endpointz=0. Let G denote the surface. ThenG
can be effectively divided into two parts:G=Gr øGc for
which Gr lies over an interval 0øzøzrszd and Gc lies over
the complementfzrszd , z̄szdg. The left partGr consists ofxy
periodic orbits of the relaxation type from full singular
cycles[Fig. 3(b)], hence the subscriptr stands for relaxation
cycles. That is, for each 0øzøzr, the z-section ofGr is the
unique relaxation cycle for thez-parametrizedxy equation.

The description forGc is slightly more complex. Accord-
ing to the theory23,24 the following holds. SurfaceGc can be
further divided into two parts:Gc=GeøGs for which Ge lies
over an intervalfzrszd ,zsszdg andGs lies over the complement
fzsszd , z̄szdg. The right partGs consists of small periodic or-
bits bifurcating from the Hopf pointp̄szd, and is over a range
of orderuzsszd− z̄szdu=Oszd. The subscript,s, of Gs stands for
small cycles. The remaining partGe over the interval
fzrszd ,zsszdg expands the surface from the small cycles to the
relaxation full cycles, and the interval range is of an expo-
nentially small orderuzrszd−zsszdu=Ose−1/Îzd [with n of Ref.
24 to be fixed atn=1/2 as in theorder estimateOse−1/z1−n

d].
The description above is fairly complete for the range of

z as a parameter. More accurate description for the surfaceG,
in particular, Gc goes as follows. For eachnP s0,1d (n
=1/2 in particular as above) and a smallz0.0 both the
frozen variablezP szrszd , z̄szdd and the surfaceGc can be
parametrized by the singular parameterzP s0,z0d and an-
other auxiliary parametersP s0,s0d whose meaning will be-
come apparent soon after. For now lets0ª2sȳ−ytrnd. That is,
z=zsz ,sd ,Gc=Gcsz ,sd for zP s0,z0d and sP s0,s0d and the
parametrization isCk smooth for anyk. The parametrization
means that for each fixedz from the interval,zsz ,sd covers
the rangeszrszd , z̄szdd ass ranges froms0 to 0. According to
the theory,zsz ,sd is strictly decreasing ins for sP s0,znd and
sP ss0−zn ,s0d. For the fixedz, the corresponding periodic
surfaceGc is parametrized asGcsz ,sd in s as well. Most im-
portantly,Gcsz ,sd has a uniform limit asz→0. As z→0, the

FIG. 3. Phase portraits of the«-fast subsystem inx,y with z=0. In (a) a few
typical z-section curves of the nontrivialy-nullcline surfacegsx,y,zd=0 are
sketched together with thex-nullclines. Forz, z̄, the equilibrium pointB is
unstable and a singular limit cycle appears as shown in(b). For z. z̄ but
z,z*, B is stable and the singular limit cycle is gone. Forz= z̄, B is a
saddle-node point which interrupts the singular limit cycle. The equilibrium
point A is always unstable. BothA andB coalesce whenz=z* and disappear
altogether forz.z*. A three-dimensional view of these portraits stacked
along thez axis is shown in Fig. 1(b).
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canard explosion intervalfzrszd , z̄szdg contracts to a point
z̄s0d. However, the limit G0ssdª limz→0+Gcsz ,sd is still a
family of cycles parametrized bys described below.

The parameters that parametrizes bothGcsz ,sd and its
uniform limit G0ssd has a specific geometric interpretation. It
defines a uniquey valueys at which singular solutions either
jump right to the attracting cylindrical parabolax-nullcline
Sa [Fig. 4(a)] or left to the attracting trivialx-nullcline x=0
[Fig. 4(b)]. More specifically, fors=0, ys= ȳ corresponds to
the fold point, and for 0,s, ȳ−ytrn, ys= ȳ−s, the y values
units below the foldȳ. For ȳ−ytrn,s,2sȳ−ytrnd, ys=ytrn

+fs−sȳ−ytrndg, the y values−sȳ−ytrnd units above the tran-
scritical pointytrn. As s continuously changes from 0 to 2sȳ
−ytrnd, the singular orbitG0ssd continuously changes from
canards without a head[Fig. 4(a)] to canards with a(square)
head[Fig. 4(b)] and the point of transition takes place at the
transcritical pointytrn at which s=sȳ−ytrnd. To summarize,
the singular limit of the periodic surface atz=0 is the cylin-
drical limit cycle surface depicted in Fig. 1(b) open at both
ends,z=0, z= z̄s0d. It is not well defined at the right endz
= z̄s0d because at this singlez-section z= z̄s0d the surface
limit takes up the familyG0 of all canard cycles with and
without a head.

The most relevant property about canard explosion that
we will use is the bifurcation curve inz with each fixed small
0,z!1. Specifically, letL denote the intersection of the
periodic surfaceG with S as shown in Figs. 1(a) and 5(c).
Then the theory23,24predicts thatL is a smooth curve having
at least one local minimum in variabley. This is due to the
fact that the PDLS curve onS is decreasing iny as z in-
creases[see comment on(2.4)] and the fact thatL traces
tightly along the PDLS curve nearz=0 and arises sharply
near the canard pointp̄ due to the canard explosion. Most
particularly, the limit ofL at z=0 consists of the vertical line
z= z̄,yspk,y, ȳ and the Pontryagin return curve
sxspk,yspk,zd, which is decreasing iny asz increases from 0
to z̄, implying thatyspksz̄d is the limiting absolute minimum.
This conjectured curveL will be assumed for Theorem 4.2.

Pontryagin’s delay of loss of stability: In Eq. (2.3), x
evolves on the fastest time scale. In a perturbed state with
0,z!1, all solutions are quickly attracted to a branch of the
x-nullcline: either hx=0,y.b1j or Sa because the rate of
change forx is much greater than that ofy and z if their
initial points are not already near these surfaces. In a suffi-
ciently small neighborhood of the surfaces, solutions are well
approximated by the reducedz-slow flows by settingz=0 in
Eq. (2.3),

xfsx,yd = 0, ẏ = ygsx,y,zd, ż= «zhsyd.

This is a two-dimensional system iny and z restricted to
eitherx=0 or hfsx,yd=0j.

The yz dynamics is rather simple onx=0. In fact, the
reducedyz equations are

ẏ = ygs0,y,zd = yS− d1 −
1

b2 + y
zD , 0,

ż= «zhsyd = «zS y

b2 + y
− d2D .

Hence all solutions develop downward towardsy=0. They
will cross the transcritical liney=ytrn=b1, at which x=0
loses its stability, and, in the sense of the asymptotic limit
z=0, jump to the stable branch of the nontrivialx-nullcline
fsx,yd=0 at the delayed turning pointy=yspkszd.

The yz dynamics on the nontrivial and stablex-nullcline
branchSa is a little bit more complex, and determines the
chaotic behavior we will describe later. Given 0øyø ȳ, de-
fine x=csydªf−1syd to be the value ofx in fx̄,1g such that
sx,yd lies on the stable branch offsx,yd=0; that is
fscsyd ,yd=0, fxscsyd ,yd,0,0øyø ȳ. Then the reducedyz
equations are

ẏ = ygscsyd,y,zd = yS csyd
b1 + csyd

− d1 −
1

b2 + y
zD ,

s3.2d

ż= «zhsyd = «zS y

b2 + y
− d2D .

It is again a two-dimensional singularly perturbed system
with singular parameter«. The y equation is«-fast, thez
equation is«-slow. Similar to the analysis for thez-fast xy
subsystem(Refs. 13–15), the dynamics are essentially deter-
mined by the y-nullcline hy=0j, hgsx,y,zd=0j and the
z-nullcline hz=0j, hhsyd=0j. The two trivial nullclines,hy
=0j and hz=0j are invariant and the dynamics on them are
simple. The nontrivialy-nullcline restricted toSa is the curve
g introduced earlier. The nontrivialz-nullcline hsyd=0 onSa

is y=yf =b2d2/ s1−d2d. Two phase portraits are illustrated in
Figs. 5(a) and 5(b). On the dashed part of they-nullclines,
the equilibria are repelling. On the solid portion, they are
attracting. The«-fast flows develop vertically and are shown
with double arrows. Upon rescalingt→«t and setting«=0 in
Eq. (3.2), it gives rise to the«-slow subsystem inz restricted
to the y-nullclines y=0 and g. For points above the
z-nullcline y=yf, z increases ong; and for points below it,z
decreases ong and hy=0j.

Most importantly, the points1,0,zId or zI as shown in Fig.
5 is a transcritical point for Eq.(3.2) and the phenomenon of
Pontryagin’s delay of loss of stability occurs, now for theyz
flow. The theory again applies. In particular, letsy,zd be any
point from a fixed line, sayy=a with 0,a,yf. The per-
turbed flow[with 0,«!1 in Eq.(3.2)] throughsy,zd moves
down and to the left, following the vector field. It crossesg
horizontally and then moves up and still left until hitting the
line y=a again at a point denoted bysa,w«szdd. This defines

FIG. 4. (Color online). (a) An upside down limiting canard without a head
for 0,s, ȳ−ytrn. (b) An upside down limiting canard with a square head
for ȳ−ytrn,s,2sȳ−ytrnd. Both are depicted forz=0.
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a diffeomorphism fromz to w«szd. Pontryagin’s theory im-
plies that lim«→0 w«szd=wszd exists andwszd is determined
by the following integral:

E
z

w gs1,0,sd
shs0d

ds= 0. s3.3d

By simplifying the integral equation, we find thatz and w
satisfy the equationzexps−z/zId=w exps−w/zId. Because the
function y=x exps−x/zId increases ins0,zIg and decreases in
fzI ,`d, covering the same ranges0,zI /eg, the correspondence
betweenz and w is diffeomorphic. In particular, if we con-
sider the shaded region in Fig. 5(a), also Fig. 1(b), bounded
by pointszspk andz*, then each vertical segment of the flow
in this region corresponds to a unique vertical flow segment
in the shaded region bounded byw* and wspk. This pair of
vertical segments together with the«-slow horizontal flow
line from z to w alonghx=1,y=0j form the singular orbit for
an initial condition below theg curve.

Junction fold point:Recall the canard explosion curve
L. With respect to thez-slow yz flow of Eq. (3.2) for 0,«
!1, the reducedyzvector field points up onL at points near
z=0 far away fromz= z̄, and points right horizontally at the
canard-Hopf pointp̄. That is, the vector field points at oppo-
site side of the curveL near its two ends. Since the reduced
yz vector field varies continuously alongL, there must be a
point at which the vector field is tangent toL, pointing to
neither sides ofL. BecauseL is parabolalike nearp̄ due to
the Hopf bifurcation, there must be such a point,q, that the
curveL lies locally to the left of the reducedyz vector field
at q, see Fig. 5(c). By definition, such a pointq is a junction-
fold point.13 The single most important property of the
junction-fold point q that will be used later is that theyz
solution curves starting onL belowq will intersectL above
q. Namely, solutions starting on both sides ofq on L will
overlap on each other as they move forward in time, a prop-
erty that always gives rise to a fold point of theyz flow
induced one-dimensional connecting or return map.13,20,21,25

We will develop this construction further in the section be-
low.

IV. RETURN MAPS AND CHAOS

We now describe the Poincaré return maps induced first
by singular orbits of the full system Eq.(2.3) for z=0, 0
ø«!1 and then by approximating orbits for 0,z!1,
0,«!1.

Recall the periodic surfaceG that arises from the canard-
Hopf point p̄. It must intersect they-nullcline gsx,y,zd=0
along a parabolalike curve. The upper half of the curve rep-
resents points at which orbits of the full system reach local
maximum values in theiry component, whereas the lower
half of the curve represents points at which orbits reach local
minima in y. Similarly, the reducedyz orbits on the surface
Sa for z=0 reach local maxima iny on the segment of curve
g over the intervalyf øyø ȳ. The curveg persists for small
0,z!1 for the «-fast xy system as the fixed point branch
bifurcating from the canard-Hopf pointp̄.

To define the return maps, let their domains of definition
be the upper half of the intersection of the periodic surfaceG

FIG. 5. (Color online). Phase portraits of theyz subsystems on the stable
branch of the nontrivialx-nullcline Sa and the corresponding singular return
maps forz=0 in (a) and (b) and an approximating return map for 0,z
!1 in (c). (a) The case withz=«=0. The«-fast flows develop vertically and
are shown with double arrows. The oriented parts of they-nullcline with a
single arrow are the reduced«-slow flow lines.(b) The return map at the
perturbed state 0,«!1. Dotted curves with a single arrow are theyz flow
lines on the trivialx-nullcline x=0. (c) The same as(b) except that the
canard explosion curveL is included on which the pointq is a junction fold
point. Unlike (a),(b), the mapp̃ is a conjectured approximating map for
z.0. See text for description.
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with g=0 together with the segment ofg over the interval
yspkøyø ȳszd, where yf ,yspk by condition (2.5). In other
words, the maps are defined whenever orbits reach local
maximum in they coordinate. At the singular limitz=0, we
can simply letS be the union of the fold linex= x̄, y= ȳ, 0
øzø z̄ and gù hyspkøyø ȳj and define the Poincaré return
maps fromS, see Figs. 1(b), 5(a), and 5(b). Such maps are
equivalent to the ones through the localy-maximum curve
on G andS. In fact, the upper half ofGù hg=0j lies on the
x-fast orbits initiated from the foldS as shown in Fig. 1(b).
We parametrize points onS in terms of their arc length from
the left most point of returning points ofS. We further nor-
malizeS against its total length, and denote thus normalized
return maps byp on the unit interval[0, 1] with sP f0,1g
being the normalized arc length. With this setup we now
describe below the return maps for three cases:z=0, «=0;
respectively,z=0, «.0; andz.0, «.0. As mentioned ear-
lier, we will only use the conjectured result on canard explo-
sion for the third case.

One effective way to view the return map is to look
directly into thex axis as shown in Fig. 5. The solid oriented
curves are thez-slow orbits on the attracting branch of the
cylindrical parabolaSa. The dotted, downward-oriented
curves are those on the trivialx-nullcline x=0 for yùyspk.
The fast jumps from the fold to the planex=0 as well as
from the Pontryagin turning curvey=yspk to Sa are perpen-
dicular to the projectedyz plane, and thus are hidden from
the view.

The case ofz=«=0 is relatively simple. They-fold point
p* on S returns toS at sx̄, ȳ,w* d as the left most point of
p’s range, see Fig. 5(a). Hence we set its normalized arc
length atsx̄, ȳ,w* d as 0. The normalized arc length for point
pspk is thus 1. Every point fromw* ,z, z̄ returns to itself,
and therefore the graph of thep lies on the diagonal. For
points fromg betweenp̄ andp*, they all return to the same
left most pointw* or 0 on the interval[0, 1]. Because of
Pontryagin’s delay of loss of stability, theg segment between
p* and pspk returns diffeomorphically to an interval. The re-
turn of the canard point is not defined since it can be either
considered as following thex-fast orbit first and then return-
ing to itself, or following thez-slow orbit first ong and then
return to 0. We denote byd=psd−d the former situation and
by 0=psd+d the latter situation.

The case ofz=0, «.0 is the same as the previous case
except that we need to add rightward drift to orbits when
they move above thez-nullcline y=yf and leftward drift
when they move belowy=yf. Since we assumez̄,zspk, the
return of the left limitpsd−d should be the maximum ofp for
sufficiently small«.0 as shown in Fig. 5(b) and the return
of the right limit psd+d is the minimum point 0. If
p2sd−d.p2s0d, then the same proof of Ref. 15 can be used
to prove thatp contains subdynamics that is equivalent to a
chaotic subshift map on two symbols. The condition that
p2sd−d.p2s0d must hold by first choosing small«.0 so
thatp2s0d=Os«d,ps1d=Os1d and then pushingp̄ rightward
if necessary so thatp2sd−d is near ps1d. Hence we have
proved the following result.

Theorem 4.1: For z=0 and sufficiently small0,«!1,
there is a range of z̄,zspk and zf ,zspk so that the singular

Poincaré return mapp has a subdynamics that is equivalent
to a chaotic subshift map on two symbols.

Conditions for the existence of attracting periodic orbits
can also be stated for the return map. LetIr =fd,psd−dg. If
the critical pointd is not in thek-iterationpksIrd wherek is
the first integer such thatpksIrd, f0,dd andpk+1sIrd, sd,1g
and if psIrd, f0,ps0dg, then it is easy to show that the
v-limit set limk→` pksIrd contains stable periodic orbits only.
Corresponding conditions for the full system are hard to pre-
scribe. Intuitively, separatingz̄ andzspk further apart is likely
to makep2sd−d smaller relative tops0d because the PDLS
effect near the pointpspk will be diminished.

The case ofz.0, «.0 is slightly more complicated,
mainly because it involves the full ramification of canard
explosion. In this case the full dynamics of Eq.(2.3) is three-
dimensional and any return map must be two-dimensional on
the surface wheny is local maximum. For sufficiently small
0,z!1 all solutions are well-approximated by solutions on
Sa whenever they are nearby. Hence such a two-dimensional
return map has a good one-dimensional approximation. More
specifically, the canard-Hopf periodic surfaceG is attracting
and part of it is nearSa. Thus we can use solutions on the
surfacesG andSa as approximating flows. Now an approxi-
mating map,p̃ depicted in Fig. 5(c), is defined as follows.
For points left the prepoint of the canard-Hopf pointp̄ on S,
we follow them around the surfaceG, connect them to the
curveL, and then return themon G to S. For points right of
the prepoint and left ofp̄, we follow them around the surface
G, connect them to the curveL first, follow them onG to L
again, then return themon Sa to g,S. For points right ofp̄,
we follow the flows fromg on Sa aroundpf and thenon G
before returning them toS. Note that this map is a hybrid of
z=0 flows on Sa and flows on the bifurcation surfaceG
defined forz.0. Also note that the prepoint onS for the
junction-fold pointq is a global maximum forp̃ at which
p̃8=0. Except for the additional features that it is decreasing
over the intervalfm,dd and p̃8smd=0, the mapp̃ behaves
similarly as the return mapp from the previous case forz
=0, «.0. Similar result as Theorem 4.1 applies.

Theorem 4.2: Assume the existence of the canard explo-
sion curveL for sufficiently small0,z!1. Then there exists
a range of0,«!1, z̄,zspk, and zf ,zspk so that the hybrid
return mapp̃ has a subdynamics that is equivalent to a cha-
otic subshift map on two symbols.

For a set of parameter values satisfying(2.5), a chaotic
tea-cup attractor together with its return map through the
local maximum surfaceẏ=0 are shown in Fig. 6. A junction-
fold point is marked asq on Fig. 6(a) and our hybrid return
map, Fig. 5(c), matches well with the numerical return map,
Fig. 6(b), which in theory is two dimensional.

V. CLOSING REMARKS

We have given a mechanistic singular perturbation ex-
planation to some chaotic and periodic attractors of the tea-
cup type in the Rosenzweig–MacArthur food chain model.
We demonstrated that although canard singularity is key to
the tea-cup feature it alone does not lead to chaos, unlike the
other three mechanisms analyzed in Refs. 13–15. We dem-
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onstrated instead that the chaotic behavior is largely due to
the PDLS phenomenon of the predator dynamics. However,
because of the canard point, techniques to construct singular
return maps from our previous works cannot be directly ap-
plied. Instead we had to use predator’s local maximum sur-
faceẏ=0 as the cross section for the return map construction.
In addition, unlike the other cases where all return maps arise
from direct singular limits, a hybrid return map, which
makes use of both limiting and perturbed structures of the
system, is used to approximate the junction-fold effect from
the canard explosion. Comparing to the other three types of
food chain chaos, the tea-cup attractors are better known,
more complex, and harder to analyze. In the end its key
ingredient plays a less prominent role than its simpler
counterparts—the junction-fold point and the transcritical
point.

The chaotic structures categorized by the series of Refs.
13–15 and this paper are closely related to the bursting and
spiking phenomena found in models for neurons and excit-
able membranes, cf. Refs. 26–31. A proof of chaotic dynam-

ics for the latter was first given in Ref. 30 using a two-time-
scale singular perturbation analysis, and a proof of a period-
doubling cascade to chaos was given in Ref. 21 using a
three-time-scale singular perturbation analysis. The behav-
ioral similarity between these two types of models was first
alluded to in Ref. 9. The current approach by a three-time-
scale singular perturbation analysis was first adopted in Refs.
12 and 11 for food chains and concurrently in Ref. 32 for
excitable membranes. The proof of food chain chaos from
Ref. 13 has since united these two areas within the same
framework of three-time-scale singular perturbation analysis.
We envision that a variety of chaos generating mechanisms
for neuron models should be systematically categorized and
analyzed by the same methodology.

APPENDIX: EXISTENCE OF Y-FOLD

Proposition 6.1: Under conditions

x̄ =
1 − b1

2
,

b1d1

1 − d1
= x*

FIG. 6. (Color online). Numerical simulations with parameter valuesz=0.02,«=0.24,b1=0.26,b2=0.5,d1=0.2,d2=0.22 for(a), (b), and(c) and the same
values except forb1=d1=0.3 for (d). (a) The yz projection view. (b) The Poincaré return map through the localy-maximum surface and points are
parametrized by arc lengths. (c) A three-dimensional view.(d) A periodic orbit as thez̄ moves farther away fromzspk as predicted by our analysis.
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andb2 ,
sb1 + 1d3

b1
S 1

b1 + 1
− d1D

there is a unique y-fold point sx* , y* , z* d at which the
y-nullcline curveg=hfsx,yd=0,fxsx,yd,0jù hgsx,y,zd=0j
on Sa reaches its maximum in the z variable.

Proof: Solve z from gsx,y,zd=0 as z=Psx,yd=fsx/b1

+xd−d1gsb2+yd and x=f−1syd with fsxd=s1+xdsb1+xd
from fsx,yd=0, fxsx,yd,0 for x̄,x,1 and 0,y, ȳ. Then
g can be expressed asz=psyd=Psf−1syd ,yd for 0,y, ȳ.
The idea is to show thatzy=p8syd has a unique zero by
showingp8s0d.0, p8sȳd,0 and thatp is decreasing.

With x=f−1syd below we have

zy = p8syd =
b1

sb1 + xd2sf−1d8sydsb2 + yd + S x

b1 + x
− d1D =

b1

sb1 + xd2S−
fy

fx
Dsb2 + yd + S x

b1 + x
− d1D

= S−
fysb1 + xd

fx
DF b1

sb1 + xd3sb2 + yd + S−
fx

fysb1 + xdDS x

b1 + x
− d1DG

=
1

fx
F b1

sb1 + xd3sb2 + yd + fxS x

b1 + x
− d1DG Ssince fy = −

1

b1 + x
D .

Sincefx=−1+fy/ sb1+xd2g=−1 aty=0, x=xI =1, we have im-
mediately

uzyuhx=1,y=0j = − F b1b2

sb1 + 1d3 − S 1

b1 + 1
− d1DG

= −
b1

sb1 + 1d3Fb2 −
sb1 + 1d3

b1

3S 1

b1 + 1
− d1DG . 0

by the assumption onb2. Also, as y→ ȳ−, x→ x̄+, and fx

→0−. Therefore,

uzyuhy→ȳ−j = lim
y→ȳ−

HS 1

fx
DF b1

sb1 + xd3sb2 + yd

+ fxS x

b1 + x
− d1DGJ = − `.

Therefore there must be a zero ofzy=psyd betweeny=0 and
y= ȳ. So it is only left to show that the zero is unique.

To this end, rewrite with the knowledge thaty=fsxd,

zy =
1

fx
F b1

sb1 + xd3sb2 + yd + fxS x

b1 + x
− d1DGª

1

fx
Qsxd.

Then we knowQs1d,0, Qsx̄d.0, and we only need to show
Q8sxd,0 for xP sx̄,1g. Writing Q as

Qsxd =
b1

sb1 + xd3sb2 + yd + S− 1 +
y

sb1 + xd2D
3S x

b1 + x
− d1D

we see thatQ8sxd,0. In fact, the first term is obviously
decreasing inx. The second term is the product of two fac-
tors: asxdbsxdª fxhfx/ sb1+xdg−d1j. By the product rule, we
havea8sxdbsxd+asxdb8sxd. Sincea= fx is negative, decreas-

ing, and b is increasing and positive sincex. x̄=s1
−b1d /2.x* =b1d1/ s1−d1d and x* / sb1+x*d−d1=0, we see
clearly that it is decreasing for the product. This completes
the proof. h

1R. May, “Simple mathematical models with very complicated dynamics,”
Nature(London) 261, 459–467(1976).

2P. Hogeweg and B. Hesper, “Interactive instruction on population interac-
tions,” Comput. Biol. Med.8, 319–327(1978).

3M.E. Gilpin, “Spiral chaos in a predator-prey model,” Am. Nat.113,
306–308(1979).

4O.E. Rössler, “Chaotic behavior in simple reaction systems,” Z. Naturfor-
sch. A 31A, 259–264(1976).

5A. Hastings and T. Powell, “Chaos in a three-species food chain,” Ecology
72, 896–903(1991).

6L.P. Šil’nikov, “A case of the existence of a denumerable set of periodic
motions,” Sov. Math. Dokl.6, 163–166(1965).

7K. McCann and P. Yodzis, “Bifurcation structure of a three-species food
chain model,” Theor Popul. Biol.48, 93–125(1995).

8H.L. Smith and P. Waltman,The Theory of the Chemostat—Dynamics of
Microbial Competition, Cambridge Studies in Mathematical Biology
(Cambridge University Press, Cambridge, 1994).

9Yu.A. Kuznetsov and S. Rinaldi, “Remarks on food chain dynamics,”
Math. Biosci. 133, 1–33(1996).

10M.L. Rosenzweig and R.H. MacArthur, “Graphical representation and sta-
bility conditions of predator-prey interactions,” Am. Nat.97, 209–223
(1963).

11S. Rinaldi and S. Muratori, “Slow-fast limit cycles in predator-prey mod-
els,” Ecol. Modell. 61, 287–308(1992).

12S. Muratori and S. Rinaldi, “Low- and high-frequency oscillations in
three-dimensional food chain system,” SIAM(Soc. Ind. Appl. Math.) J.
Appl. Math. 52, 1688–1706(1992).

13B. Deng, “Food chain chaos due to junction-fold point,” Chaos11, 514–
525 (2001).

14B. Deng and G. Hines, “Food chain chaos due to Shilnikov orbit,” Chaos
12, 533–538(2002).

15B. Deng and G. Hines, “Food chain chaos due to transcritical point,”
Chaos 13, 578–585(2003).

16C.S. Holling, “Some characteristics of simple types of predation and para-
sitism,” Canadian Entomologist91, 385–398(1959).

17L.C. Pontryagin, “Asymptotic behavior of solutions of systems of differ-
ential equations with a small parameter at higher derivatives,” Izv. Akad.
Nauk SSSR, Ser. Mat.21, 605–626(1957).

18E.F. Mishchenko, Yu.S. Kolesov, A.Yu. Kolesov, and N.Kh. Rozov,
Asymptotic Methods in Singularly Perturbed Systems, Monographs in

Chaos, Vol. 14, No. 4, 2004 Food chain chaos with canard explosion 1091

Downloaded 16 Dec 2004 to 129.93.181.195. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



Contemporary Mathematics(Consultants Bureau, New York, 1994).
19S. Schecter, “Persistent unstable equilibria and closed orbits of a singu-

larly perturbed equation,” J. Diff. Eqns.60, 131–141(1985).
20B. Deng, “Folding at the genesis of chaos,” inProceedings of the First

World Congress of Nonlinear Analysts(Walter de Gruyter, Berlin, 1996),
Vol. IV, pp. 3765–3777.

21B. Deng, “Glucose-induced period-doubling cascade in the electrical ac-
tivity of pancreaticb-cells,” J. Math. Biol. 38, 21–78(1999).

22K. Taylor and B. Deng, “Chaotic attractors in one-dimension generated by
a singular Shilnikov orbit,” Int. J. Bifurcation Chaos Appl. Sci. Eng.12,
3059–3083(2001).

23F. Dumortier and R. Roussarie,Canard Cycles and Center Manifolds,
Memoirs of the American Mathematical Society, Vol. 577(American
Mathematical Society, Providence, RI, 1996).

24M. Krupa and P. Szmolyan, “Relaxation oscillation and canard explosion,”
J. Diff. Eqns. 174, 312–368(2001).

25B. Deng, “Constructing homoclinic orbits and chaotic attractors,” Int. J.

Bifurcation Chaos Appl. Sci. Eng.4, 823–841(1994).
26T.R. Chay and J. Keizer, “Minimal model for membrane oscillations in the

pancreaticb-cell,” Biophys. J. 42, 181–190(1983).
27T.R. Chay, “Chaos in a three-variable model of an excitable cell,” Physica

D 16, 233–242(1985).
28T.R. Chay and J. Rinzel, “Bursting, beating, and chaos in an excitable

membrane model,” Biophys. J.47, 357–366(1985).
29J. Rinzel, “Bursting oscillations in an excitable membrane model,” inOr-

dinary and Partial Differential Equations, edited by B.D. Sleeman and
R.J. Jarvis(Springer, New York, 1985), pp. 304–316.

30D. Terman, “Chaotic spikes arising from a model of bursting in excitable
membranes,” SIAM(Soc. Ind. Appl. Math.) J. Appl. Math. 51, 1418–
1450 (1991).

31E.M. Izhikevich, “Neural excitability, spiking and bursting,” Int. J. Bifur-
cation Chaos Appl. Sci. Eng.10, 1171–1266(2000).

32B. Deng, “A mathematical model that mimics the bursting oscillations in
pancreaticb-cells,” Math. Biosci. 119, 241–250(1993).

1092 Chaos, Vol. 14, No. 4, 2004 Bo Deng

Downloaded 16 Dec 2004 to 129.93.181.195. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


