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Food chain chaos with canard explosion
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The “tea-cup” attractor of a classical prey—predator—superpredator food chain model is studied

analytically. Under the assumption that each species has its own time scale, ranging from fast for
the prey to intermediate for the predator and to slow for the superpredator, the model is transformed
into a singular perturbed system. It is demonstrated that the singular limit of the attractor contains

a canard singularity. Singular return maps are constructed for which some subdynamics are shown
to be equivalent to chaotic shift maps. Parameter regions in which the described chaotic dynamics
exist are explicitly given. €004 American Institute of Physid®Ol: 10.1063/1.1814191

The ecosystem is a web of predator—prey food chains. self back to the paraboloid surface. In this way a tea-cup is
Studying how complex dynamics arise from food chains formed with the periodic branch from the Hopf bifurcation
is without doubt critical to any attempt to understand  being the cup and the equilibrium branch being part of the
ecocomplexity. This paper is the last in a series of four handle. The tea-cup attractor can then be envisioned by fol-
papers devoted to categorizing and analyzing chaos gen- |owing a typical orbit of the system when the singular pa-
erating mechanisms for the Rosenzweig—MacArthur food  rameter, which represents the slow reproduction rate of the

chain model. top-predator is made to be small. In fact one can arrange the
top-predator’s nullcline in such a way so that for the relaxed
I. INTRODUCTION full system such an orbit winds around the periodic surface

Chaotic population dynamics was first discovered in thein the predator—prey directions and at the same time slowly

mid-1970s from the classical logistic maghaos for con- ;j_n_ftts tl'n th?h mcrgfat\smg ﬁlrecttr:on B 'ths top pr(;a?_atr(])trl. Ir? a
tinuous ecological models was discoverd soon afteAt- Inite ime the orbit reaches the cup's base and tightly hugs

tractors of these early types can be classified as the type g?e. stable equil?brium branch until it f"’F”S .Off the fold point at

Rossler’s attractdtA second generation of food chain chaos which the density of the top-predator is high enough to cause
was discovered by Hastinshore than a decade later. An- the predator density to collapse. This sends the orbit to the
other type containing Shilnikov’s homoclinic saddle-focusdecreasmg side of top-predator’s nullcline with low predator

orbit® was found by McCann and YodZisAll these discov- density. As a result the orbit drifts down in both the predator

eries were made numerically from mathematical modelsand the top-predator’s densities until the latter becomes low

Hastings’ attractor looks like a “tea-cup” and it has beenenough to allow the predator to recover. At the predator’s
figuratively referred to as such in the literatre? recovery point the orbit goes up in the predator direction and
A geometric model was proposed for the tea-cup attraC[econnect:s the predator—prey cycle surface again. At this

tor by Kuznetsov and Rinaldi in Ref. 9. The two authorspOint the whole process starts anew, giving rise to the won-

treated the food chain model under the assumption that th erng feature of the attractor. In this way Kuznetsov and

top-predator’s population is slowing varying. When the top- inaldi obtained a good qualitative description of the attrac-

predator variable is frozen as a parameter, the system can - However the authors did ngt show why their geometr!c
viewed as a family of two-dimensional predator—prey Sysprototype must lead to chaotic dynamics or to periodic

tems parametrized by the top-predator density. They demor?ydes'

strated that this one-parameter family of systems undergoes a I_Th_e paper 1S ?_rgan;ztid as ;OI:OWZ'_VYG g,tart ;’;:'th some
supercritical Hopf bifurcation at some top-predator density,pre iminary properties ot theé model and introguce the param-

see Fig. 1a). The Hopf bifurcation gives rise to a family of eter region under consideration in Sec. Il. We then review the
predator—prey periodic cycles for all top-predator densitie§heory of canard explosion and the theory of Pontryagin's

below the bifurcation point and a family of stable equilib- delay of loss of stability in Sec. Il that are essential for the

rium states over a finite range above the bifurcation point_construction of the singular Poincaré return maps in Sec. IV.

The parametrized cycles form a paraboloid-shaped surfac-ghe return maps are constructed, analyzed in Sec. IV. Clos-

whose vertex is at the bifurcation point, and the stable equi'—ng remgrks are given_in the last section. A technical result is
librium states form a curve from the vertex at one end and ggroved in the Appendix.
through a saddle-node bifurcation at the higher end of the

top-predator density range. The unstable equilibrium brancH. PRELIMINARY ANALYSIS

from the saddle-node point folds backward and reinjects it- We continue to consider the following Rosenzweig—

MacArthur model® for food chains analyzed in Refs. 5, 7, 9,
3Electronic mail: bdeng@math.unl.edu and 11-15:
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FIG. 1. (Color online. Nullcline surfaces and bifurcation surfaces wizeis fixed as a parametée =0). (a) The perturbed case,<0{/<1. (b) The limiting
case,l=0. (a) Pointp=p(¢) is a Hopf bifurcation point and the paraboloidlike surface is the corresponding bifurcation branch for periodiqrifitsnt
pis the canard point, which is the limiting point of the Hopf bifurcation point wifen0. Oriented lines are singular orbits at the linite=0. The periodic
bifurcation surface ofa) is torn wide open at the canard poiat the limit =0, the canard explosion phenomenon. The curie the intersection of the
canard-Hopf periodic surface with the attracting part of xhaulicline S,.

. X  py that themaximum per-capita growth rate decreases from bot-
X=Xr=1" ’ tom to top along the food chaimamely
K Hi+x

. C1X P,z r=cy;>c,>0 orequivalently < (<1

= y —ur- ’ (21)

Hy+x Hoty
and 0<e <1,

z=17 oy _ d

B H,+y 2) Eqg. (2.3) becomes a singularly perturbed system of three

o ) time scales, with the rates of change for the dimensionless
for a logistic prey(x), a Holling type Il predatory), and @ prey, predator, and top predator ranging from fast to interme-
Holling type Il top predator(z).™ With the following  gjate to slow, respectively.
changes of variables and parameters, Geometric theory of singular perturbation thus is readily
applicable to Eq(2.3). In particular, nullcline analysis will

t—cit, X— 1x, y— &y, z— mz, be used extensively throughout. Nullclines are surfaces along

K rK cirK which one of the derivatives is 0. Thxenullcline (x=0) con-

sists of two smooth surfaces: the trivial branchO, and the

(= G o.=C B, = H_1, B,= H, with Y, = %, nontrivial branchs:={f(x,y) =0} on which we can solve for
c; K Yo Py y as a quadratic functiog=¢(x)=(1-x)(B;+X). The graph

(2.2 of the nontrivial branch is the cylindrical parabola shown in

d, d, Fig. 1. The fold ofS is given by(x,y), also the maximum

6= ¢, 5= c,’ point of y=¢(x), wherex=(1-8,)/2, y=(1+8,)%/4. It di-

vides S into two parts: S;:={f=0,f,<0} and S,:={f
which were first used in Ref. 13 and subsequently in Refs. 140 f, >0}, consisting of, respectively, attracting and repel-
and 15, Egs(2.1) are changed to the following dimension- |ing equilibrium points for thex equation. The trivial and
less form: nontrivial x-nullclines meet along the line, N{x=0}={x
=0,Y=Yinh Yin=/B1, consisting of transcritical points which
o y B . .
gx—x(l -X- ) = xf(x,y), are double zero points fot.

Bt X Similarly, they-nulicline (y=0) consists of two surfaces:
the trivial one,y=0, and the nontrivial ong(x,y,z)=0 (not
shown here but in Refs. 13—19he intersection, denoted by
v, of g=0 andf=0 is a curve on the cylindrical parabafa
see Fig. 1b). A few points onvy are essential for our con-

. y struction later. First, by definition, any intersection of the
zZ= SZ<B v 52) = ezh(y). cylindrical parabola foldx=x,y=y} with they-nullcline is a
2+Y canard point. Our system has a unique canard denotea by
Under the drastic trophic time diversification hypoth&std  =(x,y,2) = yN{x=X,y=y}. More discussions will follow in

'—( X _5--2 )«— (X.Y.2) 2.3
y y B1+X 1 B2+y _yg 1y1 ’ .
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the subsequent sections on canard points. Second, under the Zf - Zspk
conditions that
XYZ Steady States ( X > p*)
c= 1P _ Bid _
PRI YZ -Fast Cycles XY -Fast Cycles
Junction-Fold Cascades
and - Z- Zisrk
3 0 .
B, < M(L - 51) ' e * Shilnikov Chaos
B1 B+l %

the curve y must deyelop a unique fold _poinp_* é % Canard PDLS Chaos
=(x*,y*,z*) over the interval &Xy* <y at which z is 5 5\ Chaos
maximal alongy (see Proposition 6)1Last, the intersection

of t_he t_r|V|aI y-nullcline with the nontrivialy-nullcline on the FIG. 2. USeU=7-2,y vi=z~2,y aS new parameters. Then the various
cylindrical parabola  f(x,y)=0 at p= (X,)_/, 2 chaos generating mechanisms can be qualitatively summarized according to
:(1,0,32(1/(,31+ 1)—51)) is the transcritical point for thg parameter partition in(u,v‘).‘This depiction holds_for small €¢<1,
equation on the cylindrical parabola As we will demonstrate0<8<1 except for the Shilnikov chaos case for which O(1). The result

. ’ for the regions whergzfast cyclesxyz steady states exist can be found in
below, it is because of the canard that th_e_ attraCFor has & CURet. 12, The parameter region that is under consideration is the third
the y-fold as the handle, and thetranscritical point as the uy-quadrant where the canard chaos and burst-spike cycles are found.
chaos.

The z-nulicline consists of the trivial nullcling=0 and ) ) )

the nontrivial oneh(y)=0, which is a plang/=y;=8,5,/(1 e increases beyo_nc_i a modest valyeThis occurs in another_
—5,) parallel to thexz plane. The intersection of the three domain of the original parameter space. When coupled with
nontrivial nuliclines gives the unique nontrivial equilibrium the same condition that, <z, it was proven that at the
point, py(x;.yr.z1)={y=ys}N 7. This point is stable if and POINt wherep; crossegy, a singular Shilnikov saddle-focus
only if it lies on the solid part ofy between the canard point homoclinic orbif? exists for =0 and persists for all suffi-

P and they-fold point p*. ciently small 0< < 1. Chaotic dynamics occurs as the result
Similarly defined as in Refs. 13 and 15, {g}(2) be the of such an orbit. _ N
value of Pontryagin’s delay of loss of stabili?DLS), see The work of Ref. 15 considered the same conditions as

Refs. 11, 13, 15, and 17-19, determined by the integral of Ref. 13 except that the nontrivigtnulicline y=ys lies
-~ below the poinfgy: that isz; <z, <z It was demonstrated
¥ 10,9

that chaos occurs only because of the PDLS property of the
yepi £9(0,€,2)

y equation.
In this paper, we will consider the parameter region con-

The relationy=y,,(2) defines a monotone decreasing curvesidered in Ref. 15 except that Zpk Namely
in z (see Ref. 12 Let (Xspi Yspk, 2) denote the intersection of
the planar surfacg=y,(2) with S,, i.e., the projection of
the curve(0,ys,2),2) to thex-attracting nuliclineS, in the  We will construct chaotic one-dimensional return maps for
direction ofx. Let pgy=(Xspk: Yspks Zspid D€ the intersection of  the system.
this curve with the curvey as depicted in Fig. (b), see also
Fig. 7 of Ref. 12. For points left opgy on the curve the 1. SINGULAR PERTURBATION
vector fields are positive ig, and negative iry right of pgy.

Conditions and mechanisms analyzed in our previou%< <1 0<7<1 permits a sinaular perturbation approach
works are summarized in the text below and in Fig. 2. e<1,0<¢ permi inguiar perturbatl pp

Deng" proved that under the conditian, <z, which by which a full picture of the three-dimensional system can

defines a region of the original parameter space, a perioct—e constructe_d by pigc?ng togethgr lower ijimensional Sys-
doubling cascade to chaos must take place as the nontrivi §ms alt the.smgul?r I!mlts .\é\/hen eghg:o, 8_.0 orl b?th'
z-nulicline planey=y; crosses the points,, from above for i bRg axa'tuon gyc@(escigs; er Er?.( h& as alsmlgu arly per-
sufficiently small 0<e <1 and{=0. This scenario persists to urbe SXS emin & e or which z 1S slowly varying.
some extent for sufficiently small<0{< 1. The cascade bi- Settinge=0 gives rise to the-fastxy subsystem
furcation is due to the existence of a junction-fold p&ﬂﬁ,l . y
at which the reduced vector field on the cylindrical parabola ~ $X=Xf(X.¥) :X<1 = ,81+x>'
S, for ¢>0 is tangent to the junction Pontryagin curve
(Xspks Yspk:2)- A similar junction-fold point will also appear _
later in our construction of the current chaos generating y:yg(x,y,z):y<
mechanism. Asy=y; moves further up, the cascade turns
into a period-1 cycle with little change inbut large swings
in x andy.

The work of Ref. 14 demonstrated instead that the nonwhich is a family of two-dimensional systems in variables
trivial equilibrium pointp; must become an unstable spiral if andy with eachz frozen as a parameter. The phase portrait

dé=0. (2.9

0<Z<1zZy, z1<Zp 0<e<1, 0<{<1l. (2.9

The dimensionless syste®.3) with singular parameters

1 z), (3.1
y

B1+X

z=0,
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erate canard point by definition because the following con-
ditions are satisfied:

f(p)=0, g(p)=0, f,(p)=0,

fu(P) # 0, f(p) # 0, gu(p) # 0, g,(p) #O.

These conditions impf§®* that for small 0<¢<1 there
must be a Hopf bifurcation point denoted p{). Since we
know for Eq. (3.1 a stable branch of equilibrium points
arises fromp for z>7z along the curvey, the Hopf bifurca-
tion must be supercritical. According to the theory of nonde-
generate canard points and in the notation of Ref. 24 the
quantity A must beA<<0 for ourxy system, wherd <0 iff
the Hopf bifurcation is supercritical from a nondegenerate
canard. Hence the results of Theorems 3.2, 3.3 of Ref. 24
should be applied to Eq3.1) although the latter theorem
needs some modifications to account for singular cycles go-
ing through transcritical points rather than all fold points as
assumed for the established theory. Hence, we will treat the
description below as conjectured rather than proven. The
conjectured will only be used in Theorem 4.2 of this paper.

The canard-Hopf periodic surface bifurcating frepty)

i can be continuously extended from the bifurcation pa{g}

d Xy X 1 to the lower endpoint=0. LetI" denote the surface. Thdh
®) can be effectively divided into two partd:=I",UTI’; for

. . . < .
FIG. 3. Phase portraits of thefast subsystem ir,y with {=0. In(a) a few which Fr lies over an interval &z Z'(g) and FC lies over

typical z-section curves of the nontrivigtnullcline surfaceg(x,y,z)=0 are the_complemenﬁzr(g) Z(0)]. Th? left partl’, consists F)f)(y
sketched together with thenuliclines. Forz<7z, the equilibrium poinBis ~ periodic orbits of the relaxation type from full singular

unstable and a singular limit cycle appears as show¢bjnFor z>7 but cycles[Fig. 3b)], hence the subscriptstands for relaxation

z<Zz*, B is stable and the singular limit cycle is gone. Fo¥z, B is a : = _ : :
saddle-node point which interrupts the singular limit cycle. The equilibriumCyCIeS' That is, for each9z<z, the zsection ofl’, is the

pointA is always unstable. BotA andB coalesce whem=2z* and disappear ~ UNique relaxation cycle for the.parametrizedy equation.
altogether forz>z*. A three-dimensional view of these portraits stacked The description fol;; is slightly more complex. Accord-

along thez axis is shown in Fig. (). ing to the theor§®**the following holds. Surfac&, can be
further divided into two partst’'.=I'¢UTI'g for which I, lies
over an intervalz({),zy({)] andI'; lies over the complement

for all fixed z can be easily constructed from theandy  [Z(£),2({)]. The right partl’s consists of small periodic or-
nullclines. The Eq(3.1) phase portraits are shown in Figs. Pits bifurcating from the Hopf poinp(¢), and is over a range
3(b) and b). Figure 3b) is for 0<z<Zfor which the equi-  Of order|z(¢)-z({)|=0(¢). The subscripts, of I's stands for
librium point B is left of the fold-point(X,y). It depicts the Small cycles. The remaining paffe over the interval
condition (2.5), Z<z, showing that the other equilibrium [%(¢),2(£)] expands the surface from the small cycles to the
point A lies below the PDLS ling/=yqy,. For z from this relaxation full cycles, and the interval range is of an expo-
region, thexy system has a singular limit cycle &0 that  nentially small ordefz (¢)-z(¢)|= O(e™™%) [with v of Ref.
starts at the fold and returns to itself by following the singu-24 to be fixed av=1/2 as in theorder estimaté(e” L))
lar {-fast orbits parallel to th& axis and the singulaf-slow The description above is fairly complete for the range of
orbits on the{-slow manifoldsx=0 and S,={f=0,f,<0}.  zas a parameter. More accurate description for the sufface
Singular limit cycles of this kind are referred to as full cyclesin particular, I'; goes as follows. For eaclre (0,1) (v
in contrast to canard cycles which we will introduce later. All =1/2 in particular as aboveand a small{,>0 both the
nonequilibrium singular orbits are attracted to either the fullfrozen variablez e (z({),z({)) and the surfacd’. can be
singular cycle or the steady state,y)=(1,0) for z<zy.  parametrized by the singular parametes (0,{o) and an-
The turning pointygy is determined by the PDLS integral other auxiliary parametese (0,s)) whose meaning will be-
equation(2.4). For 0< /<1 the full singular cycles persistin come apparent soon after. For nowdgt 2(y-y,,). That is,
forms referred to as relaxation cycles. z=2z(¢,s),I'.=I'¢(¢,s) for {€(0,{,) andse (0,5) and the
Canard explosionit is a singular perturbation phenom- parametrization i<k smooth for anyk. The parametrization
enon for a one-parameter family of two-dimensional sys-means that for each fixegdfrom the interval,z({,s) covers
tems. In our case, the singular perturbation parameter ithe range(z(¢),z({)) ass ranges froms, to 0. According to
guestion is 6< <1, the two-dimensional systems are tye the theoryz({,s) is strictly decreasing is for se (0,{") and
systems, and the parameterzjscorresponding to the other se(sp—¢",S). For the fixed{, the corresponding periodic
singular perturbation limit a&=0. Under this setting, the surfacel’; is parametrized aB.({,s) in s as well. Most im-
pointp=(X,y,2) with z=z for thexy equation is a nondegen- portantly,I'.(Z,s) has a uniform limit ag — 0. As /— 0, the
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FIG. 4. (Color onling. (a) An upside down limiting canard without a head
for 0<s<y-Yyn. (b) An upside down limiting canard with a square head
for y=yim<s<2(y-Vyyn). Both are depicted fof=0.

canard explosion intervdlz(¢),z(Z)] contracts to a point
2(0). However, the limitT'y(s):=lim; ¢:I'¢(Z,9) is still a
family of cycles parametrized by described below.

The parametes that parametrizes both.({,s) and its

Food chain chaos with canard explosion 1087

xf(x,y) =0, y=yg(x,y,2), z=sezh(y).

This is a two-dimensional system i and z restricted to
eitherx=0 or {f(x,y)=0}.

The yz dynamics is rather simple ox=0. In fact, the
reducedyz equations are

y=y9(0,y,2) = (—5— z><0,
y=yg0yD=y\ - 6=

-5.
Boty 2)

Hence all solutions develop downward towargs0. They
will cross the transcritical liney=y;,,=p4, at which x=0
loses its stability, and, in the sense of the asymptotic limit

z=ezhly) = sz(

uniform limit T'o(s) has a specific geometric interpretation. It =0, jump to the stable branch of the nontriviahulicline

defines a uniqug valueys at which singular solutions either
jump right to the attracting cylindrical paraboanulicline
S [Fig. 4@)] or left to the attracting triviak-nullcline x=0
[Fig. 4(b)]. More specifically, fors=0, y;=y corresponds to
the fold point, and for &s<y-y., Ys=Y-S, they values
units below the foldy. For y=Vin<s<2(Y=VYun), Ys=Yin
+[s=(y—-yun], they values—(y—yyy) units above the tran-
scritical pointy,,. As s continuously changes from 0 tqy2
Y, the singular orbitl’y(s) continuously changes from
canards without a heddFig. 4(a)] to canards with gsquare

head[Fig. 4(b)] and the point of transition takes place at the

transcritical pointy,,, at which s=(y-y,,). To summarize,
the singular limit of the periodic surface &0 is the cylin-

drical limit cycle surface depicted in Fig(ld) open at both
ends,z=0, z=2(0). It is not well defined at the right enzl

=7(0) because at this single-sectionz=z(0) the surface
limit takes up the familyl'y of all canard cycles with and
without a head.

f(x,y)=0 at the delayed turning point=ys,(2).

The yz dynamics on the nontrivial and stabtenulicline
branchS, is a little bit more complex, and determines the
chaotic behavior we will describe later. Giversg <Y, de-
fine x=y(y) = ¢ X(y) to be the value ok in [x, 1] such that
(x,y) lies on the stable branch of(x,y)=0; that is
f((y),y)=0, f ((y),y)<0,0<y<Yy. Then the reducegz
equations are

: P(y) 1 )
= 1) = —_5_— ’
y=ya(#y).y,2) y(181+¢’(y) 1 Bz+y2

(3.2
Z=¢ =¢e -0,].
z=¢ezh(y) Z(,ez+y 2)

It is again a two-dimensional singularly perturbed system
with singular parametee. The y equation ise-fast, thez
equation ise-slow. Similar to the analysis for th&fast xy

The most relevant property about canard explosion thasubsysten{Refs. 13—1% the dynamics are essentially deter-

we will use is the bifurcation curve inwith each fixed small
0<¢<1. Specifically, letA denote the intersection of the
periodic surfacd” with S as shown in Figs. (& and Xc).
Then the theor%f’24 predicts thatA is a smooth curve having
at least one local minimum in variabie This is due to the
fact that the PDLS curve o8 is decreasing iry asz in-
creasegsee comment ori2.4)] and the fact that\ traces
tightly along the PDLS curve nea=0 and arises sharply
near the canard poirt due to the canard explosion. Most
particularly, the limit of A at {=0 consists of the vertical line
2=7,yq<y<y and the Pontryagin return curve
(Xspk» Yspk: 2), Which is decreasing iy asz increases from 0
to z, implying thatyy(2) is the limiting absolute minimum.
This conjectured curvé will be assumed for Theorem 4.2.
Pontryagin’s delay of loss of stabilityn Eq. (2.3), X

mined by they-nullcline {y=0}, {g(x,y,2=0} and the
z-nulicline {z=0}, {h(y)=0}. The two trivial nuliclines,{y
=0} and{z=0} are invariant and the dynamics on them are
simple. The nontriviay-nullcline restricted t&, is the curve
v introduced earlier. The nontriviatnullcline h(y)=0 onS,
is y=y;=8,8,/(1-5,). Two phase portraits are illustrated in
Figs. §a) and %b). On the dashed part of thenuliclines,
the equilibria are repelling. On the solid portion, they are
attracting. Thes-fast flows develop vertically and are shown
with double arrows. Upon rescalirig- et and setting:=0 in
Eq.(3.2), it gives rise to thes-slow subsystem iz restricted
to the y-nuliclines y=0 and y. For points above the
z-nullcline y=y;, z increases ory; and for points below itz
decreases oty and{y=0}.

Most importantly, the point1,0,z) or zas shown in Fig.

evolves on the fastest time scale. In a perturbed state with is a transcritical point for Eq3.2) and the phenomenon of
0< ¢<1, all solutions are quickly attracted to a branch of thePontryagin’s delay of loss of stability occurs, now for ge
x-nullcline: either{x=0,y>B;} or S, because the rate of flow. The theory again applies. In particular, (§tz) be any
change forx is much greater than that of and z if their ~ point from a fixed line, say=a with 0<a<y;. The per-
initial points are not already near these surfaces. In a suffiturbed flow[with 0<e<1 in Eq.(3.2)] through(y,z) moves
ciently small neighborhood of the surfaces, solutions are weltlown and to the left, following the vector field. It crosses

approximated by the reducdeslow flows by setting/=0 in
Eq. (2.3,

horizontally and then moves up and still left until hitting the
line y=a again at a point denoted kg, w,(z)). This defines
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FIG. 5. (Color onling. Phase portraits of thgz subsystems on the stable
branch of the nontriviak-nulicline S, and the corresponding singular return
maps for{=0 in (a) and (b) and an approximating return map foQ@
<1in(c). (a) The case with’=¢=0. Thee-fast flows develop vertically and
are shown with double arrows. The oriented parts ofytmilicline with a
single arrow are the reducedslow flow lines.(b) The return map at the
perturbed state € ¢ <1. Dotted curves with a single arrow are tyeflow
lines on the trivialx-nullcline x=0. (c) The same agb) except that the
canard explosion curva is included on which the poirg is a junction fold
point. Unlike (a),(b), the map7 is a conjectured approximating map for
{>0. See text for description.

Bo Deng

a diffeomorphism fronz to w,.(z). Pontryagin’s theory im-
plies that lim_ow,(2)=w(2) exists andw(z) is determined
by the following integral:

Yg(1,09
JZ —st‘(O) ds=0.

By simplifying the integral equation, we find thatand w
satisfy the equatioz exp(—-z/z)=w exp(-w/z). Because the
function y=x exp(—x/z) increases in0,z] and decreases in
[z,»), covering the same rand®,z/e], the correspondence
betweenz andw is diffeomorphic. In particular, if we con-
sider the shaded region in Fig(a, also Fig. 1b), bounded
by pointsz,, andz*, then each vertical segment of the flow
in this region corresponds to a unique vertical flow segment
in the shaded region bounded by and wg,. This pair of
vertical segments together with thleslow horizontal flow
line from z to w along{x=1,y=0} form the singular orbit for
an initial condition below they curve.

Junction fold point:Recall the canard explosion curve
A. With respect to th&-slow yz flow of Eq. (3.2) for 0<e
<1, the reducegz vector field points up ork at points near
z=0 far away fromz=2z, and points right horizontally at the
canard-Hopf poinp. That is, the vector field points at oppo-
site side of the curvé near its two ends. Since the reduced
yz vector field varies continuously alony, there must be a
point at which the vector field is tangent o, pointing to
neither sides of\. Because\ is parabolalike neap due to
the Hopf bifurcation, there must be such a poaptthat the
curve A lies locally to the left of the reduceglz vector field
atq, see Fig. &c). By definition, such a poing is a junction-
fold point.13 The single most important property of the
junction-fold pointq that will be used later is that thgz
solution curves starting oA below g will intersectA above
g. Namely, solutions starting on both sidesgpbn A will
overlap on each other as they move forward in time, a prop-
erty that always gives rise to a fold point of tlyz flow
induced one-dimensional connecting or return rsg3:?-2°
We will develop this construction further in the section be-
low.

(3.3

IV. RETURN MAPS AND CHAOS

We now describe the Poincaré return maps induced first
by singular orbits of the full system E@2.3) for (=0, 0
=<g<1 and then by approximating orbits for<¢<1,
O<e<l.

Recall the periodic surfade that arises from the canard-
Hopf point p. It must intersect the/-nullcline g(x,y,2)=0
along a parabolalike curve. The upper half of the curve rep-
resents points at which orbits of the full system reach local
maximum values in theiy component, whereas the lower
half of the curve represents points at which orbits reach local
minima iny. Similarly, the reducedz orbits on the surface
S, for £=0 reach local maxima ig on the segment of curve
v over the intervaly;<y=Y. The curvey persists for small
0< <1 for the e-fast xy system as the fixed point branch
bifurcating from the canard-Hopf poimt

To define the return maps, let their domains of definition
be the upper half of the intersection of the periodic surflace
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with g=0 together with the segment of over the interval Poincaré return mapr has a subdynamics that is equivalent
yspksysy(g), where y; <ygy by condition (2.5). In other  to a chaotic subshift map on two symbols
words, the maps are defined whenever orbits reach local Conditions for the existence of attracting periodic orbits
maximum in they coordinate. At the singular limi¢=0, we  can also be stated for the return map. Let[d,(d")]. If
can simply letS be the union of the fold linex=x, y=y, 0 the critical pointd is not in thek-iteration 7(I,) wherek is
<z=zand yN{ysx=y=Yy} and define the Poincaré return the first integer such that(1,) C[0,d) and 7**%(I,) C (d, 1]
maps from2, see Figs. (b), 5(a), and §b). Such maps are and if «(I,)C[0,w(0)], then it is easy to show that the
equivalent to the ones through the logamaximum curve  w-limit set limy_., 7%(1,) contains stable periodic orbits only.
onT andS. In fact, the upper half of N{g=0} lies on the  Corresponding conditions for the full system are hard to pre-
x-fast orbits initiated from the fol& as shown in Fig. ).  scribe. Intuitively, separatingandz, further apart is likely
We parametrize points B in terms of their arc length from to makew?(d”) smaller relative tom(0) because the PDLS
the left most point of returning points &. We further nor-  effect near the poinpgp, will be diminished.
malize, against its total length, and denote thus normalized  The case of{>0, ¢>0 is slightly more complicated,
return maps by on the unit interval0, 1] with s[0,1] mainly because it involves the full ramification of canard
being the normalized arc length. With this setup we nowexplosion. In this case the full dynamics of K8.3) is three-
describe below the return maps for three cage®, =0; dimensional and any return map must be two-dimensional on
respectivelyZ=0, £ >0; and{>0, e >0. As mentioned ear- the surface whey is local maximum. For sufficiently small
lier, we will only use the conjectured result on canard explo-0<{<1 all solutions are well-approximated by solutions on
sion for the third case. S, whenever they are nearby. Hence such a two-dimensional
One effective way to view the return map is to look return map has a good one-dimensional approximation. More
directly into thex axis as shown in Fig. 5. The solid oriented specifically, the canard-Hopf periodic surfaCes attracting
curves are the-slow orbits on the attracting branch of the and part of it is neaS,. Thus we can use solutions on the
cylindrical parabolaS,. The dotted, downward-oriented surfaced’ andS, as approximating flows. Now an approxi-
curves are those on the triviatnulicline x=0 for y=yg,. ~ Mating map,7 depicted in Fig. ), is defined as follows.
The fast jumps from the fold to the plane=0 as well as For points left the prepoint of the canard-Hopf pomon %,
from the Pontryagin turning curvg=y, to S, are perpen- We follow them around the surfadg, connect them to the

dicular to the projectegz plane, and thus are hidden from curveA, and then return theron I" to X. For points right of
the view. the prepoint and left op, we follow them around the surface

The case of==0 is relatively simple. Thg-fold point ', connect them to the curvk first, follow them onlI" to A
p* on 3 returns toX at (X,y,w*) as the left most point of again, then return thewn S, to yCX.. For points right ofp,
m's range, see Fig.(8). Hence we set its normalized arc We follow the flows fromy on S, aroundp; and thenon I
length at(x,y,w*) as 0. The normalized arc length for point before returning them t&.. Note that thi_s map_is a hybrid of
Pspi i thus 1. Every point fronw* <z<Zreturns to itself, ¢=0 flows onS, and flows on the bifurcation surfade
and therefore the graph of the lies on the diagonal. For defined forg>0. Also note that the prepoint ob for the
points fromy betweenp and p*, they all return to the same Junction-fold pointq is a global maximum forr at which -
left most pointw* or 0 on the interval[0, 1]. Because of 7' =0. Expept for the addmgnal features that itis decreasing
Pontryagin’s delay of loss of stability, thesegment between ©Ver the intervalm,d) and 7'(m)=0, the mapm behaves
p* and psp returns diffeomorphically to an interval. The re- similarly as the return mapr from the previous case faf
turn of the canard point is not defined since it can be eithef 0: €= 0. Similar result as Theorem 4.1 applies.
considered as following thefast orbit first and then return-  Theorem 4.2 Assume the existence of the canard explo-
ing to itself, or following thez-slow orbit first ony and then ~ SION curveA for sufficiently smald<{<1. Then there exists

return to 0. We denote bg=(d") the former situation and @ range of0<e<1,z<zy,, and z <z, so that the hybrid

by 0=m(d*) the latter situation. refcurn mapr has a subdynamics that is equivalent to a cha-
The case of=0, £>0 is the same as the previous case®lC Subshift map on two symbols _

except that we need to add rightward drift to orbits when ~ FOF @ Set of parameter values satisfyii#g5), a chaotic

they move above the-nulicline y=y; and leftward drift tea-cup a_ttractor toge.ther with its re_turn_ map through the

when they move below=y;. Since we assume< Zopio the local maximum surfacg=0 are shown in Fig. 6. AJunctlon-

return of the left limita(d”) should be the maximum af for ~ fold point is marked as) on Fig. §a) and our hybrid return

sufficiently smalls >0 as shown in Fig. @) and the return Map, Fig. ), matches well with the numerical return map,

of the right limit =(d*) is the minimum point 0. If Fi9- &b), which in theory is two dimensional.

m2(d”) > 7%(0), then the same proof of Ref. 15 can be used

to prove thatrr.contains subdynamics that is equiva}lgnt 10 8\, | OSING REMARKS

chaotic subshift map on two symbols. The condition that

72(d”) > 72(0) must hold by first choosing smali>0 so We have given a mechanistic singular perturbation ex-

that 72(0)=0(e) < m(1)=0(1) and then pushing rightward  planation to some chaotic and periodic attractors of the tea-

if necessary so that(d") is nearm(1). Hence we have cup type in the Rosenzweig—MacArthur food chain model.

proved the following result. We demonstrated that although canard singularity is key to
Theorem 4.1 For {=0 and sufficiently smald<<e<1, the tea-cup feature it alone does not lead to chaos, unlike the

there is a range of Z zy, and z <z so that the singular  other three mechanisms analyzed in Refs. 13-15. We dem-
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FIG. 6. (Color onling. Numerical simulations with parameter valugs0.02,£=0.24,3,=0.26,3,=0.5, §,=0.2, 6,=0.22 for(a), (b), and(c) and the same
values except for3;=48;=0.3 for (d). (a) The yz projection view.(b) The Poincaré return map through the logamaximum surface and points are
parametrized by arc lengt (c) A three-dimensional viewd) A periodic orbit as the moves farther away fromy, as predicted by our analysis.

onstrated instead that the chaotic behavior is largely due ts for the latter was first given in Ref. 30 using a two-time-
the PDLS phenomenon of the predator dynamics. Howevescale singular perturbation analysis, and a proof of a period-
because of the canard point, techniques to construct singuldoubling cascade to chaos was given in Ref. 21 using a
return maps from our previous works cannot be directly apthree-time-scale singular perturbation analysis. The behav-
plied. Instead we had to use predator’s local maximum surioral similarity between these two types of models was first
facey=0 as the cross section for the return map constructioralluded to in Ref. 9. The current approach by a three-time-
In addition, unlike the other cases where all return maps arisscale singular perturbation analysis was first adopted in Refs.
from direct singular limits, a hybrid return map, which 12 and 11 for food chains and concurrently in Ref. 32 for
makes use of both limiting and perturbed structures of thexcitable membranes. The proof of food chain chaos from
system, is used to approximate the junction-fold effect fromRef. 13 has since united these two areas within the same
the canard explosion. Comparing to the other three types dfamework of three-time-scale singular perturbation analysis.
food chain chaos, the tea-cup attractors are better knowW/e envision that a variety of chaos generating mechanisms
more complex, and harder to analyze. In the end its keyor neuron models should be systematically categorized and
ingredient plays a less prominent role than its simpleranalyzed by the same methodology.
counterparts—the junction-fold point and the transcritical
point. APPENDIX: EXISTENCE OF Y-FOLD

The chao'Fic structures categorized by the series (_)f Refs. Proposition 6.1: Under conditions
13-15 and this paper are closely related to the bursting and
spiking phenomena found in models for neurons and excit- - 1751 _ Ao _
able membranes, cf. Refs. 26—31. A proof of chaotic dynam- 2 1-6;

x
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andﬂ2<—(ﬂl+1) ( !
B1

— =5

Bi+1 1)

there is a unique ¥old point (x*,y*,z*) at which the
y-nulicline curve y={f(x,y)=0,f(x,y) <0}N{g(x,y,z)=0}
on S, reaches its maximum in the z variable

At — ’81_ —1\7 (—X - ):
z,=p'(y) = (31+X)2(¢ ) (W) (B2+y) + B+ X o1 (B
X

fy(ﬂl + X) Bl

By

+ x)2
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Proof: Solve z from g(x,y,2)=0 asz=P(x,y)=[(x/B;
+X)=61](Bo+y) and x=¢7Hy) with $()=(1+x)(Br+X)
from f(x,y)=0, f,(Xx,y) <0 for x<x<1 and 0<y<y. Then
y can be expressed @ p(y)=P(¢71(y),y) for 0<y<y.
The idea is to show that,=p’(y) has a unique zero by
showingp’(0)>0, p'(y) <0 and thatp is decreasing.

With x=¢"%(y) below we have

- |

fy
f

X

)(B2+y)+<,31

(Bo+y) + (‘

(-
el

|

)3 (ﬂz y) (

fy
fy(BL+X) ) ( Bt

)] o
x40 sincef, =

fx

B1
(B +

(BL+%)°

B

Sincef,=-1+[y/(B8;+x)?]=-1 aty=0,x=x=1, we have im-
mediately

BB 1
Zlpery=0,= - {(,gli i)3 B (Bl +1 51)}
:_L{ﬁ_(&_ﬂf
(B + 132 B1

E—
Bi+1

by the assumption omB,. Also, asy—Yy , x—Xx", and f,
_ B

( )

gt}

Therefore there must be a zerozFp(y) betweeny=0 and
y=y. So it is only left to show that the zero is unique.
To this end, rewrite with the knowledge that ¢(x),

_l A X _ -1
4= |:(Bl+ )3(/32 y)+ fx<,81+x 51)] = fXQ(X)-

Then we knowQ(1) <0, Q(x) >0, and we only need to show
Q’'(x) <0 for x e (x,1]. Writing Q as

I|m +Y)

)y =

y

Q) = )3(Bz+>/)+<-1+m

_ B
(B +X
,31*‘)(_51)

( X

X

we see thatQ’(x) <0. In fact, the first term is obviously

decreasing irx. The second term is the product of two fac-
tors: a(x)b(x) := f,{[x/(B1+X)]— 6,}. By the product rule, we

havea’(x)b(x)+a(x)b’(x). Sincea=f, is negative, decreas-

")
)

X

B+ X

ing, and b is increasing and positive sinc&>x=(1
=B1)I12>x=B161/(1-6;) and x/(B1+x)—6,=0, we see
clearly that it is decreasing for the product. This completes
the proof. O
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