Communication Model of DNA Replication
Bo Deng?

Abstract: The all-purpose communication model proposed byhe author previously for DNA
replication suggests that if the base pairing time of7C' bases is between.65 and 3 times the
base pairing time of AT bases (with the proportional ratio denoted by«), then the quaternary
DNA system has the optimal information rate for all species o average. In the absence of a
definitive experimental determination of the base pairing ime ratio «, previous theoretical
estimates based on hydrogen bonding energy put its range nea.6667, 1.8268, 2, all inside
the optimal « interval (1.65, 3) of the quaternary system. In this paper, we attempt to gauge
the theoretical range alternatively. The basic assumptions that organisms which have an
intrinsic capability to replicate the most information at b ase-4’s optimal« ratio should be
the most successful by evolutionary consideration®elagibacter ubique and Prochlorococcus
are believed to be such organisms. Here we show that if theseamne bacteria are capable
of replicating the most information, then their « ratios indeed lie inside base-4’s optimal
interval.

Introduction. An organism has the same amount of genomic information whenallive and
dead. The difference is replication. The DNA code and itdicapon are two inseparable facets
of cellular life. Each must have left telltale marks on thbestthrough evolution. In this paper
we take the view that replication exerts the foremost evmhairy pressure on species genomes
because it operates at a time scale immeasurably fastethtatof natural selection. We aim to
find such evolutionary imprints of replication and to foraté an optimization theory by which its
impact on the DNA code can be understood.

A communication model of DNA replication was proposed byah#hor in [4]. It treats species
genomes as individual information sources but the DNA ogpion as an all-purpose communica-
tion channel when the DNA base$, T, GG, C, are paired one at a time with their complementary
bases along the single strands of the double helix. By tmsegtual model, a cell can be thought
as a receiver when it is newly formed and a transmitter whesrtd@ duplicate. That however good
a transmitter or receiver is for a communication system tsagccritical as the system’s channel
which defines a definitive time bottleneck for informatioartsmission.

Any Internet connection, such as dial-up, DSL, cable, dftier, etc, is an all-purpose channel
through which all types of information travel. An all-pug@channel is characterized by its mean
information rate (in bits per second), which measures trst &eecrage the channel does for all
information types. However, each signal type, such as vidadio, spam, computer virus, etc,
has its own information rate which may be more or less thamtban rate. However fast, there
is an upper limit that no information rate can exceed, andithi¢is calledthe channel capacity.

A particular piece of information source may happen to gough the channel at the capacity
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Figure 1: Discussed in detail in [4] are two critical values- 5/3 anda = 2.

rate. Surprisinglyany information source can bh®adeto go through the channel at a rate as close
to the capacity rate as possible by properly encoding thecepone of the greatest discoveries
by Claude E. Shannon’s ([9]). However only the existenceughscodes is guaranteed not the
construction in general. Even if such a code is availabldjtadhal time is needed both before
and after transmission to encode the source and to decodkgtie respectively. Therefore, an
information source that can naturally go through the chbhanthe capacity rate takes advantage
of the channel the fullest.

The main finding of [4] is that if the pairing time of the hydergbonds of theC' pair is
between 1.65 and 3 times that of tHg" pair, then the information mean rate of the quaternary
DNA system is greater than that of the binary model in eithérbases ozC' bases alone, and
greater than that of the model of any even bases. Thus, thk seggests that Nature may have
favored the quaternary system because it can produce thenfmesnation rate for all species and
on average, allowing the most species diversity to passigfirthe time bottleneck constrained by
replication.

Of particular interest to this paper is the following simptean rate model considered in [4].
Letn be the (even) number of bases of our communication modellfgk Eplication. Letr,.. be
the base pairing time between tH&" basesy, . be the base pairing time between thé€' bases,
and leta = 7. /7,, be the base pairing time ratio. Then the maximum informasdag,n bits
per base, and the mean replication rate is

logyn
T L+ (= 1)(n = 2)/4]
in bits per time. (See Appendix for a derivation of the foreylFig.1 shows the normalized rates
7, Ry, as functions of the base pairing time ratiofor a few even integers of base number
It says the following. Ifa > 3, then having thedAT bases alone gives the best mean rate. On
the other hand, ifv € (1.8268, 3), then having the quaternary systemAd'GC' bases gives the

R, =
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optimal mean rate. However, if € (1.5,1.8268), then the mean rate would reach optimal with
ATGC bases plus a third hypothetical base pair. In other wordgdoh even base numberthe
mean ratek, is optimal only in an interval of the parameter Notice also that not alk values in
base-4’s optimal interval give the same mean ratelt reaches the absolute maximum at the left
end pointo = 1.8268 of the base-4 optimal interval.

The technical focus of this paper is instead on individuaksgs which can naturally replicate
at their channel capacity, also referred totlasreplication capacity below. Such species make
out the most that the quaternary replication machinery dgar, aushing through time the most
genomic information ahead of other species.

The Result. Typically, an Internet channel has its own particular signakeup in electrical
waves or optical pulses, and its own number of signalingestatferred to as symbols, say
of them. When an individual information source is encodedtt®y signal symbols for trans-
mission, it results in a symbol frequency distribution, e byp = {pi,ps,...,pn} with
entries for symboll, 2, ..., n respectively. Letr = {7, 7m,...,7,} denote the transmission
times respectively for thést 2nd, ..., nth signal symbols. Then for this source only, thid
symbol containgd (p,) = log, 1/p; bits of information, and on average, each symbol contains
H(p) = p1logy 1/p1 + pology 1/ps + - - - + p, log, 1/p, bits for the source. Also on average and
for this source only, each symbol takéép, 7) = p171 + pa7e + - - - P, 7,, UNIts of time to transmit.
Therefore, the particular information transmission ratetfie source is(p, 7) = H(p)/T(p, 7),
measured now in bits per unit timé{(p) is called theentropy of the source, approximately mea-
suring how diverse the source is per-symbol. It is a fact fiigt) < H,, = log, n for all p, and
H, = H(p) if and only if the probability distributior is the equidistributionp, = 1/n. That

is, H(p) reaches the maximum entropy, or per-base diversity, wheim ambol is equally prob-
able at every position of the transmitted signal. It is aiatifact that the average or mean value
of any probability distribution is the equidistributio(p, + p> + - -- + p,)/n = 1/n. Thus, the
channel’smean information rate is by definitionR,,(7) = H,,/7,,(7) in bits per unit time, where
T.(7) = (1 + 2+ - -+ 7,)/n is the mean transmission time per symbol with the equipritibab
assumption for the symbol frequencies. At the mean rateghihanel is maximal in transmitting
the information content or per-base diversity, embracihgassible sources.

Although an information source’s entropy after encodechmgignal symbols cannot exceed
the channel entropy,,, its source information rat&(p, 7) may be greater or smaller than chan-
nel's mean rate?,,(7) depending on the symbol frequeneyf the individual source because the
source may take up very few or too many time-consuming sigyaibols. By definition, the
channel capacity is the maximum Bf p, 7) over all possible choices of the frequency distribution
p, denoted byK (7) = max, R(p, 7). By a theorem from the Appendids (7) is finite and the
capacity-generating frequency satisfies

- - logy 1/p
/Zpl/—lfm loga /1 (1)
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Table 1: Base frequency distributions of various organisms
Frequency
Genomes| A T G C d Aar  H(p) 7,,.R(p)*

S codlicolor | 13.9 140 36.1 36.00.2% -44.2% 1.85 1.16
E.coliK-12 | 24.6 24.6 254 2540.0% -1.6% 1.99 1.41
E.coli O15:H7 | 24.8 24.7 252 2520.1% -1.0% 1.99 1.41
Human | 29.4 29.7 20.5 20.40.4% 18.2% 1.98 1.40
P.ubique | 35.3 35.0 149 14.80.4% 40.6% 1.87 1.51

W. glossinidia | 38.8 38.7 11.2 11.830.2% 55.0% 1.76 1.49

*The A, T, G, C contents shown are those of the chromosome #14 which hasdhtegt
deviation from the generalized Chargaff law witk= 0.4% of all 23 chromosomes.

** o = 1.8268 is used for the rat® of all genomes.

or equivalently the same equations replagingr by any fixed paip;, 7; for any .
For our communication model of DNA replication, = 7, 7.

T:T27T

c — T3, T,

G
T =Ty, T3 = 174; and7,, = ar,, With1,, =71, =17,,7,, = 7, = 7,. Using the general result

above, the capacity-generating base frequency satisfies:

= T4

pT = ZT/TA :pA7 pG :pc :p;GC/TAT :p‘:

PatPr +Pg +pe =2(p, +p5) =1 @)
1 1

K(r) = —log, —
TAT pA

Table 1 shows the base frequencies of some selected bagtevill as the base frequencies of
Human chromosome #14. Let= {p,.p,,p.. .} denote the base frequencies of a single strand
DNA of the double helix of a chromosome, apd-= {p,, p,, P, P} denote the base frequencies
of its complementary strand. Then by Watson-Crick’s basenggprinciple,p, = p,,p, = ..
and similarly for theGC' pair. Because of the complementarity, we see immediatelyttie base
entropyH and the replication rat& are all invariant with respect to the choice of single steand
Thatis,H(p) = H(p) andR(p) = R(p). The table introduces two more strand invariant measures
about which detailed discussions follow later. They are:krapair frequency distance

d= |pA _pT| + |pG _pc|7

and theinterpair frequency AT displacement

AAT = (pc: +pc) - (pA +pT)'

Alternatively, withGC' being the reference pair we hate,- = —A 7. The data are sorted in the
increasing order of thel7" content orA 4.

Of 303 sequenced bacterial genomes ([11]), it shows theA&stontent forStreptomyces
codlicolor ([11]); the mostAT content forWigglesworthia glossinidia ([1]); the first sequenced
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Figure 2: (a) For each pairing time ratig the capacity base distribution is
solved from equations (2), and the joiAt+ 71" frequencyp,. . = 2p, is plot-
ted. (b) Comparison of the normalized replication capacjy<, the individual
replication rates,, R, and the mean diversity rate, R,.

organismE. coli K-12 ([2]) and a relative straiiic. coli O15:H7 ([6]), both of which happen to
have a near equidistribution of the bases. It also showsake trequencies fdt. ubique ([5, 10])
and the Human chromosome #14 ([12, 8]).

The single strand entropy colunth of the table is self-explanatory. It is determined by organ-
isms base frequencies. As for the replication informatate 2, only the normalized rate, . R
is considered in this paper since individual species basmgéaeplicating times may vary, (more
discussions on the distinction follow below.) The last cotuof Table 1 shows the normalized rate
for the o ratio at base-4’s optimal value8268. It shows thatP. ubique has the best normalized
replication rate.

Figure 2(a) shows the graphs of these organisms pairdisdrequency:p, .. = p, + p,,
which is also strand invariant. It also shows the capacéiyegatingA7” frequency curve as a func-
tion of the base pairing time ratig, and how the curve crisscrosses organigififrequency lines.
For example, the result implies thatdf = 1.825, thenP. ubique replicates at the corresponding
capacity rate. At one extrem€, michiganensis is a capacity-replicating organismaf = 0.55,
and at the other extrenW! glossinidiais so ifa = 2.35. It depends on the ratie. However, these
two extremen values lie outside the optimal mean rate range for the baystém.

In addition to mirroring the same information of Fig.2(ajg 2(b) shows the following. First,
regardless ther value, no organism can replicate more information than ¢péication capacity
K. Second, it shows that the slower theandG bases pair with each other (largewvalue), the
smaller the replication capacity becomes, and the lessidr@gheGC' pair should be in order to
achieve the replication capacity. Third, it shows that #latronship between the replication rate



and the base distribution is not linear. For example, thedrugenome replicates more information
per base tham\. glossinidia does atv = 1.5 but less information at = 2.

Discussion.P. ubique is considered to be one of the most successful organismsrom @&). It
has the shortest genome that has the complete biosynttethisgys for all20 amino acids. It
has no junk DNA. Its clad (SAR11) accounts #51% of all microbial cells throughout the oceans.
Our result above suggests thaPifubique replicates at the information capacity, then its 16\’

to AT base content corresponds to a pairing time ratequal to1.825, which is less thaf.1%
difference from the optimal theoretical ratio8268 predicted from the simplest communication
model of DNA replication discussed in the Introduction. &ttf Fig.2(b) shows tha® ubique
consistently has a greater normalized replication rata tithers do for the range af > 1.4
which contains base-4's optimal mean rate rafigéb, 3). Although there are alternative theories
proposed for the low7C' to AT content problem for bacteria in the oceans where nitrogehn an
phosphorous are frequently limited, they do not explaimpttedlem forP. ubique according to [5].

Prochlorococcus is the smallest-known photoautotroph in the ocean whosedss is similar
to that ofP. ubique. It is responsible for a significant fraction of global ph&}athesis and carbon
cycling ([3, 7]). A high-light-adapted strain (MED4) has &l content, 69.2%, similar to that
of P. ubique. The corresponding value is 1.75, pushing even closer to the absolute optimal of
base-4's optimal mean rate range65, 3). Taken together, their summed biomass in the ocean
would spike against all other marine bacteria and the spikeldvbe near the 70%7-content
range, which in turn corresponds to arrange near 1.8268. Interestingly, a low-light-adapted
strain, MIT9313 ([7]), in deep sea has a significantly lowdr content (49.3%), and about 40%
of its genes is not shared with its high-light-adapted cerpart ([7]).

Our communication model applies to single strand replicedis well as to double strand repli-
cation. With respect to the single strand replication, tleeleh, together with the complementary
base pairing time assumption thgt = 7., 7, = 7., leads to the followingeneralized Chargaff
law (GCL):

Pas = Prs Pg = Pe

as seen in (2). This result is completely counterintuitieeduse it is the purine paid(z) and
the pyrimidine pair T'C) respectively that are similar in structure and elementathgosition.
However, the genome samples from Table 1 indeed supporGiis conclusion. We see now
that the intrapair frequency distanéentroduced in Table 1 measures a genome’s deviation from
GCL (d = 0). Contrasting the large variation in the interpair frequedisplacemeni\ 4, the
uniformity in the intrapair frequency distandas striking. For the Human genome, for example,
the largest discrepancy occurs on chromosome #14 (anddadi jhe difference is no greater than
0.4% from the law. Of the 23 chromosomes, 9 satisfy GCL urfuethiiousandth percentage point,
and the rest are between 0.1% and 0.4%, see [8].

Applying our model to the double strand replication, it anatically recovers the classical
Chargaff law ¢ = 0). In fact, the double helical complementarity givepeafect solution to the
capacity optimization problem with, = p,.,p. = p.. This single-to-double Chargalff law pro-
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gression is well in line with a well-known hypothesis thag¢td was an RNA world before DNA

evolved. More specifically, applying our communication rebb single strand RNA replication

leads to the GCL prediction. Hence, an argument can be matl&@L predated its double strand
version, which only evolved later to give the perfect salntid = 0) to the capacity optimiza-

tion problem. It can also be argued that the double helixcaire of DNA is an evolutionary

consequence of GCL rather than the other way around.

The homogeneity in the intrapair frequency distan¢e-( 0) for the replicating samples of
Table 1 and the predicted GCL by the capacity theory togetimgly that all replicating organisms
distribute their bases to achieve their own replicatiorac#ty. However, the heterogeneity in the
interpair frequency displacement44.2% < Air < 55%) implies that the pairing/replicating
timesr,,, 7. are species specific, with individualratios determined by the capacity frequency
relationp, = p. = p% = pS. The normalized replication rate comparison suggestsifttiae
absolute pairing/replicating time-, . for the AT pair were the same for all species, themibique
would have arninherent advantage over all others of Table 1 and foraNalues from base-4's
optimal mean rate interval.

For the mean rate replication model and for most of the piiaegediscussion on replication
capacity, the baspairing times are assumed to be determined by the bonding energy diyth
drogen bonds of the nucleotides ([4]). In contrast, we ditlgave a definitive definition toell
replication time. With the dichotomy of cells being transmitter and receigech a definition may
aggregate some or all of the encoding and decoding timeshér words, it can be context depen-
dent. Likewise, we did not consider thbsolute pairing/replicating times, ., 7..... They too can
be context dependent because they may change not only tiooutheir evolutionary histories
but also change with organisms developmental stages, oenutompositions, or ambient tem-
peratures, etc. Our model did not nor could have taken intowad all these context dependent
variances. However, if one assumes that the absolute gagplicating times change proportion-
ally with the same proportionality for both pairs from oneegi replication condition to another,
then the time ratiev = 7, /7, will remain constant for the changing replication condito As
a result, the normalized information ratg. R remains as a dimensionless constant, which in turn
can be used for an intrinsic comparison among differentispexs we did here with Table 1 and
Fig.2. This approach is analogous to that of [4] as well aslFRighere the normalized mean rate
instead is used as an intrinsic comparison over replicatiodels of different number of bases.

However context specific may it be, a particular definitiorthef base or cell replication times
may have to be subjected to some more fundamental contextiant rules. For instance, assum-
ing that each species replicates at its own capacity, treehdmogeneity in the intrapair frequency
distance for the replicating samples of Table 1 again insghat whatever the definition of replica-
tion time may be, the moment that replication is considesdpleted is suggested by our model
to be the moment when the hydrogen bonds of the complemelodaigs are paired, given rise to
the pairing/replicating time symmetry:, = 7. = 7,,,7, = 7, = T,.. In other words, it is

the base pairing time symmetry rather than a particular iieiinof replication times that leads



to the generalized Chargaff law. Further, it also suggéstsit is by the same base pairing time
symmetry rather than by chance, or base structure, or elahr@mposition, or individual fithess
of natural selection that the generalized Chargaff lawftisfad.

Our model together with the empirical data from Table 1 implihat organisms settle down to
their individual base pairing/replicating timg,., 7., which in turns determine their ownratio,
which in turn determines their base frequency distribupiancording to Eq.(2). Thus, an argument
can be made that each species genome is the result of its Gwmation rate optimization.

The prevalence of intrapair distance homogeneity(0) also suggests a base selection domi
nance over natural selection with respect to genomic coitiposThink d = 0 as an evolutionary
equilibrium, referred to as theeplication capacity equilibriumbelow, for which the corresponding
base frequency distribution is selected through repbeatiptimization. Then, the empirical data
suggests that the genomic composition that is due to ewoldtty natural selection falls inside a
small vicinity 0 < d < 0.4%) of the capacity equilibrium. More specifically, for a givbase
capacity distributiom, there are different base permutations to realize theibguin distribution.
Thus, our result suggests that a species genome take upgitzanytime in its evolutionary history
one patrticular realization in a small neighborhood of ifgication capacity equilibrium.

Our model also provides an implicit, mechanistic explamato this replication dominance.
The mechanistic principle holds for any dynamical procebgivhas two or more competing
subdynamics operating at diverse time scales. That is,dsgtva slow subdynamics and a fast
subdynamics, the fast process always dominates — with tmdiced dynamics closely tracking
the fast constituent’s equilibrium. With regard to genomiolution, DNA replication operates at a
much faster time scale than natural selection does, withidnas of a second v.s. hundreds of thou-
sand years, a practical order of infinity. As a result, théicapon capacity equilibrium dominates.
Hence, it can be argued that whenever natural selectioed@articular base distribution away
from its replication equilibrium, the information rate aptzing force always brings the distur-
bance quickly back to a new realization of the equilibriuns.ak interpretation to this replication
Vv.S. evolution tug, a conjecture can be made that the grdatation the intrapair distance is from
its equilibriumd = 0, the more recent evolutionary changes took place. For eleamih regard
to the microbes from Table 1, this conjecture would applf?.tabique, the Human chromosome
#14, as well as chromosome #21 with= 0.4%, chromosome #16, #20, and the Y chromosome,
all having the second largest= 0.3%.

This does not mean the capacity theory can replace the tioéogtural selection. Quite to the
contrary, it leaves a huge opening for natural selectioptyate. More specifically, the theory does
not address the question of species-specific r@atiwhich leads to the heterogenous distribution
in the interpair frequency displacemehy;. This heterogeneity appears to correlate with species
differentiation. Thus, a conjecture can be made that nlas@laction primarily impacts on the
interpair frequency displacement, while DNA replication primarily impacts on the intrapair
frequency distance.

With few exceptions, viruses do not self-replicate. Withthe primary replication pressure,



Table 2: Base frequency distributions of various viruses
Frequency
Genomes| A T G C d A,y H(p) H(P)
phageVT2-Sa | 25.6 245 26.9 23.0 5.0% 0.2% 1.9976 2.0000
phage933W | 27.6 22.8 274 22.2104% 0.8% 1.9927 1.9999
phagePl | 26.1 26.6 235 23.8 0.8% 5.4% 1.9978 1.9979
phage phiX174 | 24.0 31.3 23.3 21.58.1% 10.6% 1.9846 1.9921
phageT4 | 31.8 32.9 16.5 188 3.4% 29.5% 1.9355 1.9367

there is no reason to expect their genomes to track closelydplication capacity equilibrium
d = 0 for self-replicating organisms. Table 2 indeed supporis tibservation. Surprisingly
though the displayed entropy patterns can also be explaintt optimization paradigm proposed
here. Without replication, the static single- and doultiarsl per-base diversity entropies reach
the maximumi, = 2.0 bits per base when all bases are equally probable p, =p, =p. =
1/4. As shown in Table 2, the entropies are indeed uniformly tlearmaximum even though
d varies considerably, suggesting that the equiprobabdityot a too stringent condition for the
maximization. When both strand are taken together, the floageencies are further homogenized
asP, =P, = (p,+p,)/2, P, =P, = (p,+p.)/2 sothatd = 0 for the double-strand Chargalff
Law. As a result, the aggregated double-strand per-basgpgmi/ (P) gets even closer to the 2 bits
per-base maximum. Hence, an argument can be made that th@ypfunction of virus genomes
is to maximize their stationary per-base information gmgroFurthermore, the heterogeneity in
bothd andA 4+ can be viewed as indicators of their ongoing evolutionaffgkntiations.

Genomic diversity is at least two dimensional, one is obsiand the other is not. The obvious
is of the genome length of an organism. The not-so-obviotleisnformation entropy{ (p) each
base carries for a base distributigrwhich is length independent. The total information cohtén
a genome of lengtlh and of base distributiopis H(p) x L. The replication rate is not about the
genomic length nor the base entropy per se rather than thamafion entropy that is replicated
in a unit time. In particular, it is sampling time invariant €., the rate calculation results in the
same value whether a time interval of one second or one hawgeid by an observer. Given the
same length of genomes, the work of [4] shows that the quatgmeplication system gives the
best mean information rate if € (1.65,3). In contrast, our result here strongly suggests Ehat
ubique andProchlorococcus have the best intrinsic rate for the sameange.

DNA code is unique in a fundamental way that it has to be coristanaintained and up-
dated by replication. This is reflected by the ways how infation is measured in our model.
The measurement by the information entrddyp) is static whereas the measurement by the in-
formation rateR(p) is dynamic. As an illustration, compare a genome of 58% content to a
genome of 70%AT content but both having the samevalue 1.825 a$. ubique's. Then the
former has a static entropy of 2 bits per base and a replicasite of 1.4125 bits per unit of T



pairing time. Respectively, the latter has a static entripd.8813 bits per base but a replication
rate of 1.5081 bits per unit ofi7" pairing time. Thus, the 70%\T-content genome has about
(2 — 1.8813)/2 = 0.0594 ~ 6% less static information than its 50% counterpart. Thi$ i®s
accumulative only in length not in time. That is, a 50%-content genome of twice the length of
a 70% counterpart has abauk 0.0594 ~ 12% more total information. In contrast, the 7044 -
content genome replicates abdut>081 — 1.4159)/1.4159 = 0.0651 = 6.5% more information

in each unit ofAT" pairing time than its 50% counterpart does. This gain is aedative in time:

in two units of AT pairing time, the 70% genome replicates 6.5 = 13% more information
than the 50% genome does, a@hd 6.5 = 19.5% more information in 3 units afi7" pairing time,
etc. This is due to the time dynamical nature of the infororatiate measurement. Multiplying
this small gain by a factor of millions or billions ofT" pairing time unit throughout their common
evolutionary history, the net information gain is astromcath We simply suggest here that this
extra amount of information must translate in part into sgmeater evolutionary successes for the
replicator of higher(p) rate. In other words, as far as information is concerneditshgenome
length, such as the case farubique andProchlorococcus, is not necessarily disadvantageous as
long as it is compensated in time by a capacity informatida.r&€hromosome length seems to
be spacially and physically limited, but replication tinasts as long as life is permitted in the
universe.

Our communication model for DNA replication inevitably itrgs that the principle of DNA
replication is information rate optimization. This idea@bives rise to a logical explanation to the
problem of junk DNA present in many species genomes. Takélthean genome for example,
which is known to contain about 97% junk DNA. A leading contienal explanation surmises junk
DNA to be evolutionary left-over, a notion inconsistentévolutionary optimization. However,
if life is to replicate information, then junk or not maketlé difference as far as information is
concerned — every base carries the same amount of informadiich is context and observer
independent. We also see this in the generalized Chargafivisich both Human an®. ubique
genomes satisfyP. ubique has adopted a lean and mean genome of 1,308,759 base paiikito b
a complete set of biosynthesis pathways. Each replicaéiplicates the machinery only. It is an
exception to junk DNA but not to information replication. i$t a bargain in itself because of its
numerical abundance so that the net information replicatbdge. At the other extreme, we use
only 3% of our genome for our replication machinery. It toaibargain because the partition
results in a 32:1€ 97:3) payoff-to-cost gain.

In conclusion, our model suggests that what is worth reptigahas to be optimal — be it
the best mean rate for the choice of the number of bases; e litdst per-base entropy for non-
replicating virus genomes; and be it the best informatigatication rate for cellular organisms.
Given the abstractness of the concept of information anddae impossibility of simulating evo-
lution in laboratories, the most we can hope for is to buildeioal consistency for the theory.
Expanded data surveys and new experiments specificallgrs$ito determine base pairing and
cell replicating times are certainly needed to further testmodel.
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Appendix. Recall the definitions fot,,, T,,(7), H(p), T'(p, 7), R(p, 7) from the main text.
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For the mean rat&,, of the replication model, we have

n/2
Ta(r) =~ Dl H ATk = 1] =7, [1+ (= 1)(n - 2)/4],
k=1
using the identity that+2+3+- - -+n = n(n+1)/2. Hence, the mean rafe, as presented in the
Introduction. HereA7 represents a constant pairing time increment sothat= 7, + A7, under
the assumption that th@C' pair takes longer to pair than th€" pair does for having an additional
hydrogen bond. As for a third, and additional base pairs, @#ssumed thats = 7,, + A7 x 2,
andr(op_1)(2k) = T4 + AT x (kK — 1), etc. Replacing\r by A7 =7, —7,, = 7,, (o — 1) gives
rise to the formula foff}, (7).
For the replication capaciti (p) of the model, we have the following result.

Theorem 1. The source transmission rate R(p, 7) has a unique constraint maximum K (7) with
respect to p when p./™ is a constant for all i. In particular, p; = p;/™,>>"  p[/™ = 1, and
K(r) = —logypi1/m = —logy pi/T:.

Proof. We use the Lagrange method to maximizg, 7) subjectto the constraiptp) = >, px =
1. This is to solve the joint equation& R(p,7) = AVg(p),g9(p) = 1, whereV is the gradient
operator with respect tp and\ is the Lagrange multiplier. Denote,, = 0R/Jpy, then the first
system of equations becom&s, = [H,, T — Ht,.]/T? = \g,, = A, componentwise. Write out
the partial derivatives off andT" and simplify, we have-(log, py, + 1/ In2)T — Hr), = \T? for
k=1,2,...,n. Subtract equatiork(= 1) from each of the remaining— 1 equations to eliminate
the multiplier\ and to get a set of — 1 new equations:(log, px, — logy p1)T — H(1,, — 11) =0
which solves tdog, 2= = R(m — 7) and hencey, = u™p, for all k wherey = 2% = 28/T or
H = T'log, ;1. Next we express the entrogy in terms ofy andp,, 74:

H==> pelogope = — > _ pil(m — i) logy ju + log, p]
k=1 k=1

— —[rilogy pt — > pa7i logy pu + logy pi
k=1

= — [ logy jt + logy p1] + T'log, f1,

where we have usedl,_, pr, = 1andT = ", _, px7. Since we have by definitio = T'log, 1,

equating the 2 expressions gives riséokg, p, + 7 log, 1 = 0 and consequently* = ; = pl_l/T1

andp, = u™ rp; = pIk/Tl. Last solve the equatiofi(p;) = g(p) = Zzlp?“/” = 1 for p,.
Since f(p;) is strictly increasing ip; and f(0) = 0 < 1 and f(1) = n > 1, there is a unique
solutionp; € (0,1) so thatf(p;) = 1. The channel capaciti{ (7) = R(p,7) = —log,p1/71 =

— log, pr/ 7y follows. This completes the proof. O
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