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Conceptual Circuit Models of Neurons
Bo Deng?

Abstract: A systematic circuit approach to model neurons wih ion pump is presented here by
which the voltage-gated current channels are modeled as cductors, the diffusion-induced

current channels are modeled as negative resistors, and tlmme-way ion pumps are modeled
as one-way inductors. The newly synthesized models are difent from the type of models

based on Hodgkin-Huxley (HH) approach which aggregates thelectro, the diffusive, and the
pump channels of each ion into one conductance channel. Weah that our new models not
only recover many known properties of the HH type models but &0 exhibit some new that
cannot be extracted from the latter.

1. Introduction. The field of mathematical modeling of neurons has seen a tréaus growth
([13, 21, 20, 1, 19, 15]) since the landmark work, [16], of Igkth and Huxley on the electro-
physiology of neurons. Basic mathematics of these Hodgkirley (HH) type models are well-
understood today ([23]). By the HH approach, mechanidyichfferent current channels of each
ion species are aggregated into one conductance-baseuhtcu& given ion’s distinct pathways
through the cell wall can be of the following kinds: the paesthannel due to the electromagnetic
force of all ions, the passive channel due to the diffusivedagainst its own concentration gra-
dient across the cell membrane, and the active channel fnenoh’s one-way ion pump if any.
Although the electrophysiological narratives of thesencteds have been widely known for some
time ([17, 24]), no one has attempted to model them indiMighees elementary circuit elements
in a whole circuit synthesis. Also, from a circuit theoratiziewpoint, the HH type models are
phenomenological beyond their usage of Kirchhoff’'s Curteaw for the transmembrane currents
of all ions, and as a result they are not readily accessibdetoentary circuit implementation.
The purpose of this paper is to fill this literature gap. Wd stidrt with a generic conceptual
model of neurons, deconstruct each ion current into itsipagslectric and diffusive) currents and
its active (ion pump) current, and then model each chanra@rding to its hypothesized circuit
characteristic. We will demonstrate that our newly synitexsmodels recover many well-known
neural dynamics, but cast in the context of their distirecfpassive and active channels. Some
properties completely unknown to HH type models will be mgd in a second paper ([12]).

2. Mathematical Models. Our proposed circuit models are not for a specific type of oesir

per sebut rather for a conceptual embodiment of circuit princsgderived from neurophysiology.
The models are minimal in the sense that they contains shaopitrasting types of ion species
with little duplication of each other’s functionalities. uBthe method is sufficiently general to
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Figure 1: (a) A conceptual model of generic neurons with ipasserial Na channels, passive
parallel K- channels, and an active N&* ion pump. (b) A circuit model of the conceptual
neuron model. (c) ThéV -characteristics of circuit elements modeling both thespasand the
active channels.

allow any number of ion species with or without such duplmas. For the most part of our
exposition, however, we will use the sodiumNen and the potassiumKion to illustrate the
general methodology. Specifically, Fig.1 is an illustratfor one type of the models that will be
used as a prototypical example throughout the paper. Adysion from, say, Ct or C&* will

at least duplicate one element of such a minimal model. The-k&a combination shown here
can be substituted or modified by the inclusion of other iogcgs such as a NaCa* pair or
a Na -K*-CI~ triplet as long as they are permitted by neurophysiologyis Bection is for the
model construction and classification. Model analysis bellgiven in Sec.3.

2.1. The Conceptual Model. The conceptual model consists of a set of assumptions oivpass
and active channels. Passive channels are of two kindsléle&ro currentdriven by the electro-
magnetic force fronall charged ions; thdiffusive currentesulted from the concentration-induced
transmembrane diffusion ofggarticular ion species. Neither of the two forces is facilitated by any
conversion of biochemical energy of the cell. In contrastaative currentis due to the trans-
membrane transport of an ion species from an energy-congerie., ATP-to-ADP (ATPase), ion
pump, hence referred to as an active channel. The assurspidow are for some conceptual and
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general properties of these channels, for which an illtistras given by Fig.1.
Circuit Model — Generic Assumptions:

(a) Each electro currentt. through a channel is characterized by a monotonically
increasingfunction I, = ¢(V) of the voltagel, across the channel. The chan-
nel or any device or structure whose current-voltage k@atas characterized by
such a monotonically increasing/-characteristic curve is called @nductor
(following a convention in neurophysiology although it &lled a resistor in the
general field of circuit).

(b) Each diffusive current, through a channel is characterized by a monotonically
non-increasingunction I, = ¢(V;) of the voltageV,; across the channel. The
channel or any device or structure whose current-voltadgéoe is characterized
by a monotonically decreasing/-characteristic curve is calleddffusor.

(c) Each active current through a channel has a fixed curiggttibn and the time
rate of change of the current is proportional to the prodiéithe current and the
voltage across the channel. The channel or device or steuethose current-
voltage relation satisfies this condition is callepuamp

(d) All'ion channels are resistive to electromagnetic fotasge or small.

(e) Unless assumed otherwise, all active and passive ¢sifbetween different ion
species are in parallel across the cell membrane.

() The impermeable bilipid cell membrane is modeled as aciaqr.

We note that by the term channel it can mean the whole, or ditang part, or just an intrinsic
property of a biophysical structure such as a voltage oreprohediated ion gate. Hypothesis (a)
is the standard Ohm’s law, but it can be considered to modebfening and closing of an ion
species’ voltage gate — the higher the voltage, the moreingsrof the gate, and the greater
the electro current from all ions. It is probably a less mea$téec but definitely a more circuit-
direct approach than that of Hodgkin-Huxley’s by which th®eoing probability of the gate is
modeled as a voltage-gated time evolution. Hypothesiss(fp)stified by invoking the diffusion
principle that atoms have the propensity to move againgttbacentration gradient. For ions the
electrical effect of the diffusion is exactly opposite tHeatromagnetic force: A net extracellular
concentration of a cation (positive charged ion) generateBSigher electromagnetic potential on
the outside, giving rise to an outward direction for the glmcurrent. But the higher external
concentration of the cation generates a diffusion-induceard current, giving rise to the non-
increasing/ V' -characteristic of a diffusor, see Fig.1(c). Again, a mattr /' -curve would be
a phenomenological fit to the analogous opening and clodirtgeodiffusive type of ion gates
which is modeled differently by HH type models in terms ofegapening probabilities. Note that
because voltage potential can be set against an arbitrapl banstant, we can require without



loss of generality that thél/-curves for both conductors and diffusors to go through tirgarofor
simplicity and definitiveness:

6(0) = 0.

However, a particular passive channel may have a non-zstiagepotential £/, which is modeled
as a battery for voltage source, and the combiféecharacteristic curves will differ only by an
E-amount translation along the voltage variable. (More Bjgesescriptions later.)

Hypothesis (c) is less immediately apparent, but can béiggat least conceptually as fol-
lows. Unlike passive ion channels, which have topologycattaightforward pathways in most
cases, ion pumps have a more involved and convoluted gepi@efr In particular, we can as-
sume that the ions wind through the pump in a helical path 184, In other words, the energy
exchange between ATP and the pump sends the ions throughah ggtih much like electrons
moving through a coiled wire. However, unlike a coiled windlctor, individual ion current has a
fixed direction with Na going out and K going in. The simplest functional form for an ion pump
that captures both its inductor-like feature and its ong-dieectionality is the following

A = \AV (1)

whereV is the voltage across the pumg,is the particular ion’s active current through the pump,
and \ is referred to as thpump coefficientsee Fig.1(c). Proportionality between the derivative
of the current and the voltage models the pump as an induRtoportionality betweer’ and A
preserves the directionality of, that is,A(0) > 0 if and only if A(¢) > 0 for all ¢£. In addition,
the smallerA(¢) is, the fewer ions are available there for transportatiod, f@ence the smaller the
rate of current change{’(¢), in magnitude becomes. In other words, this model of ion pmp
can be considered as a nonlinear inductor mediated by itscawent for fixed directionality and
strength. (For a more elaborative approach, one can refiladmear factord by a functional with
saturation, such as a Monod functiqﬁﬁ or some variants of it.)

Hypothesis (d) is certainly true wherever electromagrfedld is present. A passive conductor
automatically takes it into consideration. A passive diffdoes not have to have this because
its IV -curve can be assumed to have already absorbed such anesistelicitly. For the Na-

K™ ion pump, we only need to wire such a parasitic resistor iresdp fulfill this hypothesis,
see Fig.1(b). The resistance,> 0, will be assumed small for the paper. Hypotheses (e) is a
provisional assumption for this paper. It can be modifiedllowadifferent ions to go through

a same physical channel, see remarks on Hypothesis (2) spdmfic pK'sNa- and pNg sK™*
models below. Hypotheses (f) is a standard assumption atr@bdysiology of neurons.

2.2. Circuit Symbols and Terminology. For this paper, we will take the outward direction as the
default current direction for all passive channels. Onesp#on to this convention is for active
currents whose directions are fixed and thus whose fixedtoinscare taken to be the default and
the true directions, see Fig.1(b). Another exception istlier external current (such as synaptic
currents or experimental controls with or without voltadgntp), /..., whose default direction is



chosen inward to the cell. We will use standard circuit sylslmdherever apply and follow them
closely when introducing new ones.

Mimicking the contour plot for mass concentration, the antac-circle symbol, see Fig.1(b,c),
is used for diffusors. In circuitry, a device having a desimeg@/V -characteristics is called a neg-
ative resistor. In practice, it usually comes with both pesiand negative resistive regions, such
as the combined conductors and diffusors in series andl@aaalillustrated in Fig.2. Electrical
devices with a purely decreasiify-curve are not usually encountered in practice and hence hav
not acquired a symbol in the literature. We use it here onlgmiphasize and to contrast the role
of transmembrane diffusion of ions in comparison to thecgbmagnetic effect.

The conventional symbol for a nonlinear resistor with a maonotonic/V-curve such as an
S-shaped orV-shaped curve consists of a slanted arrow over a lineatoesigmbol. We will not
use it here for our conductor-diffusor combinations inegor in parallel because it has been used
exclusively for the HH type circuit models of neurons thaintines both the passive atit active
currents as one conductance-based channel. For this nasornethe serial aggregation and the
parallel aggregation each acquires a slightly modified syitothe European symbol of resistors,
shown in Figs.2, 3. The symbol forserial conductor-diffusors a vertical box circumscribing a
letter S because the serial connectivity always results il Ercurve with} as a function off,

V' = h(I), by Kirchhoff's Voltage Law, and usually in the shape of adetS when it becomes
non-monotonic. Similarly, the symbol for @arallel conductor-diffusois a horizontal box cir-
cumscribing a lette?V because the parallel connectivity always results il @nrcurve with/ as

a function of V, I = f(V), by Kirchhoff's Current Law, and usually in the shape of dadetV
when it becomes non-monotonic. We note thatklhiecharacteristic of a serial conductor-diffusor
and a parallel conductor-diffusor when both are again cctedein parallel can be monotonic or
non-monotonic, a function of" or a function of/ or neither, but most likely a curve implicitly
defined by an equatioR'(V,I) = 0. As a result, it is represented by a square circumscribing a
diamond symbolizing the typical fact that it may not be a tiorcof V or /.

As mentioned earlier that once a common reference potesmsal, a given ion’s passive chan-
nel can have passiveaesting potential, denoted biy; for ion J, which is defined by the equation
F(FE;,0) = 0if the equation?(V, I) = 0 defines the complet8l/-characteristic, whether or not it
defines a function o¥’, or I, or neither. However, when all ion species other than ior bhrcked
to cross the cell membrane, the dynamics of ion J may settiando an equilibrium state. By
definition, the equilibrium state’s membrane potential poment is called thenembraneesting
potential or theactiveresting potential, denoted by, if the corresponding active (pump) current
Ay > 0is not zero. We will see later that the passive resting p@knt;, can be alternatively
defined to correspond to an equilibrium state at whigh= 0.

The symbol for ion pumps is similar to inductors because @i hunctional similarity but with
an arrow for their one-way directionality. A standard lineaductor symbol with a slanted arrow
stands for a variable inductor.

Recall that the/V-curve for a conductor is increasing or nondecreasing aadthcurve for



a diffusor is decreasing or non-increasing. However, this iather imprecise definition. Without
further constraint, even a linear conducfoe ¢V can be artificially decomposed into a conductor
and a diffusor in parallel:

gV =(g—a)V+dV

for anyd < 0. Thus, to avoid such arbitrary cancellations between coiods and diffusors of
equal strength, we will follow a normalizing rule to decorspan/ V' -curve into either dinear
conductor, or dinear conductor and aonlineardiffusor with zero maximal diffusion coefficient.
This form of decomposition is callechnonical

More precisely, letl = f(V) be anIV-characteristic which we want to decompose into a
canonical form in parallel. Lej = max{maxy f/(V'), 0} > 0 (with the maximum taken perhaps
over some finite effective range). Then we have by Kirchisaffurrent Law,

I=f(V)=gV+[f(V)=gV]:= (V) + fa(V),

for which f4(V') = f(V) — gV is non-increasing since its maximal diffusion coefficiengiven by
max fq'(V) = max(f'(V) — g) = 0, showing the decomposition is canonical. (Here by definjtio
the rate of chang¢' (1) is thediffusion coefficienif f'(V') < 0 and theconductancé f'(V') > 0.)
We can further write the diffusafl/-curve as

f(V) =gV

£(V) = gV] = a2

, if d= min{mvin[f’(V) —g], 0} <0,

with d being the maximal diffusion coefficient in magnitude. Semly, if V' = h([) is theIV-
curve, then by Kirchhoff’s Voltage Law, the canonical degasition in series is

V = h(I) = é] + AR — = 1)) == he(I) + ha(D),

wherel/g = max{max; h/'(]), 0} and1/d = min{min,[h'(I) — 1/g], 0}. Note that parameters
g andd are the necessary minimum to determined a serial or pacalfeluctor-diffusor; and that
the parallel (resp. serial)l’-curve is nondecreasing if and onlygif+ d > 0 (resp.1/g+1/d > 0
or g +d < 0). As an illustration of the procedure, one can check thactmnical form for a
linear conductor = gV is itself.

Note that the canonical decomposition has a symmetric fogr@dshanging the roles of con-
ductors and diffusors: to decompose/an-characteristic into either near diffusor, or alinear
diffusor and anonlinearconductor with zero minimal conductance. A given condudiffusor
will be decomposed in one of the two forms but not necessariboth forms as in the case that a
linear conducto” = g1 can only have the canonical decomposition and a linearstiffu = d/
can only have the opposite. However, we will explain latext tihe canonical decomposition is
more probable for ions’ passive channels than its symmetmterpart because of the fact that
the electromagnetic force governs all ions while a pargicidn’s diffusive current depends only
on that particular ion’s concentration gradient. Nevdebg, despite such differences in decom-
position of a nonlinear V-characteristic when both decompositions apply, all ¢irptoperties
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derived from the characteristic will remain the same beeaxfshe circuit equivalence guaran-
teed by Kirchhoff's Laws. Thus, unless stated otherwisk ] ®lcharacteristic decompositions
discussed from now on are canonical.

The cell membrane or a channel is saidd&polarizeif its voltage moves toward” = 0. If
the voltage moves away from = 0 the membrane or the channel is saichyperpolarize Thus,
a negative increase or a positive decrease in a voltage ip@adization of the voltage, and in
contrast, a negative decrease or a positive increase ispgngolarization of the voltage.

2.3. Model Classification and Result Summary.We will adopt a notation convention for our
neural models. Take for example, the model‘sKia’ to be discussed below stands for the fol-
lowing. The lower case “p” before Kmeans that the passive channels df<Kare inparallel
and that K'’s diffusive channel can be dominating in some effectiveae@f the dynamical states
so that the combinedV -characteristic of the parallel conductor-diffusor is nmnotonic in the
region. Similarly, the lower case “s” means the same exdwitthe passive channels of Na
are inseries The subscript is used for ion pump information. In this ¢céseexample, pKsNa:
symbolizes the assumption that Ks pumpednto the cell while Na is pumpedoutsidethe cell
by the Na -K* ion pump. On the other hand, a subscript “0” means the absdmaeion pump for
its designated ion. So, model pKNal denotes the same pisNal model except for the assump-
tion that the neuron does not have a Kn pump. Also, we will use subscriptsd, +d, such as
in pK’_LdsNaj:d, to denote ion pumps not combined in structure but ratheratipg independently
on their own. A circuit diagram for such models, slightlyfdient from Fig.1 in the ion pump
structure, will be given near the end of the paper.

As it will be shown later, the direction of an ion pump will fike polarity of the ion’s passive
resting potentiaif the ion species’ active resting potential exists. More gjpadly, if Na™ (resp.

K ™) has an active (membrane) resting potential (which is \stia case), then the assumption that
Na* (resp. K") is pumped outward (resp. inward) impli€s, > Fx, > 0 (resp.Ex < Ex < 0).
That is, the polarities of both passive and active restingmls are fixed to be the same by the
directionalities of the ion pumps.

This basic scheme can be extended in a few ways. In one exterfer example, if both
passive and active channels of the'Nan are blocked, the reduced system can be considered as a
pK* model. In another extension, for example, if in the effeeti®gion of the neuron’s dynamical
states, Na’'s diffusion does not dominate but its ion pump is nonetheleféective, we can use
pK*cNal to denote the model in that part of the effective region, wlid lower case “c” for the
conductivenature (i.e. monotonically increasing) of that part of/its-characteristic. Furthermore,
the notation for the corresponding serial conductor-diffucan be reduced to a vertical box with
a diagonal line from the lower-left corner to the upper-tigbrner rather than a circumscribed
letter “S”. Similar notation and symbol can be extended tmjpal conductor-diffusors without
diffusion domination. In another extension, more ion spe@an be included. For example, all
our simulations of this paper were actually done for a"pKa‘cCl, (with g, = 0.01, d, =
0, Ec = —0.6), which, to become apparent later, is equivalent to a mihpka sNal model.
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Table 1: Dynamical Features

Models| Resting Potentials Action Potentials Spike-Bursts

cX X X
sX
sXcY
pX
pXcY
pXsY

NN NN
SN
X X X X

We remark that a pKpNa; or cKpNal model may fit well to the giant squid axon, but not
all models from the taxonomy can necessarily find their nglysiological counterparts. Also, it
will become clear later that from the viewpoint of equivdleincuit, a pK'cNa model is usually
equivalent to a pK model, but a pKcNaf or pK*sNal model may not be so in general because
of the ion pump inclusion for the former and a possiftaonlinearity of the Naion for the latter.

In addition, the taxonomy is order independent: xXyY and }enotes the same model.

There will be three types of neural dynamics consideredingsnembrane potentials, mem-
brane action potentials (pulses or spikes), and spikeshuResting potentials are stable equilib-
rium states in some membrane potential and current rangesewdiffusion does not dominate
from any ion species. In other words, stable equilibriuntestare prominent features of cX mod-
els. Onthe other hand, action potentials and spike-bursisszillatory states and their generations
require diffusion domination of some ion species in somédirange of the effective range of the
oscillations. More specifically, action potentials reguiiffusion domination from only one ion
species over its parallel conductive channel while spikests require diffusion domination from
at least two ion species, one over its parallel conductiamnobkl and another over its serial con-
ductive channel. Hence, for the purpose of distinction; arkediated action potentias the result
of K*’s diffusion domination in parallel, while a Namediated action potential is the result of
Nat’s diffusion domination in parallel. That is, action potiatg is the prominent features of pX
and pXcY models. Similarly, a NaK* spike-bursis the result of a K-mediated burst of Na
mediated spikes because of K diffusion domination in parallel for the burst and Nadiffusion
domination in series for the spikes, respectively, the pnemt feature of a pKsNa: model. Simi-
lar description applies to K-Na" spike-bursts for a pN@sK* model. We note that an xX model is
a subsystem of an xXyY model and as a result the prominentdigadbehavior of the xX system
will be a feature, though not prominent one, of the larger X>§ystem. Thus, one should expect
resting potential state, action potential phenomenon iXy&'pmodel. A summary of the result is
listed in Table 1, in which a “—” entry means “possible butikely”.

All numerical simulations will be done in this paper for dinsonless models because of two
reasons. One, numerical simulations tend to be more reliabkn all variables and parameters
are restricted to a modest, dimensionless range. Two, therdiionless models can always be



changed to dimensional ones by scaling the variables aradigders accordingly.

2.4. Specific ModelsWe will consider several specific models in the paper, aledde/o specific
models introduced here in this section: the'sila model and the pNgsK* model, respectively.
Their specific channel structures are illustrated in Fegyl2(and Fig.2(c,d), respectively. We now
introduce them in detail one at a time.

The pK*sNal Model:

1. K*’s conductive and diffusive currents go through separatallghchannels for
which an increase (hyperpolarization) in a positive vadtaange) < v; < vy,
of the diffusor triggers a negative drop (inward flow) of itgi@nt, see Fig.2(a).

2. Na"'s conductive and diffusive currents go through the samawmblfor which
an increase in an outward (positive) current rartge; i; < i, of the diffusor
triggers a negative hyperpolarization (decrease) in titage, see Fig.2(b).

3. Both ion species have an active resting potential eatisfysag Fn., > 0 and
Fyx < 0.

4. Thereis anion pump for each ion species with the activedarent,Ay., going
inward and the active K current, Ax, going outward. Both share a common
structure in the sense that they have the same pump paravaéies: A, =

.. = A and a small resistanee> 0.

These hypotheses are formulated mainly from a minimalgticciple. This includes: (i)
the ion species do not duplicate each others functionsa(d)ffusor is included only if it can
fundamental change the combinEd-characteristic to a non-monotonic curve; (iii) tReshaped
and the/V-shaped 'V -characteristics overlap in an effective or common voltaggon; and (iv) the
polarities,Fy, > 0 andExk < 0, for the active resting potentials are fixed, which are appnately
in the ranges of 80 mV and~ —90 mV, respectively. All alternative configurations that weséa
checked have violated at least one of the four minimalistteiga for the pK‘sNa. model above.
More detailed comments on the hypotheses follow below.

By Hypothesis 1 and Kirchhoff’s Current Law, the passive &urrent/x ,, is the sum of its
conductor current/x ., and its diffusor current/x 4, with the same passive voltagg across
the conductor and the diffusor in parallel. Thus, thé-characteristic curve for the parallef*K
conductor-diffusor (Fig.2(a)) is

Ixp = Ixe+ Ixa = fre(Vk) + fra(Vk) = fx(Vk) (2)

where functionsfx . and fx 4 define the individual monontong/-curves for the conductor and
diffusor, respectively. After adjusted for the passiveingspotential (battery sourcéx = Vi —
Vk, we have,

Ixp = f(Vo — Ex). 3
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Figure 2: The pKsNa model: (a) AnN-shaped/V-curve (solid) for a parallel conductor-
diffusor of the passive K's channels. It is the vertical sum of the conductor and diffucurves.
(b) An S-shaped/'V'-curve (solid) for a serial conductor-diffusor of the passNa“'s channels.
It is the horizontal sum of the conductor and diffusor curvBssh curves are the solid curves’
horizontal translations to their respective nonzero pasgsting potentials, giving rise to the final
IV-curves for the respective passive channels. (c, d) The saswiption but for the pNasK™*
model. Both models retain the same polarities for the passisting potentialsgyy, > 0, Ex < 0.

Throughout most of the paper, we will consider &rshaped nonlinearity as shown in Fig.2(a),
which is the result of the diffusion domination of'Kin the rangev, + Fx, v, + Ex]. This
hypothesis can be interpreted like this. When the membratenpal lies in this range, it is mainly
due to a correspondingly uneven distribution of Kcross the cell wall, which in turn triggers the
diffusion-driven flow of the ion. However, when the membragential lies outside the range, its
characteristic is mainly due to factors other thariduneven distribution across the membrane.

More specifically, all conductor-diffusor decompositiari$-ig.2 are canonical. A justification
of this choice is based on a key distinction between the reldotce and the diffusive force. The
former is defined by all ion species, while the latter is definaly by a particular ion which is a
constituent part of the former. Because of a fixed amount af ghven ion species, its diffusive
effect occupies only a subrange of the whole electro rangais dives a conceptual justifica-
tion for the ramp-like functional form for the diffusor clamteristic. That is, outside the ramping
voltage range, a given ion’s biased concentration on oreedidhe cell wall approaches an all-
or-nothing saturation, inducing an approximately consti#ffusive current flux through the mem-
brane. Within the ramping range, however, the diffusiveeniris more or less in proportion to the
membrane potential. Again, the requiremefd) = 0 for the characteristics is set against some
basal references collected into the passive resting pat@arameters?;.

It will become clear later that action potential depolati@afrom rest cannot be easily gener-
ated without theV-nonlinearity. The left and right branches of aircurve have positive slopes,
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corresponding to the voltage region where the conductiventidominates the diffusive current.
They are referred to as tle®nductive branchesr theconductor dominating branchegélthough
it is possible for both branches to intersect thexis in a so-called bistable configuration, we
will consider for most of the exposition the case of a uniquerisection by only one of the two
branches, for which the branch that intersectsithaxis is called thgrimary branch We will
see later that the intersection is the passive resting pakety.. The middle branch is called the
diffusive branctor thediffusor dominating branch

By Hypothesis 2 and Kirchhoff’s Voltage Law, the passive'NaltageVy. is the sum of its
conductive voltagelx. ., and its diffusive voltag€ely., 4, with the same passive Naurrent/y, ,
going through the conductor and the diffusor in series. THecharacteristic curve for the serial
Nat conductor-diffusor (Fig.2(b)) is

VNa - VNa,o + VNa,d - hNa,()(INa,p) + hNa,d(]Na,p) = hNa(INa,p)7 (4)

where functiongiy, . andhy, 4 define the individual monotonifl -curves for the conductor and
diffusor, respectively. After adjusted for the passiveirgspotential (battery sourcé)y.,, we have

VC = VNa + ENa = hNa(INa,p) + ENa- (5)

Throughout most of the paper, we will consider gshaped nonlinearity as shown in Fig.2(b).
Again, a similar interpretation can be made for the diffastimmination of N& in the current
range[iy, i»] as that of K in the voltage rang@; + Ex, v, + Ex] from Hypothesis 1.

It turns out from our analysis of our minimalistic modelsttiide models will not produce a
spike-burst phenomenon without &rshaped/ V' -characteristic of one ion species or some com-
bination of different ion species. One the other hand$ahaped characteristic can only be gen-
erated from a conductor and a diffusor in series, but not ralfgh. Therefore, it is the spike-burst
phenomenon and the circuit imperative that imply the setiaicture of a conductive current and
a diffusive current. It is not important whether the condwecturrent and the diffusive current are
from a single ion species or from different ion species taslassame physical channel. It matters
only that the serial combination produces suchSashaped characteristic. However, in the case
that a different ion species (such as kor Ca&", or CI~, or a combination thereof) is involved,
this hypothesis can be generalized to have 'Blaonductivecurrent and that other iondiffusive
current, in part or whole, to go through the same channel,thadame results to be obtained
will remain true. In other words, assuming the serial chasharing for Na of this model and
for K* of the next model is simply a sufficient way to guarantee suoka@essary condition for
spike-bursts. As we will show later that this hypothesisas meeded for the existence of resting
potentials, passive or active, nor for the generation abagiotentials.

Similar terminology applies to th8-nonlinearity. Specifically, the top and bottom parts have
positive slopes, resulted from the conductor’s dominafiigcharacteristic in the respective cur-
rent ranges. They are referred to as¢baductiveor conductor dominating branche®f the two
branches, the branch that intersectslthaxis is referred to as thgrimary branch or the primary
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conductive branch. Again we will see later that the intetisacis the passive resting potential
Ena. In contrast, the middle branch with negative slopes isrreteto as theliffusive branclor
thediffusor dominating branch

Hypothesis 3 was already commented above. Hypothesis 4 &l&mown property of most
neurons. We note that although there is a frequently-cit2gt®ichiometric exchange ratio for the
Na™-K*+ ATPase, we do not tie the active currents,, Ax to the same ratio, especially not at a
non-equilibrium state of the membrane potential. The emgbkacertainly has an optimal exchange
ratio for each ATPase, but it does not have to operate at fisvapcapability all the time because
one can envision a situation in which a severely depletechesiiular concentration of Kjust
cannot meet the maximal demand of 2 potassium ions for evarlyamge. The same argument
applies to Na. This non-constant-exchange hypothesis for Ma~ ATPase is also the basis to
segregate the net ion pump curréptinto the Ay, and Ak currents:

IA :ANa_AK-

Exchanging the roles of Naand K in the pK*sNa" model with a few modifications results
in the pNa sk model below. More specifically, we have

The pNajsK* Model:

(1) Na'’s electro and diffusive currents go through separate |gdrethannels for
which a depolarization (increase) in a negative voltaggean < v, < 0, of the
diffusor triggers a positive drop in its outward (positiee)rent, see Fig.2(c).

(2) K*’'s electro and diffusive currents go through the same chaionevhich an
increase in an outward (positive) current rangeg< i; < 1o, Of the diffusor
triggers a negative hyperpolarization (decrease) in illage, see Fig.2(d).

(3) Both ion species have an active resting potential eatisfging Fn, > 0 and
EK < 0.

(4) Thereisanion pump for each ion species with the activedNarent,Ay., going
inward and the active K current, Ax, going outward. Both share a common
structure in the sense that they have the same pump paravagies: \, =

.. = A and a small resistanee> 0.

In addition to the role reversal, there is a marked diffeeehetween these two models for Hy-
pothesis (1) in the diffusor-dominating voltage range:tfe pK'sNa model, the range satisfies

0 < v; < vy Whereas for the pNesK* model, the range satisfies < v, < 0, see Fig.2(a,c).
This specific range assumption for each model is based onithienalistic criterion (iii) so that

the model'sS-characteristic and th&-characteristic can affect each other in a common and close
proximity possible. Hypothesis (2) remains the same froengitevious model except for the role
exchange between the ions. On the other hand, Hypotheggsa(®, identical for both models,
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Figure 3: Equivalent Circuits.

which are listed here for the completeness of the second ImBdeause of the symmetrical simi-
larities between the pksNal model and the pNgsK* model, detailed analysis from now on will
be given mainly to the pKsNa. model. Note also, the depiction of neuromembrane of Figid is
fact for the pK“sNa model.

2.5. Equivalent Circuits. There are different but equivalent ways to represent theitimodel
Fig.1(b) depending on how individual channels are seleltigrouped. The ones that will be used
and discussed in this paper are illustrated in Fig.3 for tiégNa model, but we remark that the
main equivalent circuit to be used for the analysis and satmr of the paper is that of Fig.3(b).
Except for Fig.3(f), not all analogous circuits for the p&"™ model are shown since they can be
derived similarly.

More specifically, Fig.3(a) is the same circuit as Fig.1(kdept that the passive electro and
diffusive K* channels are grouped together and the optional externarthaurrent or voltage
source is redrawn simply as another parallel channel.

Fig.3(b) is the same as (a) except that both ions’ passivenghis are represented by a com-
bined conductor-diffusor in series (Eq.(5)) and a combicmauctor-diffusor in parallel (Eq.(3)),
respectively. And for most of the analysis and discussianwil assume the&S-nonlinearity and
the N-nonlinearity of Fig.2 for Na's IV -curve and K's IV -curve, respectively.

Circuit Fig.3(c) is the same circuit as (b) except that afigiee channels are combined into one
super passive channel whobE-curve is defined by an equatidmy (1}, 1,) = 0 of Eq.(7). There
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is no conceptual nor practical difficulty to construct suomgositorial/ V' -curvesgeometrically
based Kirchhoff’'s Voltage Law, see [2]. However, it seemsveyy practical to have a general
algorithm for the defining equations of tli& -curves of such equivalent conductors and diffusors
in arbitrary numbers. For example, it is rather straightind to do so for the parallel combina-
tion of one serial-conductor-diffusor and one parallehdactor-diffusor, which is the case here.
Specifically, by Kirchhoff’s Current Lawi, = Ix., + Ik p- Also from Ix , = frx (Ve — Ex) we
first have

INap =1, — Ixp = I, — fx(Vo — Ex).

Second, sinc&c — Ex, = Vaa = hna(Inap), We have
Vo — Ena = hva(Ip — fx(Vo — Ex)).
Rearrange this relation to have
F(Ve, 1) == Vo — Ena — haa(I, — fx(Vo — Ex)) = 0.

This equation does not necessarily sati&fy), 0) = 0. As a result, we define thgassive resting
potential £,, to be the solution of
F(E,,0) = 0. (6)

Finally, becausé = V, + E, we have the V-curve’s defining equation
F,(Vo, Ip) == F(V, + Epv L) =V, + Ep — Exa — hna(Ip — fx(Vp + Ep —Ex))=0. (7)

For the mathematical analysis to be carried out later, hewee will not use this equivalent form
because it is more convenient to use individual iahig‘curves in their segregated forms as for the
cases of Figs.3(b,d). (But, a comparison simulation forresistency check is given in Fig.10.)

Circuit Fig.3(d) is the same as Fig.3(b) except that the iomp currents are combined into
one active current according to the following relation:

{AzAM—AK

8
Is = Ana + Ak ®

equivalently{ A
wherel, is the net active current through the ion pump dgds the sum of absolute currents ex-
changed by the ion pump. L&} be the voltage across the pump corresponding to the outvedrd n
current/,. Sinceyl, is the voltage across the resistive component of the pumpyaKdrchhoff’s
\oltage Law,V = Vi + v1a. Now from thelV -characteristic of the ion pump Eqg.(1), we have

ANa, = )\NaANaVA = )\ANa[vC - ’YIA] = )\ANa[VC - W(ANa - AK)] (9)
A" = M Ak [=Va] = Mk [-Vo + 7] = Mk [-Ve + 7(Ana — Ax)],
where), = A\, = A by Hypothesis 4 of both models. The equivalent equation$fofs are
Iy = Mg[Ve — A1
A/ S[ C Y A] (10)
IS = )\IA[VC - ’)/IA]
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It is useful to note that we always hawe> 0 and that the nontrivial parf{ # 0) of I5’s nullcline
is exactly the same as's nullcline, Vo = ~vI,. Furthermore, the equation f@ég is rather simple
and it can be solved explicitly in terms of the net curréngs

Is(t) = Is(0) + /Ot M (T)[Ve(T) — vIa(T)] dT. (11)

As a result, the net active current satisfies

1
A[Is(0) + [y Ma(r)[Ve(r) = y1a(7)] dr]

In other words, the parallel ion pumps from circuit Fig.3@o¢ equivalent to a nonlinear inductor
of Fig.3(d) with L being the nonlinear inductance defined above. For the reteanf the paper,
we will use both circuit (b) and circuit (d) interchangealdgpending on whichever is simpler for
a particular piece of analysis or simulation.

Circuit Fig.3(e) is the same circuit as (a) except that afigpse and active K channels are
combined into one K channel,/x = Ik, + Ak, and all passive and active Nahannels are
combined into one Nachannel,/x, = Inap, + Ana, @s conventionally done for all HH type
models. Here one uses instead the ions’ active resting paieriy., L, as the battery source
offsets for the congregated ion channels. The precisdaedtip between the active and passive
resting potentials will be derived later. We will not ex@aany quantitative comparison between
these two types of models further in this paper except tothattst is not clear how to extract from
circuit (e) some of the properties to be derived in this paper

Fig.3(f) is a circuit diagram for the pN&K" model. It is exactly the same as (a) except that
the passive Nachannel is a parallel conductor-diffusor while the passivechannel is a serial
conductor-diffusor.

Notice that the circuit diagram (b) and (f) each is in a oneite qualitative correspondence
to the pK-sNal model and the pNgsK™, respectively. In other words, a circuit diagram can be
uniquely constructed qualitatively from a model taxon arue wersa.

L = — Vo — 1], with L(t) =

90 (12)

2.6. Equivalent Circuits in Differential Equations. We now cast the circuits in terms of their
differential equations for simulation and analysis laB&cause of the equivalence, a neuron model
can be qualitatively described by its model taxon, or itswgtrdiagram, or its system of differential
equations, with progressively greater details in desonpt
To begin with, all circuit models follow Kirchhoff’'s Curreéraw for all transmembrane cur-
rents:
Ic + Inap + Ik p + Ana — Ak — Lot = 0,

for which, as noted earlier, the directions of the activerenits are fixed, and.,, is directed
intracellularly. With the capacitor relation

CV (t) = Ic
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Table 2: Equivalent Differential Equations

([ CVE' = —[I, + Ana — Ak — Lot
Axa' = )\ANa[vC - W(ANa - AK)]
A" = Mk [=Ve + 7(Ana — Ak))]
el = F,(Vo — Ep, I,)=Ve — Fna — hna(Lp — fx (Ve — Ex))

p p

Circuit Fig.3(c)

([ CVE' = —[Inap + fx(Vo — Ex) + Ia — o)
I = 1[Ve — 'Y{A]
E]Na,p/ - VC - ENa - hNa([Na,p)

with L > 0 defined by (12)

Circuit Fig.3(d)

([ OV = —[fxa(Ve — Exa) + T p + Ia — Lexi]
Circuit Fig.3(f) I\ = M[Ve — vI4]

(The pNa skt Model) Is" = MA[Vo — v14]

| elx, = Vo — Ex — hx(Ixp).

whereC is the membrane capacitance in a typical rang€'of 1uF/cm?, the first differential
equation for all circuits is

CVC/(t) - _[INa,p + ]K,p + ANa - AK - ]ext]~

The K* passive current can be replaced by iits-curve Ik, = fx (Ve — Ex) from (3). But
the Na" passive current cannot be solved from its non-invertistehaped V-curve (hysteresis),
Vo — Ena = hna(Inap). SinceVe is not redundantly defined by the Naassive current, but rather
the other way around, th8/-relationship

FNa(VC - ENa; INa,p) = VC - ENa - hNa<INa,p) =0

defines an ideal voltage-gated relationship for the passivent/y,,. A standard and practical
way ([2]) to simulate and to approximate this idé&-curve is to replace the algebraic equation
above by a singularly perturbed differential equation devae

6INaL,p/ - FNa(VC - EN&7 INa,p)a

where0 < e < 1is a sufficiently small parameter. More specifically, theifnssign (or lack of it)
in front of Fy, is chosen so that the conductor-dominating branches dfitheurve, Ve — Fn, =

hna(Inap), @re attracting and the diffusor-dominating middle braisafepelling for this auxiliary
differential equation. It is useful to note that the nutéj or thely, ,-nullcline, of this equation
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Figure 4: (a) Continuous and piecewise liné&@curves for K's parallel conductor-diffusor. The
solid curve is the vertical sum of the dash curves. (b) Cotrs and piecewisél -curves for
Na'’s serial conductor-diffusor. The solid curve is the honita sum of the dash curves. (c) An
equivalent/V-curve in bold solid when af-shaped Na conductor-diffusod V' -curve and anvV-
shaped K conductor-diffusoil V-cure are combined in parallel. It is obtained as the vdrsiom
of Nat's IV-curve and K's IV -curve. The result may not be a functionéfor I as shown but
instead described implicitly by an equation such as Eqi{g)is the joint passive resting potential
at which the current sum from the constituémt-curves is zero.

is exactly the serial conductor-diffusdV -curve of the passive Nachannel. Now combining the
Ve, Ina,p €quations and those for the active pumps (9), the systeniréwritcFig.3(b) is

CVe' = —[Inap + fu(Ve — EK) + Ana — Ak — Loxi]
Ana' = )\ANa[VC —Y(Ana — AK)]
Ax' = Mg [-Ve + 7(Axa — Ak))]
€]Na,p/ = Vo — ENa - hNa(INa,p)-

(13)

In terms of the net and absolute active currditsl/s from Eq.(10), the same system becomes

CVe' = —[Inap + fx (Ve — Ex) + Ia — Lo
IA/ = )\IS[VC — ’}/IA]

Iy = Ma[Ve — v14]

EfNa,p/ =Vc— ENa - hNa(INa,p)-

(14)

The equivalent systems of equations for circuit Fig.3(a) amcuit Fig.3(d) can be derived simi-
larly and they are listed in Table 2.

2.7. Piecewise LinearlVV-Characteristics. We are now ready to specify a functional form for
the conductive and diffusivéV -curves, Eq.(2, 4), for the purposes of analyzing and sitmga
the circuit equations. As illustrations, we use continuand piecewise linear functions for all
conductive and diffusivéV -curves, and show later how to generalize the constructi@miooth
functionals. The functions are listed in Table 3.

We first describe théV-shaped V -curve for the passive Kchannel. The component conduc-
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tive and diffusive curves are given as follows in their canahforms.

I = fxke(V)=g9.V, withg, >0

0 if V< (o
I'=fka(V)=< d (V=) ifv; <V <y, withd, <0, 0<v; <,
dK(Ug — Ul) if vy <V

Here parametey, is the conductance of Ks electro channel and the, = 1/g, is the corre-
sponding resistance, and parameter< 0 is K™’s maximal diffusive coefficient. It is easy to
see from Fig.4(a) that thB/-curve for the parallel conductor-diffusdr= fx.(V) + fxa(V), is
N-shaped if and only if the diffusor can dominate in the rapgeu,| in the following sense,

gy +d, <0withg, >0,d, <0. (15)

When this condition is satisfied, thg-shaped parallel conductor-diffusor combo has the desig-
nated critical pointd” = v; andV = v, with the middle diffusive branch having a negative slope,
g« + d... In practical terms, there is a net concentration-dommgatntracellular current if the
potential difference across the parallel conductor-difus in the range df,, vs].

For an easier access to numerical simulation and a simptatiow, we will use avat | ab
notation for Heaviside-type functions as follows

0 fz<aorb<azx
1 ifa<a<b

(a<x<b):{

wherea, b are parameters withoo < a < b < +o0. If eithera = —oo or b = 400, we simply
write (x < b) or (a < z), respectively. Now K’s parallel conductor-diffusor can be expressed as

I'=fx(V) = fxe(V)+fiaV) = g V+d (V—vi)(v1 <V < vg)+dy (v2—0v1)(v2 < V). (16)
Nat’s serial conductor-diffusofV/-curve can be similarly constructed. Specifically, we have

1 .
V = hNae(l) = —I, with g, > 0, and

Na

V = hnaa(l) = d;U—h)ﬁh<I<w,wm¢h<Q0<u<@
d;a (’Lg — ’Ll) if 1o < I

and in terms of thé/ht | ab notation,

V= hNa<I) = hNa,o(I) + hNa,d(I>
= if-l— . (I —i)(ip < I <ig)+ dl (19 — 11) (32 < I).

dNa Na

(17)

TheV-to-I slope of the middle diffusive branch is

1 — gNadNa
1/gNa + ]'/dNa gNa _|_ dNa7
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Table 3:7V -Characteristic Curves

S-Nonlinearity

N-Nonlinearity

V = hxa(1) I = fk(V)
e piecewise linear curve:
1 1 N .
pitsNa | VT It U< I<n) g v d (Ve <V < )
1
iz = in)(i2 < 1) +dy (v2 — v1)(v2 < V)
Na
e smooth curve:
1 1 I —1
V=—I+—ptan ' —= — 1YV~ Un
I d. P I =g,V +d ptan .
+ ! ptan~! tm with 1 v
i s - with
d. P ++dK,utan 0 wi
i il + ig ’ig — il |dN | O = U1 V2 o U2 — U1 9x
m — ) = * m =
' 2 T T g+ d. 2 2\ g + dyl
V = hx(I) I = fxa(V)
piewise linear curve:
1 1 N .
pNatskt | VT g g < I<i) g g v (o= )V <)
1
+d—(i2—i1)(i2 <) + dy, (V =) (01 <V < 9)
K
Conditions: Conditions:

g,>0,d, <0, g, +d, >0
with J = Na, or K

g,>0,d, <0, g,+d, <0
with J = Na, or K
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Figure 5: (a) A minimum circuit for the dynamics of a pump. {h)e phase plane portrait of the
circuit equation.

which will results in anS-nonlinearity if and only if the slope is negative or equesly

Oy, +dy, > 0withg, >0,d,, <0. (18)

7 “'Na

In such a casd, = i, i, are two critical values, and in practical terms, there istaaacentration-
dominating depolarizing voltage across the serial coraitatiffusor if the outward current in-
creases in the range pf, is]. See Fig.4(b).

3. Circuit Properties. The analysis carried out below is for the equivalent ciragtations
Egs.(13, 14) and those listed in Table 2 with the continususmecewise lineafV -curves (16,
17). For the existence of steady states, $heonlinearity and theV-nonlinearity are not needed
but only their primary conductive branches. For the gemamabf action potentials, Nds S-
nonlinearity is not needed but its primary conductive bhawhich can alter K’s N-nonlinearity
qualitatively but only for large conductance. For the gatien of spike-bursts, both nonlinearities
are required. In all types of the behaviors, the ion pump gyos are indispensable.

3.1. Pump Dynamics.We begin with the analysis of a minimum circuit consistingaafapacitor,
a resister, and a pump in series. The circuit and its phase gartrait are shown in Fig.5. In
particular, the corresponding ordinary differential etipras are given as follows

cV' =1
{ I'=\(-V — E —~I). (19)

The V-axis consists of entirely equilibrium points for which Heowith} < E are unstable and
those withV > E are stable. Also, every unstable one is connected to a siableThis means the
following. Suppose that there is initially a net chatgeleposited on the lower side of the capacity
so thatVy, = —¢o/C < —F andl = 0. Then because the equilibrium poiig, 0) is unstable and
the region/ < 0 is forbidden, soon or later the pump starts to work wiig) > 0 at some time
to, setting off the transport of the right amount of chargedotop side of the capacitor, and the
circuit dynamics eventually settles down at the equilibripoint(V (4+00), 0). (In the case that the
resistance; = 0, the equilibrium point can be expressed explicithylastoo) = —2F — Vj, see
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below.) This shows that our assumed pump characteristid Eqdeed captures what we think a
pump should do qualitatively — to transport and store upgésunidirectionally.

Analytically, the minimum pump circuit equation Eq.(19)dae solved explicitly by changing
it first to its phase equation as below

dl
— = —-ANCyI - \NC(V+FE

whose solution with initial conditiod(0) = I, > 0,V (0) = V4 is

1

1
I=|Ih+=(Vo+E)— —.
0+7(0+ ) Y2

1 1
N2 exp(—ACY[V = Vg]) — ;(V +E)+

In the limity — 0, the solution is on a parabola

I:Lﬁ% (Vo + E)* = (V + E)?] :IO+§(VO—V)(V+VO+2E).
With the limiting initial equilibriumlim, .o+ I(t) = Iy = 0,lim;_ o+ V(¢) = V;, the stable equilib-
rium point opposite td; < 0is —Vy — 2F as pointed out above.
Dynamics of subcomponents of the circuit equations Eqs14) especially those without the
pumps, can be considered similarly, but they are well-ustded elementary circuits which can be
found in almost all undergraduate textbooks for circuitry.

3.2. Passive and Active Resting Potential¥Ve now consider the whole circuit equations with the
piecewise lineaf V' -curves (16, 17). The steady state equilibriums consideogdare all stable.
They lie on the primary conductive branches of both ions'spasl V' -curves, with the diffusive
effect of inward ion flow not dominating these steady statésnce, the result of this subsection
does not depend on Hypothesis (1) and Hypothesis (2) of tbertadels. In other words, it is the
primary feature of a cKcNal model. For this reason, we will restrict the effective rangehe
primary conductive branches and assume instead the foltpwi

_ _ _ 1 _
Ixp = fx(Vo — Ex) = gy, (Ve — Ex) andVe = hxa(Inap) + Ena = — INap + ENa

Na

We will also use the following notation interchangeably fesistance and conductance

1 1 1

gK:a7 gNa:T_Nau gA:;7 gp:g}(_'_gNaL

Under the restriction to primary conductive branches, ttiza membrane equilibrium point,
Vo' = I\ = I = Ixap’ = 0, is solved from the following equations using the equivatgrcuit
equation (14):

INa,p + IK,p +Ix — Lt =0
Vo—79IA=0

Ip = gy (Vo — Ex)

Vo = ryaINap + ENa.

(20)
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It is a linear system, simple to solve exactly. Several casegsonsidered below.

We first consider the equilibrium states when one of the isfdacked. When K is blocked,
the equilibrium for the reduced Nasystem, i.e. the cNamodel, is solved from the same equation
(20) with the third equation deleted and thed§urrents set to zerodsg , = Ax = 0 in the first
equation. The reduced system becomes,

]Na,p + ANa - Iext =0
VC - VANa =0
VC - TNa]Na,p + ENa7

Since there are 4 variableBg, Ina,p, ANas and Ex, to determine from 3 equations, one of the 4
variables can be used to determine the others. Solutiohe equations can be explicitly expressed

as follows: .
gNa n
VC == ENa = 7ENa + 71(»(‘5
gNa _'_ gA gNa + gA
ANa - gAENa

INa,p - _gAENa + cht-

(21)

Since Ax. > 0 for the pump current, for the Kblocked system to have an active membrane
resting potential (with external forcing,; = 0) we must have from the second expression that

En, >0

which also gives the same polarity to the passive restingniall Fx, > 0 from the first expression
when/.; = 0. Notice from Eq.(21) above, that when the voltage is clangietbro,Vy = En, =

0, the external current i&,. = —g,., Fxa., that is, the passive resting potential can be measured if
the conductance,, is known.

For the N& -blocked equilibrium, the analysis is exactly the samelfierreduced pK system.
Specifically, after deleting the fourth equation in (20}tisg Ix., = Axa = 0, and dividing the
third equation bygy,, and equating the role of Ak to that of Ay,, the equation form is exactly
the same as the kblocked equilibrium equations above. As a result;active resting potential
can be solved as g )

_ K n
e N et #2)
Again, with I, = 0, both Ex and Ex have the same polarity and the corresponding ion pump
equilibrium current is

Ax = —g, Fx

in order for which to be positive we must haig < 0. Similarly, the passive resting potentiak
can be measured from an equilibrium which is voltage-clatrgieero whery, is known:

_ 1
Vo=Fx =0, Fx = —Iox.

K

The result above is summarized below.
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Proposition 1. For both thepK*sNa; andpNafsK™ models, the directionality of an ion species’
pump from Hypothesis 4 determines the polarity of the iomriggéactive resting potential from
Hypothesis 3, which in turn implies the same polarity foritihrespecies’ passive resting potential.
Also, Fy, (resp. Ex) can be measured by the external current if the voltage is\pked at zero and
K* (resp.Na") is blocked.

Note that this result can be easily generated to other i@sting potentials. For example, if the
cell has a Ct ion pump and ha€/¢; < 0, the same polarity agk, then the cell should pump
Cl~ ion outward, in the opposite direction to'® pump direction. This is because Uk negative
charged whereasKis positive charged, but both result in a net inward pumpenirto which the
same analysis above then applies. Similaily, > 0 iff Cl ~ is pumped inward.

Now consider the full steady state equilibrium from equaif20) without any ion blockage.
Upon simplification, it is straightforward to derive or toextk that the active membrane resting
potential is B B
_ naBENa t+ 9y B 1
Gt Ot Oy Gn T O T s
This relation has several equivalent form. First, the tpasive resting potentidlp introduced
in (6) is another conductance-weighted linear combinatidhe passive resting potentials of both
ions:

B, Lot (23)

E o gNaENa + QKEK
b =

gNa _'_ gK
see Fig.4(c) for an illustration and derivation. With thedation, the active membrane resting
potential is

)

_ 1
Em = I EP + cht-
9p T 9a 9p T 9a

Also, using the relations obtained above between the aatidepassive resting potentials of both
ions, it can be expressed as another conductance-weighgeahe of active resting potentials,

Ena+ 9. E 1
Em = Ine =N T =K + ext
gNa+gK+gA gNa+gK+gA
E E
_ (gNa + gA) Na T (gK + gA) K + 3 ot (24)
Ine T 9 T Ga Ine T G T 9a
_ gNaENa + gKEK + gAEA + 3
- ext
Ina T 9k T G4 Ine T 9k T G4

whereF, is simply defined as the sum of the active resting potentfdtssions: £y = FEn.+ Ek.

As a concluding note, we recall that the nullcline for thetabsolute active currefi¢ equation
coincides that of the net active current’s nullclifg,— v, = 0. As a result, the membrane steady
state equilibrium is not dynamically fixed. In fact, the regtpotentials form a line parallel with
the Is-axis in the observable state spacgdf, /c + In., + [k, + 1) Of the circuit. Thisis a new
and interesting property:
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Proposition 2. For both thepK*sNa] andpNa; sk models, the membrane can maintain the same
observable steady state by pumping the potassium and saolisnat different individual rates as
long as the ion pump maintains the same net active cutfgrat the corresponding steady state
rate. Also, the conductance weighted passive resting pateran be measured by the external
current when the membrane potential is clamped at zgrobn, + g, Fx = loxi.

More importantly, this continuum of equilibrium states ateicturally stable to be shown later, the
sole consequence to the existence of the dual ion pumpsisloake, changing the total absolute
currentlg can leave the steady state fixed. In contrast, we will showlj {hat the opposite
happens when seemingly stable action potentials and $pitsts change extremely slowly with
varying Is, the phenomena of metastability and plasticity.

3.3. Action Potential Generation With lon Blockage. We now consider the neuron models
with either the sodium ion or the potassium ion blocked, tiee pK" or the sNa subsystem,
respectively. For the first casy, , = Ana = 0, the reduced model equation (13) becomes

(25)

C(‘/C/ - _[fK(VC - EK) - AK - Iext]

It is a 2-dimensional system Wi, Ax. As shown in (15), fog, + d,, < 0, K™’s IV-curve admits
an N-shaped nonlinearity. As a result, the system above behargkrly like the FitzHugh-
Nagumo equations, see Fig.6(a) for a phase plane illustratHowever, unlike the FitzHugh-
Nagumo equations, the effective range of the Ndocked K" -system is restricted to the upper half
planeAx > 0 since thel/--axis, Ax = 0, is invariant for the system through which no solutions
originated above can cross. Because of the factAé nontrivial nullcline, Ax = —V/~, lies
only in the second quadrant, any active equilibrium statevith Ax > 0 must be negative. From
the phase portrait, we can clearly see that the active éguiih point is a stable node while the
passive equilibrium pointis a saddle, which is stable onighe complete absence of active current
Ak = 0. Also, we can see that the passive resting poteitjals always smaller than the active
resting potentiaFy, both are related by Eq.(22).

The phase portrait Fig.6(a) shows a stable active equilibbstate base with.,, = 0 as well as
a nonstable active equilibrium state case with a positiye> 0 for which a limit cycle emerges.
For the limit cycle case to occur, two conditions need to hdigthe critical voltage value for
the N-nonlinearity must be negativé;x + v; < 0, and (ii) the combined diffusive coefficient,
g« + d,. < 0, must not be too large in magnitude so that the two crititgicurrent values of the
N-nonlinearity lie entirely above the--axis.

The active steady state is stable for a rangd.gf and it gives rise to ar,-forced limit
cycle, or action potential, when it loses its stability. The-threshold for the action potentials is
determined when the active resting potential equilibritigpmcrosses the first critical value of the
N-shaped/'V-curve atv; + Ex into the diffusion-dominating region. Solving from the edjon
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s _/
Ax=fx (Ve—Ex)
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Figure 6: (a) Na-blocked phase portrait. (b)blocked phase portrait. It is clear from the phase
portraits that active resting potentials do not alwaystekigx > 0 or Ey, < 0.

(22) and the threshold conditioti = v, + Ex, we have the threshold value

g I =
Tow > Iicope = v+ Byl
R g [ P14 gy K}

which is small for smalk. It implies that action potentials can be readily generdtednodest
external forcing. The type of action potentials are-Kediated. This result can be summarized as
follows.

Proposition 3. For the Na™-blockedpK™sNa" model, thek "-mediated action potentials can be
readily generated fol..; > Ik e if v > 0, g, + d, < 0 are relatively small in magnitude each,
and if the left critical value of théV-nonlinearity in voltage is negative;x + v; < 0. However,
whenEx + v; > 0, no amount of stimuli,,, can induceK*-mediated action potentials. For the
K*-blockedpNa; sk model, theNa*-mediated action potentials can be readily generated when
Fna 4+ v1 < 00r Ex, 4+ v; > 0 but small because of the smallness of the ion pump’s resistan

We now consider the K-blocked model of Eq.(13),

CVe' = —[Inap + Ana — Loxt

ANa/ = )\ANa[vC - WANa] (26)

EfNa,p/ = Vo — ENa - hNa(]Na,p)-
In the case that the active resting potential does not lie ari\iffusive branch, we can consider
the system restricted on its primary conductive branch &méeFor the piecewise linear case, the
primary branch of thdy, ,-nullcline isO = Vo — Ex, — Ana(Inap) = Vo — Exa — 7y, INap, from
which

INap = 9no (Ve = Ea)-

Substitute it into Eq.(26) gives the reduced 2-dimensisgatem

CVe' = —[gy. (Vo — Exa) + Axa — Loxd]
ANa/ - )\ANa[VC - 'VANa]-
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It can be seen from its phase portrait Fig.6(b) the followitige system is restricted to the upper
half plane Ay, > 0; if exists the active resting potenti&ly, must be positive; and only in the
absence of the active pump currefit, = 0 is Na“’s passive resting potentidly, stable; and
the relationshif) < En, < Ena. must hold as concluded already from the last subsectiorp, Als
when restricted on the primary conductive branch, the acésgting potentiaky, has been solved
explicitly in (21) as g N
J— — Na n

Vo = Ena = mENa + mloxt
andAn, = Exa/7 > 0, Inap = —Ana + Loxt-

In order for the neuron to generate action potentials, oetHe circuit to oscillate, the active
resting potential equilibrium needs to lose its stabilfar this to happen, it have to enter Na
diffusive branch of its passivel/-curve Ve = hya(Ina,p) + Ena through the lower critical point
Ina,p = 11. Using this relation to determine the needed externalgrtireshold from the equation

1 = INa,p = _ANa + Iyt = _ENa/’y + Lext, WE have
]ext > INa,thr =

For fixedi; andEx, but smally, this threshold can be too large a current to be injectectaduron

to realistically generate K-blocked, Na-mediated action potentials, in contrast to the relative
ease to generate Néblocked, K-mediated action potentials as shown above. In summary, we
have the following.

Proposition 4. For the K*-blockedpK*sNal model,Na*-mediated action potentials cannot be
easily generated with modest external forcing since it Bégd > Ix, ¢he DUtLiM.,_ o+ INa the = 00.
For It < Inatne the circuit settles down at a stable equilibrium whose cspending resting
potential Ey, is always positive. The same is true #r-mediated action potentials in théa*-
blockedpNasK* model.

3.4. Action Potentials Without lon Blockage. We now consider a configuration between’&
N-characteristic curve and N& S-characteristic curve in such a way that the diffusive bhanc
of Na™’s IV-curve does not affect the circuit dynamics, i.e. thecKlal model. The following
notation is used, see Fig.7,

ki1 = fx(vi) = fx(v}), withv, <oy, andky = fi(vs) = fx(vs), with vy < v,
ny = hNa(il) = hNa(ﬁ); with 11 < ’L’{, andng = hNa(’L;) = hNa(’ig), with Z; < 19

The oriented loop with vertice@y, k1), (v, k1), (v, ko), (v5, ko) hugging K™’s IV -curve is called
K*’s hysteresidoop. Similarly, the oriented loop with vertic€s,, i,), (n1,i}), (n2,i2), (n2,i3)
hugging Na's I'V-curve is called N&’s hysteresis loop. We note that whether or nof &acurve
forms an hysteresis is context-dependent. Take ths R-shaped/V-curvel = fx (V) as an
example. As the nulicline for the equatidit = 7 — fx(V), the curve forms an hysteresis because
a V-phase line can intersect the curve multiple times, andritezsecting points on the two end
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Figure 7: (a) K's hysteresis loop of the pksNal model. (b) Na's hysteresis loop of the
pK*sNa" model. (c) The translatefl’-curves by their corresponding passive resting potentials
showing a configuration satisfying condition (27) and ctindi (28). The newV-hysteresis loop

is the result of the vertical sum of s I'V-curve and the primary resistive branch of NalV/ -
curve.

branches are stable equilibrium points of the equation hedntersection with the middle branch
is an unstable equilibrium point. However, the curve doddaron an hysteresis for the equation
I' =1 — fx(V) because every-phase line intersects the curve at most once.

Upon translation by their respective passive resting piaksn K*'s loop is shifted parallel to
the V-axis leftwards byFx amount and N&s loop is shifted parallel to th& -axis rightwards by
En. amount. The mutual configuration of the shifted loops fos sbsection is defined by the
following condition:

v+ Bx < ny + Eya. (27)

See Fig.7(c). Under this condition;# N-characteristic lies in the voltage rangé,< n, + Fxa,
of the primary conductive branch of N& S-characteristic. As a result, the former will persist if
the latter is not too steep in slope, i.¢,, is modest. More precisely, under the following condition

Gy +di + 9y, <0, (28)

the combined K-Na* I'V-characteristic] = fx(V — Ex) + g, (V — Exa), with K*’s hysteresis
loop and Na's primary resistive branch in parallel again permits a névgéhaped/ V' -curve in
the range/ < ni + Ena.. That is, K™s-diffusive channel not only dominates its own conductive
channel in it§v;, v5] range, but also dominates the combined passive paralleheffgin the same
range. In fact, the conductance sum of Eq.(28) is the newsiifé coefficient for the combined
IV-curve, see Fig.7(c). When condition (27) is violated,; 3K/ -loop may not persist, as such is
a case illustrated in Fig.4(c).

It turns out that under condition (27), the circuit dynanmdosnhot extend into the region beyond
Vo > ny + En, andly,,, > i;. Hence, we can restrict the analysis to the effective reffiohla’
in{Vo < ni+ Exa, Inap < 11}. As aresult, we only need to consider the primary branch of$Na
IV-curve to beVc — Exa = hna(Inap) = T, INap OF INap = 9, (Vo — Exa) as we have done for
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Figure 8: Dimensionless simulations of Eq.(14) with pareenealues: g, = 0.17, d,, =
—0.06, i, = 0.5, iy = 1, Ena = 0.6, g =1, d, =—1.25 v; =0.5, v =2, Ey =—0.7, C =
0.01, A =0.05, v = 0.1, I« = 0, e = 0.001. (a) A phase plane view of the oscillation. (b) A
time series plot for whictiy, = Inap + Anay Ik = Ixp + Ak = fx(Ve — Ex) + Ak.

condition (28). This restriction solves the last equatib(ild) for the ideal situation whea= 0,
and as a result, Eq.(14) is reduced to a 3-dimensional systtow

CVC/ = —[gNa(Vc - ENa) + fK(VC - EK) +1Ia — [eXt]
I\ = Ns[Ve — 714
Is' = MA[Ve — 14

Because the absolute active curréntan be solved in terms &f-, I, as in (11), and thus decou-
pled from the first two equations, the system above is esdlrig-dimensional. Fig.8(a) shows a
phase portrait in th&- /5 space for allls > 0. The invertedV-curve is thel/--nulicline

]A = _(gNa(VC - EN&) + fK(VC - EK) - Iext)a

forming an hysteresis, and the line is thenullcline Iy, = Vi /7.

Depending on the external forcing currdpy;, the circuit can have a stable equilibrium point
lying on both primary conductive branches of the two ions séhoorresponding resting potential
is given by formula (23). In order for the neuron to generatigoa potentials, this steady state
resting potential must lose its stability by entering irtte tombined diffusive branch of the'K
Nat IV -curve through the same left critical point+ Ex (which remains the same for piecewise
IV -curves but may shift for smoothl’-curves.) Hence, the action potential threshold for the
external current is solved from + Fx = E,, and equation (23) as below

]ext > Im,thr = (gNa + 0% + gA)(Ul + EK) - (gNaENa + gKEK) (29)

Fig.8 shows a simulation of action potentials when the thwscondition above and the configu-
ration conditions (27, 28) are satisfied. A 3-dimensionalwof the action potential is also shown
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Figure 9: (a) The action potential cycle on the primary cantishe branch of/y, ,-nullcline surface

in the VoI Ina p-Space when conditions (27, 28) are satisfied. (b) The saeveexcept for con-

dition (30) or (31). The equilibrium point (filled circle) dmth K*’s primary conductive branch
and Na'’s primary conductive branch is always stable.

in Fig.9(a), showing it lies entirely on the primary brandhiq, ,’s S-shaped nullcline surface.
The type of action potentials is'kmediated, the result of diffusion domination by kon only.

Proposition 5. ThepK*sNal model can generaté "-mediated action potential oscillations under
the conditions (27, 28), which reduce the model fika cNal model.

3.5. Termination of K*-Mediated Action Potentials. We now consider the case in which'ls
diffusive channel is either not dominating or completelgettt in the effective region of interest.
In the non-dominance situation we assume the opposite tditomm (28)

g Ty + gy, >0 (30)

for which K™'s N-characteristic does not persist as in Fig.7(c). In the rd®ssituation we can
assume
ni + ENa < v+ EK (31)

for which Na"’s S-characteristic lies in the primary conductive region df¥«passive channels.
In both situations, we can assume for simplicity that'«passive/V -characteristic in the
effective region of interest to be simply

I'= fK(V) = gNaV

In this case, the system of equations (14) remains 4-diragakin V¢, I, Is, Ina,. HOwever,
since thels-equation is decoupled from the rest equations, the noécétructures of the other
variables remain fixed for all values &§. As a result, the system is essentially 3-dimensional.
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Fig.9(b) shows the nullcline surfaces of thel s In. ,-System. Adding to this advantageous feature
of dimension reduction, the nontrivial part of tlignullcline coincides with that of ,’s. Notice
further that because both the-nullcline and/,-nullcline surfaces are planes given as

In = —(Inap + 9 (Vo — Ex) — It) and Iy = Vi /v, respectively,

the relative configuration of these surfaces becomes eveplesi as shown. These two planes
intersects along a line, which in turn intersects fshaped/y. ,-nullcline at one, or two, or
three points. However, it is straightforward to show that éguilibrium points on the conductive
branches are stable and that the one on the diffusive branatstable if there are indeed multiple
equilibrium points. Fig.9(b) shows the case that there Ig one equilibrium point which lies in
Na'’s primary conductive branch. Because of the existence cif stable equilibrium points on
Nat’s conductive branches, action potentials, i.e., osailiet, cannot be generated. When cast in
terms of selective blockage of'Ks diffusive channel, we can state the following:

Proposition 6. It is not possible to generaté™-mediated action potentials for tdK* sNal model
if K*’s diffusive channel is not dominating in the sense thakeeitiondition (30) or condition (31)
or both hold, in which cases the reduced systemakacNa" model.

3.6. Spike-Burst Generation.We now consider the case in which the combined passive clsanne
from both ions result in anl/-characteristic curve like the one depicted in Fig.4(c)e @halytical
conditions for the configuration is the following:

(a) TheEn,-shifted Na hysteresis loop lies in the diffusive region of thg-shifted
K™ hysteresis loop:

’U1+EK<n2+ENa<n1+ENa<U2+EK. (32)

(b) K*’s diffusive channel dominates'®s conductive channel and N& conductive
channel combined:
g +d, + g, <O. (33)

(c) Na'’s diffusive channel dominates its serial conductive clgnn the region
i1, 2] to have anS-hysteresis:

1 1
— + — <0. (34)
gNa dNa

(d) Burst (action potential) excitation condition:

]ext > Im,thr = (gNa + 0% + gA)(EK + 'Ul) - (gNaENa + gKEK) (35)
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Condition (d) is the same as the action potential threshofdition (29) so that the equi-
librium point on the primary conductive branch of Nais unstable. This condition allows the
generation of K-mediated action potentials or bursts, a more appropréate in the context of
this subsection. Condition (c) is what it says. Conditiopi€omore than enough to guarantee
K*'s IV-curve to have anV-nonlinearity which only requireg, + d,. < 0. In fact, in K's
diffusive rangev, + Fx, v, + Ex], the combined passive channel from both ions in parallel is
still dominated by K'’s diffusion. This condition is the same as the second caif28) for
the generation of K-mediated action potentials or bursts. However, it is thed#oon (a) that is
critical for the generation of spike-bursts considereceh&dore specifically, it violates the other
sufficient condition (27) for the generation of kmediated action potentials to prevent them from
completion. This is because the lower knee point of N&-hysteresis cuts into the'kmediated
action potential in K’s diffusive range. In another words, at the lower knee of $Heysteresis,
the Ix. ,-equation takes over and the"Knediated burst is interrupted by Nanediated spikes
around Nd’s S-hysteresis.

Fig.10 gives an illustration on the geometric mechanismpokesburst generation for this
model. The mathematical method to study and to understarid mwblems has developed and
matured through a series of works [3, 4, 5, 6, 7, 8, 9, 10]. Teded the method is to utilize the
fast-time scale ofy, ,'s equation for sufficiently smad > 0. More specifically, at a near ideal sit-
uation wherr = 0, all solutions of the system are quickly equilibrating oa tionductive branches
of Na’s S-hysteresis, thus reducing the analysis to the systematestito the lower dimensional
conductive branches dfk, ,’s nullcline surface. Becausi's non-trivial nullcline coincides with
15’s nulicline, the analysis is further simplified into a 2-ainsional phase plane analysis of the
reduced/1,-subsystem on the two branches. A full picture of the orlstalcture is then pieced
together from the subsystem’s 2-dimensional phase ptrtoai the branches together with fast
transitions from the5-hysteresis’ lower knee edge to its upper conductive bramch similarly,
from its upper knee to its primary conductive branch.

Here is a more detailed description of the illustration.. Figa) shows the nullcline-surfaces in
the VI Ina p-State space. Because of the domination bysKliffusive channel by condition (33),
the intersection of th&:-nullcline surface and th&y, ,-nullcline surface, or th&: Iy, ,-nulicline,
on the primary conductive branch of Na IV -characteristic or théy, ,-nullcline surface has a
fold point, giving rise to one of the two necessary cond#itor the K"-mediated bursts. Because
of the excitation condition (35), thi -nulicline surface goes through's new diffusive dominat-
ing branch of thé/ Iy, ,-nullcline, giving rise to the other necessary conditiono -mediated
bursts. Fig.10(b) is a zoom-in view on the effective regidrsmike-bursts. The condition (32)
prevents any K-mediated burst from becoming a"kKmediated action potential, circling around a
would-be FitzHuge-Nagumo-like hysteresis ontéaprimary conductive branch like the case of
Fig.9(a) if the condition (27) is not violated by conditiod2). As a result, the burst continues,
heading towards the lower knee edge ofT$éaS-hysteresis. Once an orbit reaches the lower knee,
it must jump upward to the upper conductive branch of $Heysteresis. On the top branch and
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Figure 10: Na-K* spike-bursts. The same parameter values as Fig.8 exceptfab.1, i, = 0.3

for which the conditions (32, 33, 34, 35) are satisfied for(E4). For consistence check, the dash
spike-burst of (d) tracing the solid spike-burst in var@ald, is generated from circuit Fig.3(c)'s
equations from Table 2 with exactly the same parameter salod initial conditions.

in the effective region shown, all solutions moves dowg’ (< 0) in Vi, up (Ix" > 0) in I, and
towards the top knee of the-hysteresis before falling from the edge down to the lowanbh of
the S-hysteresis. On the lower branch, solutions moves up ivghadirection when in the region
outside the fold of thé Ix. ,-nulicline (" > 0). Otherwise when inside the fold{’ < 0), they
move down inV¢. Also, they move down in thé,-direction if in the region left of thd s Iy, -
nullcline (I," < 0), and move up i, if otherwise (4’ > 0). Hence, the train of Na-mediated
spikes moves in the increasing direction/@fwhen it is to the right of the, I, ,-nullcline and
above the fold of thé/- Ix, ,-nullcline as shown. It will end upon entering the Iy, ,-fold. The
termination of spikes can also be taken as the end of the.bHi@wever, once an orbit crosses
into the left side of thd y Ix. ,-nullcline (7," < 0), another episode of spike-burst is set in motion,
heading to the fold, turning around the fold, and headinpeddwer knee edge of the-hysteresis
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Figure 11: (a) Simulation for Eq.(14) with smoatk'-curves of Table 3. Parameter valugs; =
0.2, dy, = —0.1, iy = 0.1, iy = 0.33, Exa. = 0.6, g, = 5, d, = —5.5, v; = 0.55, vy =
1.5, Bk = —0.7, C = 0.01, A = 0.1, v = 0.1, I« = 0, € = 0.001. (b) Simulation for the
pNalsK* model from Table 2 with parameter valueg;, = 1, d,, = —1.21, v; = —0.7, vy =
—0.2, BExa = 0.6, g, = 0.17, d, = —0.67, iy = 0.18, iy = 0.5, Ex = —0.7, C = 0.01, \ =
0.05, v =0.1, I,; = 0, e = 0.0005.

again. Fig.10(c) shows the 3-dimensiofal/s /., phase portrait projected onto thgV--plane,
and Fig.10(d) shows the time series of the spike-burstisoluNotice that the absolute ion pump
current/s oscillates in time as well.

Proposition 7. ThepK*sNal model can generatia*-K* spike-burst under the conditions (32,
33, 34, 35).

3.7. Smooth/V'-Curves. There are various ways to construct smabthcharacteristic curves for
both ions’ passive channels. A brute-force way is just toraximate the piecewise linear curves
fx, hna Dy polynomials of degree 3 and higher without decomposimegntinto their respective
conductive and diffusive channels. Here instead we desarniother systematic and direct way.

Take theN-shaped curved = fix (V') for example. It is simpler and more direct to specify
instead the derivativéx' (V') of the curve. Lety,,d,,v; < vy be the same parameters as above
and assume the diffusive dominatiorjin, vs]. Letv,, = % be the middle point of the diffusive
range. Afx’ (V') similar to the derivative of the piecewise linear curvesfas the following:

(i) V = vy, v, are the only critical pointfk’(vi) = fk'(v2) = 0.

(i) Diffusion dominates the middle range,, v-], with d,, + ¢, < 0 being the com-
bined maximal diffusive coefficientfx’(v,,) = d, + g-

(iii) Electromagnetic force dominates the range outsideittierval|v;, v5] with g,

being the saturated conductance:sup  fx'(V) = g, > 0.
—oco<V <400
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It is straightforward to check that the following form séts these conditions:

_ |gK + dK|(V — Ul)(v B UQ)
(12gt)2 4 PGBV — )

Ik

f&'(V)

Integrating the derivative gives the function

fe(V) = /0 " )

— V_Um —1 Um : V2 — U1 Ik
:gV+du[tan17+tanl—,Wlthu: ,
D p p 2 Vg +dl

which is a canonical decomposition by definifgV') = fko(V) + fxa(V) with fx (V) = ¢,V

ande7d(V) = fK(V) — fK7e(V).
A function form for hy, is similarly constructed from its derivative,

|+ (L — i) (] — i)
hNa,(I) = I - [ >
a 1dNa (I_Zm)2

(i1;i2>2_|_ IN
INa

whereg,, + d,, > 0 (equivalent tol/g,, + 1/d,, < 0) andi,, = (i1 + i2)/2. Both fx andhn,
are listed in Table 3.

In fact, this is a general technique that can be used to genthi@ continuous piecewise linear
IV-curves. For example, for the continuous piecewise lineactional/ = fx (1), its derivative
at points other than the critical points, v; is

fK'(V)=g, +d (v, <V <wy).

Imposing the continuity of at the critical points to the integrdk (V') = fov fx'(v)dv results in
the functional we have been using.

Note that the configuration conditions (a,b,c,d) of the fes subsection are sufficient for
spike-burst generation for the models with the piecewisedi/ V' -curves. However, they are not
sufficient enough for the smooflV -curves because unlike the linear case the critical poirttseo
smooth curves will shift when combined in parallel. We wilse the precise strategic control on
the locations of the new critical points. However, thesedttions do give a good approximation
of the new points that can lead us to the right nullcline camrigjons after a few trials-and-errors.
Fig.11(a) is a Na-K* spike-burst simulation with the smooff’-curves from Table 3.

3.8. pNa‘sk™ Model Simulation. A pNalsK* model is exactly the same as thefsNal model
except that K’s passive channel is a serial conductor-diffusor and’sl@assive channel is a
parallel conductor-diffusor as illustrated in Fig.3(Hhd polarities of the passive resting potentials
and the directionalities of the ion pumps remain the samee Syistem of equations is listed in
Table 2 with continuous piecewise linear functionals fothbions’ passive channels as listed in
Table 3. Fig.11(b) is a K-Na' spike-burst simulation of the pNaK* model.
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Figure 12: (a) Circuit diagram for the pKsNa’, type models whose equations are given by
Eq.(36). (b) The same parameter values as Fig.10 except for= 0.1, v, = 0.05, A\, =
0.05, A\, = 0.1 for EQ.(36).

3.9. pKZ sNa’, Model Simulation. With disjoint ion pumps, the pump parameter valigs A,
are not necessarily equal, nor are the parasitic resigtancey,.. The circuit equations corre-
sponding to Eq.(13) become instead as below

CVe' = —[Inap + fx(Ve — EK) + Ana — Ak — Lox]
Ana' = Ay Ana (Ve = 7y, Ana)

Ak’ = =2\ Ak (Ve + 7, Ak)

EfNa,p/ = Vo — ENa - hNa(]Na,p)-

(36)

Fig.12 shows a circuit diagram and a spike-burst simuldtothis type of models.

3.10. Termination of Action Potentials and Spike-Bursts byShutting Off lon Pumps. Fig.13
shows typical dynamics regarding spike-bursts when onleeoiiin pumps in a pKsNal model is
blocked. When the Napump is shut off, the model reduces to a‘@a model, and the bursts
persist. Thus, the Napump is not necessary. On the other hand, when the@tmp is rendered
inoperable, all bursts are turned off, a typical outcome K gNal models. Similar results are
found from pNa sK* models and pK sNa", models. In terms of cellular metabolism, neuron’s
electrical pulses and spikes can be completely turned afhiojting down the intracellular ATPass.

Proposition 8. To generate action potentials and spike-bursts, it is negigsto have one ion

species to have parallel electro and diffusive channelstartthve an ion pump at the same time.

4. DiscussionsWe have described here a reductionistic approach to casiineuit models for
neurons. Basic components include serial conductorsiiffs; parallel conductor-diffusors, and
ion pumps. A minimal number of model parameters are summiiz Table 4. The parameter
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Figure 13: Na-K* spike-bursts. The same parameter values as Fig.10 for&q(g) The Na-
pump is shut off with initial conditiomy,(0) = 0 but Ax(0) > 0. Spike-bursts persist. (b) The
K*-pump is shut off withAx (0) = 0 but Ax.(0) > 0. Spike-bursts terminate.

list alone suggests that if the models are good approximsiio real neurons then most of their
structures but their passive resting potentials and theiges of diffusion domination follow from
circuit imperatives. The question of why those exceptiggabmeters become what they are is
perhaps a question of evolution which certainly cannot likegbed here within the framework of
circuitry.

Circuit properties of our pXsY models can be summarized argkrplized as follows.

1. For cX, models, wherez = + (resp. —) if X* is positive (resp. negative)
charged, andv = + (resp. —) if X# is pumped outward (resp. inward), the
active resting potentiatx and the passive resting potentiat must satisfy

0 < zaFx < zaFx

provided thaty exists.

2. lon X’s passive resting potential is not stable in,ckodels but can be mea-
sured by the external curreft; when other ions’ currents are blocked and the
membrane potential is clamped at zéfg. = 0.

3. The membrane resting potentia), can be maintained at a fixed value in.oXY -
models but with different ion pump currents for X and Y.

4. Action potentials mediated by ion X can be generated inyp¥models only if
X’s diffusive channel can dominate all ions’ conductive ghels in parallel in a
finite voltage range. Moreover, X-mediated action potémkigoolarizes (starts)
most probably at a negative membrane potential.

5. Spike-bursts can be generated inysX, models only if ion X’s diffusive chan-
nel can dominate all ions’ conductive channels in paratkeldurst generation
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Table 4: Circuit Parameters
g, max. conductance of ion J
g, +d, max. diffusion coefficient for parallel conductor-diffuso
9,d,/(g, +d,) max. diffusion coefficient for serial conductor-diffusors
Ej passive resting potential
Ey active resting potential witl'; =

93 E
- B gy 1/, I
(v1 + Ej, vy + Ejy) diffusion dominating voltage range for parallel channels
(11,12) diffusion dominating current range for serial channels
v, ion pump resistance of ion J
A, ion pump coefficient of ion J in the unit a@f/ [ampere - Henry]
C membrane capacitance

and ion Y'’s diffusive channel can dominate its conductivaratel or other ion’s
conductive channel in series for spike generation.

6. Action potentials and spike-bursts may not be generatp¥jsY, models which
do not have an ion pump or only have an inoperable ion pumpfoki

The model, the analysis, and the result can be extended iy mays. In one aspect, the
conductive branches need not symmetrically have the samx@mma conductance for thé&-
curve, nor for theN-curve. Also, thelV-characteristic curves for passive channels need not be
either piecewise linear or smooth, but can be a mixture ofi.odh another aspect, additional
ion channels can be incorporated into the minimal two-iomsl@s as pointed out in Sec.2. In
fact, all the simulations above were actually done for aesponding pXsYcGl model with
9o, = 0.01, d., = 0, Ecy = —0.6, but the smallness in magnitude of the conductance andsibifiu
parameters did not qualitatively change the dynamics ofmiiemal models. It is conceivable
that some nontrivial extensions may alter the minimal clestructures described here in some
fundamental ways that are not yet understood. We also natenibst of the results on action
potential and spike-burst generations have been obtaoratid pK'sNal models. Similar work
is yet to be done for the pNaK* models.

We have categorized some basic dynamical behaviors of thelsias summarized above. Yet
there are some more features left unexplored. The exist@nagunction-fold point leading to
a period-doubling cascade ([5, 6, 11]), the existence ofihioiv's orbit ([7]), and the existence
of a chaotic attractor with a canard point ([9], but for a stho®-hysteresis only) are distinctive
possibilities for our models because our models and the ¢bath models cited in the references
share a fundamentally similar geometry for the said phemameowever, these features may not
be as prominent as the three kinds analyzed above for ngurahdcs.

We have given a general yet design-specific method to cartsteuron models. Given the
multitude, flexibility, and robustness in choosing the igedes in a model, the serial/parallel

37



configurations of the ion channels, the individual shapethef V -characteristics of the passive
ion channels, the functional characteristics of ion puraps, the parameter values, one should be
able to use our method to customize a model to fit a particyps of neurons.

We anticipate little difficulty to implement the models iratesircuits. This is especially true
for circuit Fig.3(d) with a linear inductor with constantdactancel. (The simulations of Fig.10
and Fig.11 demonstrated thaf is approximately constant, implying that = 1/(\ls) can be
fixed at a constant as well.) Electronic devices witinysteresis andv-hysteresis are almost as
common as other elementary components of resistors, iody@nd capacitors. For example, a
tunnel diode has av-shaped/ V' -characteristic like our parallel conductor-diffusor. eTtmiddle
negative resistive region of a tunnel diode is the resultwEqum tunneling by which electrons
can cross an energy barrier because the probability, by snefahe electron’s wave function, to
find them in the classically forbidden side is substantiad.SAcharacteristic can be constructed by
flipping and rotating arV-characteristic, and the necessary operations can bg eaplemented
by elementary circuit networks ([2]). The only non-startdaomponent for our circuit models
is the one-way ion pump whose characteristic is given by Bt there should be no practical
difficulty to realize the characteristic by some circuitwetk. However, there is a good reason
to have a simpler, stand-alone component for the ion pumpusecit is the key to the neural
metastability and plasticity to be discussed in [12].

Acknowledgement: Special thanks to Jack Hale and Shui-Nee Chow who believdtkiproject
in its inception when the outcome was nothing but uncertain.
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