
JID:YJDEQ AID:6326 /FLA [m1G; v 1.47; Prn:19/10/2010; 14:00] P.1 (1-18)

J. Differential Equations ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Neural spike renormalization. Part I — Universal number 1

Bo Deng

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 July 2010
Available online xxxx

Keywords:
Circuit models of neurons
Poincaré return maps
Feigenbaum constant
Period-doubling bifurcation
Isospiking bifurcation
Renormalization universality

For a class of circuit models for neurons, it has been shown that
the transmembrane electrical potentials in spike bursts have an
inverse correlation with the intra-cellular energy conversion: the
fewer spikes per burst the more energetic each spike is. Here
we demonstrate that as the per-spike energy goes down to zero,
a universal constant to the bifurcation of spike-bursts emerges in a
similar way as Feigenbaum’s constant does to the period-doubling
bifurcation to chaos generation, and the new universal constant is
the first natural number 1.
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1. Introduction

It is often the case that certain intrinsic property of a physical process is hidden, and it requires
some iterative operation to grind it out. Such iterative operations usually go by the name of renor-
malization in physics. Mitchell Feigenbaum discovered in the late 70s [20,21] a renormalization from
his study of the logistic map, xn+1 = Q λ(xn) = λxn(1 − xn), which led to an important understanding
on a universal passage from order to chaos in nature.

On the surface of it, the period-doubling bifurcation points λk converge to a limit λ∞ at an expo-
nential rate |λk − λ∞| ∼ 1/δk for which δ = 4.669201 . . . is known as the Feigenbaum constant. But at
a deeper fundamental level, the sequence is associated with a renormalizing operator in a functional
space of renormalizable unimodal maps to which the logistic maps also belong, and the Feigenbaum
constant is the only expanding eigenvalue of the renormalizing operator at a fixed point. More specif-
ically, the fixed point has a one-dimensional unstable manifold with δ being its expanding eigenvalue
and a co-dimension-one stable manifold containing Q λ∞ at which chaos first appears as λ passes
through λ∞ from below (see also [22,1,2]). The dynamical view of the logistic family {Q λ: λ ∈ [0,4]}
in this renormalization space is that of a curve transversal to the stable manifold at Q λ∞ and the
iterations of the family under the renormalizing operator approach the unstable manifold — a clas-
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sical view of the inclination lemma [23,4,5,3] at hyperbolic fixed points of all dynamical systems. In
this setting of renormalization, the limit that limk→∞ λn−λn+1

λn+1−λn+2
= δ is a quantitative consequence to

the inclination lemma. For all physical processes which go through the route of period-doubling to
chaos, they are expected to represent different families in the renormalization space, both qualita-
tively similar to the logistic family and quantitatively the same at the converging limit to the unstable
manifold of the fixed point. That is, their passages to chaos will always produce the same Feigenbaum
constant, and it is in this sense that the Feigenbaum constant is universal to period-doubling cascade
to chaos.

In this paper we will consider a different type of bifurcation and a new renormalization univer-
sality but otherwise completely parallel to Feigenbaum’s renormalizing paradigm outlined above. The
context from which the new problem arises is about the generation of spiking bursts used as alphabet
for neural communication, computation, and memory [15–18].

More specifically, we will show how the generation of transient electrical bursts of spikes across
neuron’s excitable membranes can be qualitatively approximated by a simplistic but prototypical map,
ψμ : [0,1] �→ [0,1] where ψμ(x) = x + μ if 0 � x < 1 − μ and ψμ(x) = 0 if 1 − μ � x � 1 for which
0 < μ < 1 is a parameter proportional to the total absolute current through neuron’s ion pumps that
in turn is related to its intra-cellular biochemical energy conversion [17].

In this setting, the right interval J1 = [1 − μ,1] corresponds to the cell’s refractory phase when
transmembrane spikes are absent and the left interval J0 = [0,1 − μ] corresponds to the spiking
phase. Instead of periodic bifurcation we will consider the so-called isospiking bifurcation points μn
so that for μn+1 < μ < μn and for any initial point x0 from the refractory/silent phase J1 the orbit
{xk: xk = ψk

μ(x0), k � 0} will have exactly the first n iterates x1, x2, . . . , xn in the active phase J0 be-
fore the (n + 1)th iterate falls back to J1. In other words, the refractory points x0, xn+1 represent the
before-and-after silent phases of an electrical burst and the transient iterates x1, . . . , xn represent the
spikes of the burst with each xk corresponding uniquely to one spike. For the prototypical family ψμ ,
it is straightforward to derive the isospiking bifurcation points as μn = 1/n from the bifurcation equa-
tion xn = (n − 1)μ = 1 − μ where 1 − μ is the discontinuity point separating the refractory and the
spiking phases. Rather than exponential, μn converges to its limit μ∞ = 0 at an arithmetic rate in
the order of 1/n, and the quotients of adjacent isospiking intervals, μn−μn+1

μn+1−μn+2
= 1 + 2

n , converge to 1
at the same rate as 1/n.

However, the purpose of this paper is to demonstrate that one-dimensional maps which more
accurately approximate the generation of bursting spikes than the simplistic family ψμ exhibit the
same quantitative properties for the isospiking bifurcations as the prototypical kind does and it can
be understood by a unifying renormalization parallel to Feigenbaum’s but unique in two aspects: the
neural spike renormalization has a non-hyperbolic fixed point with a one-dimensional center-unstable
manifold; and the first natural number 1 is the weakly-expanding eigenvalue along the manifold.
Namely the first natural number 1 is a universal constant new in the sense of renormalization but
old in every conceivable definition for what is meant known. What the Feigenbaum constant to chaos
generation is what the first natural number 1 to neural spike generation.

The paper is outlined as follows. In Section 2 we will illustrate how maps such as ψμ can be
constructed from the dynamics of a class of circuit models for neurons. The idea of isospiking bifurca-
tion will be introduced in Section 3. In Section 4 we will introduce the neural spike renormalization
group and prove the main result, Theorem of Universal Number 1. As a sequel to this paper, we will
show in [19] that, unlike the monolithic saddle structure of Feigenbaum’s renormalization, the neural
spike renormalization is extremely dynamical: the center-stable manifold of its fixed point contains a
chaotic region into which all finitely dimensional systems can be conjugately embedded not just once
but infinitely many times and all are connected to each other by a dense orbit.

2. Circuit models of neurons and spike return map

We will use a prototypical circuit model of neurons to motivate the general approach and result
of the paper. The model is referred to as a pK+−sNa++ model because of the following assumptions
which it incorporates. (1) It assumes that the electrical and the diffusive channels for the potassium
ion K+ goes through the neuron membrane in parallel (represented by the letter string ‘pK+ ’ in the
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model’s name) that usually results in an N-shaped nonlinearity for the IV-characteristic curve of the
combined parallel channel. (2) It assumes that the electrical and the diffusive channels for the sodium
ion Na+ go through the neuron membrane in series (represented by the letter string ‘sNa+ ’ instead)
that usually results in an S-shaped nonlinearity for the IV-characteristic curve of the combined serial
channel. These channels are the passive kind determined by Ohm’s law of electromagnetism and
elemental diffusion. (3) It assumes that there is a joint ion pump that transports Na+ outside the cell
and K+ inside (represented by the subscript ‘+’ and ‘−’ signs of the model taxonomy) and that the ion
pump characteristic is A′/A ∼ V with A representing the pump current of a given ion species and V
the voltage across the pump. (4) It assumes that the passive electrical and diffusive channels have an
extra-cellular resting potential for Na+ and an intra-cellular resting potential for K+ consisting with
their respective transporting direction of the ion pump. In contrast, the ion pump channel is the active
kind which requires the intra-cellular energy conversion by the ATPass process to operate. (5) The last
assumption is to take the bilipid cell membrane to be a linear capacitor. The corresponding circuit
model in differential equations is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C V ′
C = −[

INa + fK(V C − ĒK) + INa pump − IK pump − Iext
]
,

I ′Na pump = λINa pump
[
V C − γ (INa pump − IK pump)

]
,

I ′K pump = λIK pump
[−V C + γ (INa pump − IK pump)

]
,

ε I ′Na = V C − ĒNa − hNa(INa).

(1)

Here, V C, INa pump, IK pump, INa are, respectively, the transmembrane voltage, the sodium ion pump
current, the potassium ion pump current, and the sodium ion current through its serial electrical and
diffusive channels. Iext is any forcing current external to the circuit if any. The potassium ion current
through its parallel electrical and diffusive channels is given by the IV-characteristic IK = fK(V C − ĒK).
The ideal S-shaped IV-characteristic is represented by V C − ĒNa −hNa(INa) = 0 which is approximated
by the singular perturbation with small 0 < ε � 1 for the INa-equation. We refer to [15] for a detailed
derivation of this model as well as its generalizations to other types of circuit models including an
analogous pNa++sK+− type model, and models comprised of mixed ion species to give the respective
serial and parallel IV-characteristics.

The pK+−sNa++ model has an equivalent form by transforming the ion pump currents into their
net current Ipump = INa pump − IK pump and their absolute current IS = INa pump + IK pump (equiva-
lently INa pump = 1

2 (IS + Ipump), IK pump = 1
2 (IS − Ipump)). With this change of variables the model is

transformed into

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C V ′
C = −[

INa + fK(V C − ĒK) + Ipump − Iext
]
,

I ′pump = λIS[V C − γ Ipump],
I ′S = λIpump[V C − γ Ipump],
ε I ′Na = V C − ĒNa − hNa(INa).

(2)

It is useful to note that the nontrivial part (Ipump 	= 0) of IS’s nullcline is exactly the same as
Ipump’s nullcline, V C = γ Ipump, with IS > 0 always; and that all the nullcline hypersurfaces are inde-
pendent of IS. This helps tremendously to visualize the 4-dimensional system in the 3-dimensional
phase space of variables V C, Ipump, INa as shown in Fig. 1(a). In other words, for every value IS > 0,
its three-dimensional slice in variables V C, Ipump, INa in the full 4-dimensional phase space is ex-
actly the same as depicted by the portrait. It shows that the full dynamics is essentially determined
by the nullcline structures of the three variables. Moreover, the IS-equation is rather simple and it
can be solved explicitly as IS(t) = IS(0) + ∫ t

0 λIpump(τ )[V C(τ ) − γ Ipump(τ )]dτ . More importantly, as
shown in Fig. 1(c), the absolute ion pump current IS(t) seems to change very little during any episode
of spike-burst, which amounts to what is referred to as the phenomenon of metastability and plas-
ticity [16]. As an approximation, we can fix IS(t) to be a constant for each spike-burst and reduce
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Fig. 1. (a) A spike-burst of 7 spikes for Eq. (2). (b) The construction of a Poincaré return map fμ . (c) Terminology legend for
spike-bursts. (d) An isospiking bifurcation plot of the circuit model with the spike frequency defined to be the spike number
divided by the burst period.

the 4-dimensional system equation (2) to this 3-dimensional system in variables V C, Ipump, INa as
follows

⎧⎪⎨
⎪⎩

C V ′
C = −[

INa + fK(V C − ĒK) + Ipump − Iext
]
,

I ′pump = λIS[V C − γ Ipump],
ε I ′Na = V C − ĒNa − hNa(INa).

(3)

This means both the spike-burst dynamics of the full system (2) and its lower-dimensional approxi-
mation (3) are captured by the same nullcline structure of Fig. 1(a).

Saving the explicit forms for the S and N nonlinearities for the passive IV-characteristics as well
as the choices of parameter values to the cited references, one can nonetheless see clearly in Fig. 1(a)
how spike-bursts are generated. It shows that the spikes are produced by the S-nonlinearity of the
INa-nullcline V C − ĒNa −hNa(INa) = 0 whereas the onset of burst is produced by the N-nonlinearity of
K+ ’s IV-characteristic setting on the lower branch of the S-surface. The Ipump-nullcline simply gates
the system either into the silent/refractory phase when Ipump(t) decreases or into the spiking phase
where the train of spikes moves in the increasing direction of Ipump. Precise analysis by singular
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perturbations for various spike-burst generations can also be found in [6,7,9–14] for tritrophic food
chain models.

It should be noted that most spike-bursts for Eqs. (1), (2) are only transient states rather than
asymptotic ones [16]. With the assumption that these so-called metastable and plastic spike-bursts
with varying spike numbers per-burst form an information coding alphabet, it was shown in [17] that
a communication system can be constructed using one neuron circuit as an encoder and another neu-
ron circuit, the same or different type, as a decoder, which suggests the existence of some universality
for permitting such a communication system between different neurons.

Such inherent universality is suggested by the bifurcation diagram of Fig. 1(d). The diagram is
generated by the following steps. We first pick an arbitrary point from the silent phase in variables V C,
Ipump, INa and fix a set of parameters which generate spike-bursts. Then for each value IS from a set
of discrete points between an interval we numerically solve the system (1) (or (2)) for the length
of the subsequent one burst of spikes. The period of burst and the number of spikes are calculated
according to the definitions depicted in Fig. 1(c) and then plotted in Fig. 1(d). For example, for IS = 1,
the plot shows two things: there are 5 spikes for the transient burst and the spike frequency is about
3.3 spike per unit time which interchangeably translates to 5/3.3 time units for the 5-spike burst
period. The diagram suggests two properties. First, as IS → 0 (or 1/IS → ∞ as actually shown), the
spike frequency levels off, tending to a constant. Second, if we let IS = bn denote the points at which
a burst of n spikes poises to change to a burst of n + 1 spikes (e.g. IS = 2 would be approximately the
b9 point), then the sequence 1/bn is proportional to the spike number n, i.e.

1

bn
∼ n equivalently bn ∼ 1

n
.

The underlying implication of [17] is that because different neurons would possess this universal
property, their respective bifurcation points bn can be perfectly aligned against each other by scaling
just one parameter which is thought to proportionate individual neuron’s intra-cellular APTass energy
conversion; and as a result the alignment will allow the spike-burst information to transmit from one
neuron to another. More importantly, since the absolute ion pump current IS is thought to correlate
the intra-cellular APTass energy conversion, such spike-burst communication can be achieved by only
adjusting the receiving cell’s biochemical energy conversion rate.

The purpose of this paper is to give a mathematical treatment to the bifurcation diagram Fig. 1(d)
and its implied universality. We will do so by studying how spike-bursts are generated by Poincaré
return maps. Fig. 1(b) gives an illustration to the construction of such a map fμ , and detailed con-
structions and analyses for various return maps of similar and different types can also be found in
[9–14] for ecological models cited above. We begin here by looking at the phase space Fig. 1(a) from
a point above the S-surface and straight down the INa-axis. Another way to state this is to look at the
projections of the nullclines and the orbits on the Ipump V C-plane, and then the view will be what we
see in Fig. 1(b).

More specifically, the horizontal dashed lines represent the lower knee edge and the upper knee
edge of the S-surface. The bold dash curves between the line edges represent orbits on the upper
branch of the S-surface ending on the lower knee Σ at which all orbits plunge to the lower branch
of the S-surface. On the lower branch, the reduced two-dimensional phase portrait is a bit more
interesting, represented by both the bold solid curves and doted curves. For the nullcline configuration
shown, the 2-dimensional phase portrait is essentially a spiralling source. That is, all orbits (except for
the unstable equilibrium point) on the lower branch will eventually hit the lower knee edge of the
S-surface, and then jump upward to the upper branch as shown in Fig. 1(a). Ideally, the plunges and
the jumps between the two branches of the surface are instantaneous, but for practical purposes they
are approximated by fast orbits from the singularly perturbed INa-equation for small ε . In any case,
the so-called singular orbital description given above and the perturbed case for small ε approximate
each other well, one can be used as an approximation of the other.

In sum, the spike-bursts result from the interplay between the reduced 2-dimensional dynamics
on the upper and lower branches of the S-surface. If we track the coming and going of each point
from the line Σ following the concatenation of singular orbits from the two branches, we see how
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a 1-dimensional return map emerges from the sketch. For example, point c is a discontinuity point
of the map fμ: to the left of it, the map is monotonically increasing, driven by the progression of
spikes, but to the right it is unimodal because of the resetting effect of the refractory dynamics.
The particular portrait shows the iterates of the map when the initial point starts from the maximal
point of the right sub-interval [c,1], and each subsequent iterate in the left interval corresponds to
one spike during the burst. In other words, the left interval codes the active, spiking phase of the
neuron circuit, the right interval codes the silent phase, and the point c for spike termination. The
correspondence between the map and the absolute ion pump current IS is that the smaller IS is
the more spikes per burst there are (Fig. 1(d)) and the closer the graph of the map is to the diagonal
line as a result, which is coded by the parameter μ in proportional to IS: μ ∼ IS.

Quantitatively, the graph on the right interval is rather flat because all the orbits rising within are
pulled exponentially to the bottom branch of the V C-nullcline before turning around at the leftward-
pointing turning point of the V C-nullcline. That is, maxx∈[c,1] fμ(x) ∼ e−1/μ (cf. [8]). In contrast,
because of the absence of such a pull by pseudo-equilibria, the first progression of spikes has the
order of μ, namely, fμ(0) ∼ μ, leading to the following property that will be assumed later for the
bifurcation of spikes,

max
x∈[c,1] fμ(x) < fμ(0).

The prototypical example introduced in the previous section, ψμ(x) = (x + μ)H(1 − μ − x) with H(x)
being the Heaviside function (H(x) = 0 if x � 0 and H(x) = 1 if x > 0), is a further simplification of
such spike return maps by completely flattening its right interval graph as an approximation to its
exponentially flatness in general.

3. Isospiking bifurcations

In this section we now give a precise definition for the class of 1-dimensional spike maps and the
definition of isospiking bifurcations for the maps.

Definition 1. Y is the set of mappings g : [0,1] → [0,1] satisfying the following conditions (a)–(d):

(a) For each g ∈ Y there is a constant cg
0 ∈ (0,1] such that g is continuous everywhere except at

x = cg
0 .

(b) g is strictly increasing in interval [0, cg
0 ].

(c) g(x) � x for x ∈ [0, cg
0 ].

(d) limx→(cg
0 )+ g(x) exists and g(x) � g(0) for cg

0 � x � 1.

Y is equipped with the L1 norm, ‖g‖ = ∫ 1
0 |g(x)|dx, i.e. Y is a subset of the L1[0,1] Banach space.

Such a map is referred to as a spike map.

Remark. The value of g at the point of discontinuity cg
0 is not important because of the L1-topology.

For convenience one can set g(c) = g(c−) = limx→c− g(x) with c = cg
0 since the left limit always exists

by the monotonicity of g in the left interval [0, cg
0 ]. Because of this reason, any continuous increasing

function g in [0,1] with g(x) � x belongs to Y since one can consider cg
0 = 1. In particular, the

identity function y = id(x) = x is in Y . We also note that by the L1 norm, ‖g − h‖ simply measures
the average distance |g(x) − h(x)| over interval [0,1] between the two curves y = g(x), y = h(x). If
there is no confusion we will use c0 to denote the point of discontinuity cg

0 .

Definition 2. A map g ∈ Y is said to be isospiking if there is a natural number n � 1 so that for
every point x0 from (c0,1] (the silent or refractory interval) the subsequent n iterates xk = gk(x0),
1 � k � n, are in [0, c0] (the active or spiking interval) but the (n + 1)st iterate xn+1 falls back to
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Fig. 2. (a) A spike map gμ of a family is not isospiking because the critical point splits an iteration of the right interval. The
iterative intervals correspond with the shaded bars. The family is between the transition between 1-spike bursts and 2-spike
bursts. (b, c, d) The family is all isospiking with (b) corresponding to the beginning and (d) the ending of the isospiking-2
parameter interval.

(c0,1]. The number n is referred to as the isospike number or spike number for short. A map is said
to be not isospiking if there are points from its right interval that give rise to different numbers of
subsequent iterates in its left interval.

The result below shows that whether or not a map is isospiking can be determined by following
the iterates of the minimal and maximal points of the refractory interval.

Proposition 1. Let x0
min , x0

max be the minimal and maximal points from [c0,1], i.e. g(x0
min) = min[c0,1] g(x),

g(x0
max) = max[c0,1] g(x), and xk

min = gk(x0
min), xk

max = gk(x0
max). Assume g(x) < g(0) for x ∈ [c0,1]. Then g

is isospiking if and only if there is a natural number n so that

xn
max � c0 < xn+1

min . (4)

And g is not isospiking if and only if for some natural number n we have xn
min � c0 < xn

max .

Proof. Because of the definition and the assumption, we must first have x1
min � x1

max < g(0) and
x1

min � xk � x1
max < g(0) for all x0 ∈ [0, c] with c = c0 here and below. Since g is monotonically in-

creasing in the spiking interval the ordering xk
min � xk � xk

max must be preserved as long as these
iterates are in [0, c]. Because of g(x) < g(0), x ∈ [c,1], the first iterative interval of [c,1] must lie
inside [0, g(0)): [x1

min, x1
max] ⊂ [0, g(0)). Let n be the first iterate so that gn−1(0) � c < gn(0). Because

of the monotonicity of g in the spiking interval, the nth iterative interval [xn
min, xn

max] and the critical
point c all lie in [gn−1(0), gn(0)). We now see that g is isospiking of either spike number n if c lies
above the nth iterative interval [xn

min, xn
max] with gn−1(0) � xn

min � xn
max � c < gn(0) � xn+1

min or of spike
number n − 1 if c lies strictly below the interval [xn

min, xn
max] with gn−1(0) � c < xn

min � xn
max < gn(0).

In the last case, xn−1
max < gn−1(0) � c < xn

min, the condition (4) with n − 1 for n. Whenever c splits the
nth iterative interval in the sense that xn

min � c < xn
max, g is not isospiking because x0

min generates n
spikes but x0

max generates n − 1 spikes. �
Definition 3. Let gμ be a continuous 1-parameter family of spike-renormalizable maps satisfying the
condition of Proposition 1. A parameter value μ = αn is called the nth alpha isospiking bifurcation
point if xn

max = gn
αn

(x0
max) = cg

0 . A parameter value μ = ωn is called the nth omega isospiking bifurcation

point if xn+1
min = gn+1

ωn
(x0

min) = cg
0 . The interval ωn � μ � αn (or αn � μ � ωn) is referred to as the nth

isospiking interval.

Fig. 2 gives an illustration for the isospiking bifurcations from isospike number 1 to 3. The α-
bifurcation points can be considered as the beginning of isospiking parameter intervals whereas the
ω-points the ending of such intervals. For special family of spike maps ψμ one can check that αn =
ωn−1 = 1/n.
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Fig. 3. A geometric illustration for R.

4. Renormalization universality

We now introduce the renormalization operator R and prove later the universality of the first
natural number for the isospiking bifurcations of spike maps.

Definition 4. Let D = {g ∈ Y : ∃c−1 ∈ (0, c0) such that g(c−1) = c0}. The renormalizing operator R :
D → Y is defined as follows

g ∈ D → R[g](x) =
{ 1

c0
g(c0x), 0 � x <

c−1
c0

,

1
c0

g ◦ g(c0x), c−1
c0

� x � 1.
(5)

A spike map from D is referred to as renormalizable.

Remark. Though it looks like a doubling map of R[g] over the right interval c−1/c0 < x � 1, it is
actually a composition of the left half gl = g|[0,c0) of the map with the right half gr = g|(c0,1] of the
map, i.e.,

1

c0
g ◦ g(c0x) = 1

c0
gr ◦ gl(c0x), for

c−1

c0
� x � 1.

Describing it in words, one iterates g twice over the interval (c−1, c0) and scale the iterated graph
over (c−1, c0] and [0, c−1) to the unit interval [0,1] by the factor 1/c0. Fig. 3 gives an illustration
of the renormalization operation. In terms of the Poincaré map fμ defined from Fig. 1(b), the renor-
malized element R[ fμ] is the same as the flow induced Poincaré return map on the shorter interval
[0, c], modulo a rescaling constant. This means regardless the size of the domain of definition one
chooses to define ones Poincaré return map, sooner or later a renormalized iterate Rn[ fμ] for some
n will capture it. Two immediate properties are collected by two propositions below with the first
characterizing the range and the second the iterates of R.

Proposition 2. Let R = {g ∈ Y : g(c0) = 1}. Then, R[D] = R.

Proof. For any g ∈ R , we need to construct an h ∈ D such that g = R[h]. To this end, we need to
define a scale down operation which is an inverse operation to R over a sub-interval immediately
left to the point of discontinuity. More specifically, for any 0 < d < 1 and every g ∈ R , denote

Sd[g](x) = dg

(
1

d
x

)
, 0 � x � dc0.

Now let

ch
0 := 1
2 − c0
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Fig. 4. (a) The preimage h of g is constructed by scaling g down (Sch
0
[g]), attaching a line segment l of slope 1, and scaling the

right half of g accordingly over the right interval of h. (b) A geometric view of the dynamics near the fixed point ψ0. Notice
that the closer fωn is to X , the closer Rn−1[ fωn ] is to the point ψ1/2 on U = W u

id . See also Fig. 5.

and define

h(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sch
0
[g](x) = ch

0 g( 1
ch

0
x), 0 � x < c0ch

0,

l(x) = (x − c0ch
0) + ch

0, c0ch
0 � x < ch

0,

ch
0 g(

1−c0

1−ch
0
(x − ch

0) + c0), ch
0 � x � 1.

(6)

Fig. 4(a) illustrates the construction of h. It is straightforward to verify that ch−1 = c0ch
0 since h(ch−1) =

l(ch−1) = ch
0; Sch

0
[g](ch−1) = ch

0 g(c0) = ch
0 = l(ch−1); 1

ch
0

h(ch
0x) = g(x) for x ∈ [0, c0); 1

ch
0

h ◦h(ch
0x) = g(x) for

x ∈ [c0,1], and h(ch
0) = 1, both using that ch

0 = 1/(2 − c0). Hence R[h] = g. �
Proposition 3. For integer k � 0 if Rk−1[g] ∈ D is renormalizable, then

Rk[g](x) =
⎧⎨
⎩

1
c−k+1

g(c−k+1x), 0 � x <
c−k

c−k+1
,

1
c−k+1

gk+1(c−k+1x), c−k
c−k+1

� x � 1,

where c−i = g−i(c0) ∈ [0, c0) for all i = 0,1, . . . ,k. More specifically, if c0 has n backward iterates c−i =
g−i ∈ [0, c0) for i = 1, . . . ,n, then the new point c−1/c0 which partitions the graph of R[g] into parts
above the diagonal and below the point c−1/c0 has n − 1 backward iterates c− j−1/c0 = R[g]− j(c−1/c0)

in [0, c−1/c0) for j = 1, . . . ,n − 1.

Proof. It follows by induction. �
A subset U ⊂ D is forward invariant if R[U ] ⊂ U . It is backward invariant if there is a subset V ⊂ U

such that R[V ] = U . It is invariant if it is both forward and backward invariant, i.e., R[U ] = U .

Proposition 4. Let

X = {
g ∈ Y : ∃x∗ ∈ [0, c0] such that g

(
x−∗

) = x∗
}
,

Σn = {
g ∈ R ⊂ Y : g−k(c0) = c−k ∈ [0, c0) for 1 � k � n such that 0 = c−n < c−n+1 < · · · < c0

}
,

where g(x−∗ ) = limx→x−∗ g(x). Then

(a) X ⊂ D is forward invariant and R[X] is invariant, i.e., R2[X] = R[X].
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(b) X contains all forward invariant subsets of Y under R.
(c) Σn+1 = R−n[Σ1] and more generally, Rk[Σn+k] = Σn.

Proof. For g ∈ X , let xg = sup{x∗ ∈ [0, c0]: x∗ = g(x−∗ )}. Then we also have xg = g(x−
g ). So without

loss of generality, assume x∗ = xg is the largest fixed point of g in [0, c0] for statement (a). If x∗ < c0,
then g(x) > x for x∗ < x � c0. So ck = g−k(c0) exist for all k � 1 and c0 > c−1 > · · · → x∗ . Thus g ∈ D
and R[g] ∈ X with the scaled fixed point x∗/c0. If x∗ = c0, then R[g] has 1 as its fixed point. In
either cases we have R[g] ∈ X and X is forward invariant. Hence, R2[X] ⊂ R[X] ⊂ X . To show R[X]
is backward invariant, take any g ∈ R[X] ⊂ R = R[D]. By Proposition 2 there is an h ∈ D such that
R[h] = g . By the construction of h from (6), we see that h has a scaled-down fixed point x∗ch

0. Thus,
h ∈ X . Since h(ch

0) = 1 from the construction in Proposition 2, we have h ∈ R and h ∈ R[X]. Hence,
(a) holds.

If g ∈ U and U is forward invariant, then Rk[g] exists for all k � 0. That is, g−k(c0) = c−k exist for
all k � 1 with 0 � · · · < c−k � c−k+1 � · · · � c0. Thus limk→∞ ck = x∗ ∈ [0, c0] exists and g(x∗) = x∗ . So
g ∈ X and U ⊂ X holds. This shows (b).

If g ∈ Σn+1, then 0 = c−n−1 � c−n � · · · � c−1 � c0. By Proposition 3, Rn[g] exists with the discon-
tinuity at c−n/c−n+1 and the discontinuity’s preimage at c−n−1/c−n+1 = 0. This shows Rn[g] ∈ Σ1 by
definition. Thus, Σn+1 ⊂ R−n[Σ1]. To show Σn+1 ⊃ R−n[Σ1], we need to show that for any g ∈ Σ1,
there is an h̄ ∈ Σn+1 such that Rn[h̄] = g . Since g ∈ Σ1 ⊂ R , we can construct an h by (6) of Propo-
sition 2 for which R[h] = g . From the construction of h we can conclude that ch

0 = 1/(2 − cg
0),

ch−1 = cg
0 ch

0, and ch−2 = cg
−1ch

0 = 0 since g ∈ Σ1. Also, h(ch
0) = 1. So h ∈ Σ2. Applying the same in-

verse procedure to h recursively we can find h̄ ∈ Σn+1 such that Rn[h̄] = g . So Σn+1 ⊃ R−n[Σ1]. The
general identity of (c) can be verified similarly. This completes (c). �

The following result simply says that {Σn} converges to X point-wise uniformly over [0,1].

Proposition 5. For each g ∈ X, there is a sequence gn ∈ Σn such that gn → g uniformly in [0,1].

Proof. Let g ∈ X . Define

gμ(x) :=
⎧⎨
⎩

g(x), when g(x) � x + μ and x ∈ [0, c0),

x + μ, when g(x) � x + μ and x ∈ [0, c0),

g(x), x ∈ (c0,1].
It is straightforward to verify that gμ(x) > x for small μ > 0 for x ∈ [0, c0). By intermediate value
theorem there exists a decreasing sequence {μn} for sufficiently large n such that μn → 0 and
gn
μn

(0) = c0, i.e., gμn ∈ Σn . The convergence that gμn → g is obviously uniformly over the interval
[0,1]. �
Proposition 6. Let

W u
id := {ψμ: 0 � μ � 1/2} with ψμ(x) =

{
μ + x, 0 � x < 1 − μ,

0, 1 − μ � x � 1.

Then

(a) id = ψ0 is a fixed point of R.
(b) W u

id is backward invariant with R[ψμ] = ψμ/(1−μ) .
(c) R is weakly expanding along W u

id in the sense that

∥∥R[ψμ] − ψ0
∥∥ > ‖ψμ − ψ0‖.
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(d) 1 is an eigenvalue of R’s linearization at ψ0 and the unit eigenvector is given as

u0(x) := 1

2
s1(x) − 1

2
δ1(x),

where s1(x) = 1, 0 � x < 1, and s1(1) = 0, i.e. s1 ≡ 1 in L1 , and δ1 is the delta distribution function,
i.e., δ1(x) = 0, x 	= 1, δ1(1) = ∞, and

∫ 1+a
1−a φ(x)δ1(x)dx = φ(1) for any C0 test function φ , and any

0 < a � ∞.

Proof. It is straightforward to verify (a) as well as (b):

R[ψμ] = ψμ/(1−μ), and equivalently, R−1[ψμ] = ψμ/(1+μ).

It is not forward invariant because it requires μ/(1 − μ) < 1/2, or μ < 1/3. That is, with V =
{ψμ: 0 � μ < 1/3} ⊂ W u

id we have R[V ] = W u
id .

To show (c), a more general relation holds as follows

‖ψμ − ψ0‖ > ‖ψζ − ψ0‖ if μ > ζ � 0.

In fact, since in general ‖ψμ − ψλ‖ is the area between the two curves that consists of the area of a
parallelogram and the area of a trapezoid, we have thus by elementary calculations

‖ψμ − ψλ‖ = (μ − λ)

(
4 + λ − 3μ

2

)
∼ (μ − λ), assuming μ > λ � 0. (7)

In particular, with λ = 0, we have

‖ψμ − ψ0‖ = μ
4 − 3μ

2
,

which is increasing in μ ∈ [0,2/3] ⊃ [0,1/2]. Since R[ψμ] = ψμ/(1−μ) by (b), (c) is verified.
Again by (b) and expression (7), we have

∥∥R[ψμ] − R[ψ0] − 1 · (ψμ − ψ0)
∥∥ = ‖ψμ/(1−μ) − ψμ‖

=
(

μ

1 − μ
− μ

)
4 − 3μ

2
∼ μ2 ∼ ‖ψμ − ψ0‖2,

showing the derivative of R at ψ0 in the direction of W u
id is the unitary operator in L1, and 1 is the

eigenvalue. As for the unit eigenvector u0 we have

uμ := ψμ − ψ0

‖ψμ − ψ0‖ =
{ 2

4−3μ, 0 � x < 1 − μ,

−2x
μ(4−3μ)

, 1 − μ < x � 1,

=
{

2
4−3μ, 0 � x < 1 − μ,

0, 1 − μ < x � 1,
+

{
0, 0 � x < 1 − μ,

−2x
μ(4−3μ)

, 1 − μ < x � 1,

→ 1

2
s1(x) − 1

2
δ1(x) = u0(x), as μ → 0.

This proves (d). �
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Proposition 7.

(a) γ = {ψ1/n}, n � 2, is a backward orbit of R starting at ψ1/2 .
(b) ψn

μ(0) = c0 = 1 − μ if and only if μ = 1/(n + 1), i.e., ψ1/(n+1) ∈ Σn.
(c) ωn = αn+1 = 1/(n + 1), that is, ψμ is isospiking of length n if and only if 1/(n + 1) � μ < 1/n.

(d)
ωn+1 − ωn+2

ωn − ωn+1
= 1 − 2

n
+ h.o.t. → 1 as n → ∞.

(e) ‖ψ1/n − ψ0‖ = 1

n

(
2 − 3

2n

)
, and

‖ψ1/(n+2) − ψ1/(n+1)‖
‖ψ1/(n+1) − ψ1/n‖ = 1 − 2

n + 2
+ h.o.t.

= 1 − 2

n
+ h.o.t. → 1 as n → ∞.

Proof. Statement (a) holds because by the proof of Proposition 6 we have R[ψμ] = ψμ/(1−μ) and the
identity

1
n

1 + 1
n

= 1

n + 1
.

Statement (b) holds because ψn
μ(0) = nμ = c0 = 1 − μ iff μ = 1/(n + 1). Statement (c) follows from

the isospiking criterion of Section 3. Statement (d) is straightforward. Finally, (e) follows from the
expression (7). �

Notice that by the expression (7), ‖ψ1/(n+1) − ψ1/n‖ ∼ (1/n − 1/(n + 1)) = ωn−1 −ωn . Thus (d) and
(e) are essentially the same. Also statement (e) reconfirms the fact that 1 is the eigenvalue along the
direction W u

id and taking the limit of the quotient difference

ωn+1 − ωn+2

ωn − ωn+1
→ 1

is an approximation scheme for the eigenvalue.

Theorem of Universal Number 1. Let { fμ} with 0 � μ � m0 � 1 be a one-parameter family in Y , where m0

is a sufficiently small constant and fμ ∈ Y for all μ ∈ [0,m0]. Let cμ
0 = c

fμ
0 ∈ (0,1] with μ ∈ [0,m0] denote

the discontinuity of fμ and cμ
−k = f −k

μ (cμ
0 ) be the kth back iterate of cμ

0 . Assume the following conditions are
satisfied:

(a) There exist an integer k0 � 1 and a constant c1 such that

cμ
−k0+1 = c0

0 + c1μ + o(μ)

for μ ∈ [0,m0].
(b) There exist some constants a1 > 0, a2 such that

fμ(x) = x + a1μ + a2μ
2 + o

(
μ2) for x ∈ [

0, cμ
−k0

]
and μ ∈ [0,m0].
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Then there exists a unique monotone decreasing sequence {ωn} with ωn → 0 such that

fωn ∈ Σn and
ωn+1 − ωn+2

ωn − ωn+1
→ 1 as n → ∞. (8)

More generally, for any pair of integers p � 0 and q > 0 we have

ωn+q − ωn+q+p

ωn − ωn+q
→ p

q
as n → ∞. (9)

Remark. By the assumptions (a), (b) above, neural families are distinguished by the parameters cμ
0 ,

c1, a1, a2, and the higher order terms in their expansion at μ = 0. They all share the same property
that fμ(x) → x as μ → 0, which is the main cause for the stated universality.

Proof. The proof will be done by mainly considering the k0th renormalized family gμ = Rk0 [ fμ].
Consider gμ(x) in the left half interval x ∈ [0, c̄μ

0 ] only, we have by Proposition 3 and both hypotheses
(a), (b),

gμ(x) = x + 1

cμ
−k0+1

(
a1μ + a2μ

2 + o
(
μ2)) = x + ā1μ + ā2μ

2 + o
(
μ2)

where ā1 = a1/c0
0 > 0 and ā2 is a constant depending on a1, a2, c0

0, c1, obtained by collecting the
coefficients of μ-term and μ2-term respectively in gμ . Denote the discontinuity of gμ by

c̄μ
0 = cμ

−k0

cμ
−k0+1

.

Then from the expression of gμ and the equation gμ(c̄μ
0 ) = 1 we obtain

c̄μ
0 = 1 − (

ā1μ + ā2μ
2 + o

(
μ2)) := 1 + b1μ + o(μ),

where b1 = −ā1.
By definition, gμ ∈ Σn if and only if gn

μ(0) = c̄μ
0 = 1 + b1μ + o(μ). It is by induction to get

gn
μ(0) = n

(
ā1μ + ā2μ

2 + o
(
μ2)).

Thus solving gn
μ(0) = c̄μ

0 is equivalent to solving

θ(μ) : = gn
μ(0) − c̄μ

0 = n
(
ā1μ + ā2μ

2 + o
(
μ2)) − (

1 + b1μ + o(μ)
) = 0.

This is done by showing that for each sufficiently large n, θ is increasing in μ with the property that
θ(0) = −1 < 0 and θ(m0) > 0. Therefore there is a unique solution denoted by

μ = ω̄n.

To approximate ω̄n , we assume it takes the following form

ω̄n = r1

n
+ r2

n2
+ o

(
1

n2

)
.
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Substituting this form into the equation gn
μ(0) = c̄μ

0 , approximating the equation to order o( 1
n ) by

equating the constant and 1/n terms on both sides, we find

r1 = 1

ā1
and r2 = b1r1 − ā2r2

1

ā1
.

Now for any integer pair p � 0 and q > 0 we have by elementary simplification

ω̄n+q − ω̄n+q+p

ω̄n − ω̄n+q
=

r1
n+q + r2

(n+q)2 + o( 1
n2 ) − (

r1
n+q+p + r2

(n+q+p)2 + o( 1
n2 ))

r1
n + r2

n2 + o( 1
n2 ) − ( r1

n+q + r2
(n+q)2 + o( 1

n2 ))

= n(n + q)

(n + q)(n + q + p)

pr1 + r2
p(2n+2q+p)

(n+q)(n+p+q)
+ o(1)

qr1 + r2
q(2n+q)
n(n+q)

+ o(1)

→ p

q
as n → ∞.

Finally, we notice that due to renormalization, gμ = Rk0 [ fμ] ∈ Σn if and only if fμ ∈ Σn+k0 by
Proposition 4. Therefore we can conclude that ωn+k0 = ω̄n and the limit

ωn+q − ωn+q+p

ωn − ωn+q
→ p

q
as n → ∞

holds as desired. This proves the theorem. �
Proposition 8. The universality (8) implies the universality (9).

Proof. In fact, the limit (8) implies the following two limits: For any fixed integers m � 0, k > 0, we
have

ωn+m − ωn+m+1

ωn − ωn+1
=

m∏
i=1

ωn+i − ωn+i+1

ωn + (i − 1) − ωn+i
→

m∏
i=1

1 as n → ∞,

and

ωn+m − ωn+m+k

ωn − ωn+1
=

k−1∑
j=0

ωn+m+ j − ωn+m+ j+1

ωn − ωn+1
→

k−1∑
j=0

1 = k as n → ∞.

Hence, we have the universality limit (9):

ωn+q − ωn+q+p

ωn − ωn+q
= (ωn+q − ωn+q+p)/(ωn − ωn+1)

(ωn − ωn+q)/(ωn − ωn+1)
→ p

q
as n → ∞. �

We note that X contains id = ψ0 and is forward invariant. It is large enough to contain infinitely
many co-dimension-one subspaces of Y . For example, let Ex0 : Y → R be the functional such that
Ex0 (g) = g(x0) − x0. Then the subspace {g ∈ Y : Ex0 (g) = 0} is at least of co-dimension-one in X . On
the other hand, W u

id is a 1-dimensional manifold that is not in X . So X is a subset of Y that is not
smaller than co-dimension-one space but smaller than the full space. In any case, X is the center-
stable set and W u

id is the (weak) unstable manifold of the non-hyperbolic fixed point id = ψ0. Thus,
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similar to λ-lemmas of non-hyperbolic fixed points from [5], we should expect the following: For any
continuous one-parameter family { fμ} ⊂ Y of mappings that intersects the stable set X transversely
at f0, if Rn[ f0] → id = ψ0, then Rn[{ fμ}] must converge to the unstable manifold W u

id as n → ∞.
The following result is a weaker form of such λ-lemmas.

Inclination lemma. Let { fμ} with 0 � μ � m0 � 1 be a one-parameter family in Y , where m0 is a sufficiently

small constant and fμ ∈ Y for all μ ∈ [0,m0]. Let cμ
0 = c

fμ
0 ∈ (0,1] with μ ∈ [0,m0] denote the discontinuity

of fμ and cμ
−k = f −k

μ (cμ
0 ) be the kth back iterate of cμ

0 . Assume the following conditions are satisfied:

(a) There exist an integer k0 � 1 and a constant c1 such that

cμ
−k0+1 = c0

0 + c1μ + o(μ)

for μ ∈ [0,m0].
(b) There exists a constant a1 > 0 such that

fμ(x) = x + a1μ + o(μ) for x ∈ [
0, cμ

−k0

]
and μ ∈ [0,m0].

(c) fμ(x) = O (μ) for x ∈ (
cμ

0 ,1
]

and μ ∈ [0,m0].
Then for any μ0 , and any ε > 0, there is an integer N0 such that for any iterate n > N0 , there is a μ ∈ (0,m0]
sufficiently small satisfying the following

∥∥Rn[ fμ] − ψμ0

∥∥ < ε,

where ψμ defines the backward invariant, expanding family through id constructed in Proposition 6.

Proof. Fig. 4(b) gives an illustration for the lemma. Similar to the proof of the Theorem of Universal
Number 1, the proof is carried out by considering the k0th renormalized family gμ = Rk0 [ fμ]. Denote
the discontinuity of gμ by c̄μ

0 . By Proposition 3 and hypotheses (a), (c), we have

gμ(x) = O (μ) for x ∈ (
c̄μ

0 ,1
]

and μ ∈ [0,m0],

because the outer most composition in f k0+1
μ (cμ

−k0+1x)/cμ
−k0+1 is of order O (μ) and cμ

−k0+1 = O (1).

Consider gμ(x) in the left half interval x ∈ [0, c̄μ
0 ] next, we have by Proposition 3 and both hypotheses

(a), (b),

gμ(x) = x + 1

cμ
−k0+1

(
a1μ + o(μ)

) = x + ā1μ + o(μ)

where ā1 = a1/c0
0 > 0 is a constant similar to the proof of the preceding theorem. Denote

c̄μ
−k = g−k

μ

(
c̄μ

0

)
,

whenever defined. For simpler notation we denote

c−k = c̄μ
−k for k = 0,1,2, . . . , and a = ā1.

Since gμ ∈ R[D] = R , gμ(c0) = 1 (using the simplified notation c0 = c̄μ
0 ), and thus



JID:YJDEQ AID:6326 /FLA [m1G; v 1.47; Prn:19/10/2010; 14:00] P.16 (1-18)

16 B. Deng / J. Differential Equations ••• (••••) •••–•••
gk+1
μ (c−k) = c−k + (k + 1)

(
aμ + o(μ)

) = 1.

Thus

c−k = 1 − (k + 1)
(
aμ + o(μ)

)
and c0 = 1 − (

aμ + o(μ)
)
.

By Proposition 3,

Rk[gμ](x) = x + aμ + o(μ)

c−k+1
for 0 � x � c−k

c−k+1
.

The rest of the proof is to show that a μ satisfying the following equation

aμ

c−k+1
= μ0 (10)

is what we look for. By using the expression for c−k , the equation above is solved to give

μ = μ0

a + kμ0(a + o(1))
= O

(
1

k

)
→ 0 as k → ∞.

We are now ready to estimate ‖Rk[g] − ψμ0‖. The difference is the area between the two curves
h = Rk[gμ] and ψμ0 which can be divided into three regions for consideration: (i) The parallelogram
between h = Rk[gμ] and ψμ0 over the interval [0,min{ch

0,1 − μ0}]; (ii) the trapezoid-like region
between the two curves over the interval [min{ch

0,1 − μ0},max{ch
0,1 − μ0}]; (iii) the region between

h and the x-axis over the interval [max{ch
0,1 − μ0},1] for which the height of the curve h is of order

O (μ). Our task is to show that each of the three areas is of order o(1) as μ = O (1/k) → 0. First
there is no additional argument needed for the region (iii) because h = O (μ) over the corresponding
sub-interval of [0,1]. For region (i), because of the choice of μ from the equation aμ/c−k+1 = μ0, we
have that the difference between the two curves h and ψμ0 over that interval is

∣∣h(x) − ψμ0

∣∣ =
∣∣∣∣aμ + o(μ)

c−k+1
− μ0

∣∣∣∣ = o(μ)

c−k+1

= aμ

c−k+1

o(μ)

aμ
= μ0o(1)

(
because

aμ

c−k+1
= μ0 by Eq. (10)

)
= o(1) as μ → 0.

For region (ii), the function difference between h and ψμ0 is of order O (1). However, the length of
the interval [min{ch

0,1 − μ0},max{ch
0,1 − μ0}] is small. In fact, the length of the interval is

∣∣ch
0 − 1 + μ0

∣∣ =
∣∣∣∣ c−k

c−k+1
− 1 + μ0

∣∣∣∣ =
∣∣∣∣c−k − c−k+1 + μ0c−k+1

c−k+1

∣∣∣∣
=

∣∣∣∣ c−k − c−k+1 + aμ

c−k+1

∣∣∣∣ (
because μ0c−k+1 = aμ by Eq. (10)

)
=

∣∣∣∣−aμ − o(μ) − aμ

c−k+1

∣∣∣∣ (
because c−k+1 = gμ(c−k) = c−k + aμ + o(μ)

)
=

∣∣∣∣ o(μ)

c

∣∣∣∣ = o(1),

−k+1
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Fig. 5. A spike map f which initially can generate 100 spikes is far away from the fixed point ψ0 at the start of the renormal-
ization. Then R( f ) moves closer to ψ0, but R10( f ) closer still before the last three iterates move farther away from the fixed
element ψ0.

where the last estimate follows from the same argument as above for region (i). Combining the three
estimates together, we can conclude that

∥∥Rk[gμ] − ψμ0

∥∥ = o(1) as μ = O

(
1

k

)
→ 0.

Hence, there exists a sufficiently large K0 so that for k > K0 we have

∥∥Rk[gμ] − ψμ0

∥∥ < ε

for μ defined as in Eq. (10). Since Rk[gμ] = Rk+k0 [ fμ], the lemma is proved by choosing N0 =
K0 + k0. �

The dynamical structure of R near ψ0 = id can be seen by a simulation by the iterates of R on a
spike map f shown in Fig. 5. The weakly saddle structure near the fixed point id is clearly evident
when the iterates are shown in their graphs as functions of the unit interval.

We end this section with some other backward invariant weakly-expanding families through the
fixed point id = ψ0. They are similar to ψμ except for the non-vanishing part of the refractory interval.
More specifically, consider families of the following form

gμ,q(x) =
{

x + μ, 0 � x < 1 − μ,

qμ(x), 1 − μ � x � 1,

where qμ(x) � 0 and max[1−μ,1] qμ � μ. It is straightforward to verify that the set W u
id,q := {gμ,q: 0 �

μ < 1/2} is backward invariant if and only if



JID:YJDEQ AID:6326 /FLA [m1G; v 1.47; Prn:19/10/2010; 14:00] P.18 (1-18)

18 B. Deng / J. Differential Equations ••• (••••) •••–•••
q μ
1−μ

(x) = 1

1 − μ
qμ

(
(1 − μ)x + μ

)
,

1 − 2μ

1 − μ
� x � 1.

For example, consider qμ to be the logistic family qμ = 4λ(x − 1 + μ)(x − 1). The x-intercepts are
x = 1−μ = c0 and x = 1. The maximum takes place at 1−μ/2 with λμ the maximum value. Because
gμ,q is linear on the left half interval [0, c0) = [0,1 − μ), the renormalization R[gμ,q] on the right
half interval [(1 − 2μ)/(1 − μ),1] is again a quadratic function which goes through the zero at x =
(1 − 2μ)/(1 −μ) = 1 −μ/(1 −μ) and x = 1 respectively and have the maximum value λμ/(1 −μ) at
x = (1 − μ/2)/(1 − μ) = 1 − μ/[2(1 − μ)]. It is precisely the quadratic function qμ/(1−μ) . Thus, W u

id,q
is backward invariant. One can construct other backward invariant families as well, e.g., replacing
the logistic family by the tent map family gives rise to such a family. One can also show by the
same argument as for Proposition 6 that such a backward invariant family is also tangent to u0

at the fixed point id = ψ0, i.e., limμ→0
gμ,q−ψ0

‖gμ,q−ψ0‖ = u0, where u0 is the eigenvector of eigenvalue

1 as in Proposition 6. One can also show that if minx∈[c0,1] qμ(x) = 0, then the same scaling laws
as Proposition 7(c,d,e) hold for gμ,q as well by exactly the same argument of that proposition. We
note also that whether or not a mapping g ∈ F [0,1] is isospiking in its transient dynamics has little
to do with its asymptotic dynamics on the interval [0,1]. For example, for the family {gμ,q} with
qμ = 4λ(x − 1 + μ)(x − 1), its dynamics is determined by the logistic map. In fact, for gωn,q ∈ Σn ,

Rn[gωn,q](x) = λx(1 − x) is the logistic map. Also, for any fixed μ, the bifurcation diagram for {gμ,q}
with varying λ ∈ (0,1) is essentially the diagram for the logistic family. Finally, we point out that
for the neuron family fμ from Fig. 1(b), fμ|[c0,1] is of order exp(−1/μ). Thus, the dynamics of each
mapping is very much regular. The exp(−1/μ) order estimate over its right interval results in the
exp(−n) order estimate for the length of the nth nonisospiking interval, |ωn −αn+1| ∼ exp(−n), when
μ is in the nonisospiking interval with μ having the same order as that of αn,ωn ∼ 1/n.

We end the paper by pointing out that not only the isospiking universality applies to the circuit
models of neurons from [15] but also applies to food chain models from [13], and to any models
which share the same spike generating mechanism.

References

[1] P. Collet, J.-P. Eckmann, Iterated Maps of Interval as Dynamical Systems, Birkhäuser, 1980.
[2] E. de Faria, W. de Melo, A. Pinto, Global hyperbolicity of renormalization for Cr unimodal mappings, Ann. of Math. 164

(2006) 731–824.
[3] W. de Melo, S. van Strien, One-Dimensional Dynamics, Springer-Verlag, Berlin, 1993.
[4] B. Deng, The Šil’nikov problem, exponential expansion, strong λ-lemma, C1-linearization, and homoclinic bifurcations,

J. Differential Equations 79 (1989) 189–231.
[5] B. Deng, Homoclinic bifurcations with nonhyperbolic equilibria, SIAM J. Math. Anal. 21 (1990) 693–719.
[6] B. Deng, A mathematical model that mimics the bursting oscillations in pancreatic β-cells, Math. Biosci. 119 (1993) 241–

250.
[7] B. Deng, Constructing homoclinic orbits and chaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 4 (1994) 823–841.
[8] B. Deng, Glucose-induced period-doubling cascade in the electrical activity of pancreatic β-cells, J. Math. Biol. 38 (1999)

21–78.
[9] B. Deng, Food chain chaos due to junction-fold point, Chaos 11 (2001) 514–525.

[10] B. Deng, G. Hines, Food chain chaos due to Shilnikov orbit, Chaos 12 (2002) 533–538.
[11] B. Deng, G. Hines, Food chain chaos due to transcritical point, Chaos 13 (2003) 578–585.
[12] B. Deng, Food chain chaos with canard explosion, Chaos 14 (2004) 1083–1092.
[13] B. Deng, Equilibriumizing all food chain chaos through reproductive efficiency, Chaos 16 (2006) 043125, doi:10.1063/

1.2405711 (7 p.).
[14] B. Deng, I. Loladze, Competitive coexistence in stoichiometric chaos, Chaos 17 (2007) 033108, doi:10.1063/1.2752491

(14 p.).
[15] B. Deng, Conceptual and circuit models of neurons, J. Integrative Neurosci. 8 (2009) 255–297.
[16] B. Deng, Metastability and plasticity in some conceptual models of neurons, J. Integrative Neurosci. 9 (2010) 31–47.
[17] B. Deng, Optimizing a communication system by neural circuits: The magic number 4 and golden ratio, 2007.
[18] B. Deng, Decimal spike code maximizes neural memory against retrieval time, preprint, 2007.
[19] B. Deng, Neural spike renormalization. Part II — Multiversal chaos, J. Differential Equations (2010), doi:10.1016/

j.jde.2010.10.004, in press.
[20] M. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys. 19 (1979) 25–52.
[21] M. Feigenbaum, The universal metric properties of nonlinear transformation, J. Stat. Phys. 21 (1979) 669–709.
[22] O.E. Lanford III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. 6 (1982) 427–434.
[23] J. Palis, W. De Melo, A geometrical introduction to dynamical systems, Springer-Verlag, 1982.

http://dx.doi.org/10.1063/1.2405711
http://dx.doi.org/10.1063/1.2752491
http://dx.doi.org/10.1016/j.jde.2010.10.004
http://dx.doi.org/10.1016/j.jde.2010.10.004
http://dx.doi.org/10.1063/1.2405711

	Neural spike renormalization. Part I - Universal number 1
	Introduction
	Circuit models of neurons and spike return map
	Isospiking bifurcations
	Renormalization universality
	References


