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Metastability And Plasticity In A Conceptual Model of Neurons
Bo Deng?

Abstract: For a new class of neuron models we demonstrate herthat typical membrane

action potentials and spike-bursts are only transient stags but appear to be asymptotically
stable; and yet such metastable states are plastic — being latto dynamically change from

one action potential to another with different pulse frequencies and from one spike-burst
to another with different spike-per-burst numbers. The pulse and spike-burst frequencies
change with individual ions’ pump currents while their corr esponding metastable-plastic
states maintain the same transmembrane voltage and currerprofiles in range. It is also

demonstrated that the plasticity requires two one-way ion pmps operating in opposite trans-
membrane directions to materialize, and if only one ion pumpis left to operate, the plastic
states will be lost to a rigid asymptotically stable state ¢her as a resting potential, or a
limit cycle with a fixed pulse frequency, or a spike-burst wih a fixed spike-per-burst num-

ber. These metastable-plastic pulses and spike-bursts mdne used as information-bearing
alphabet for a communication system that neurons are thougtto be.

1. Introduction. A neuron is an information processing unit either as a sigaakmitter or a sig-
nal receiver or both. A communication system must have amadlpt to code information and each
symbol of the alphabet must be represented by a physical stahe system. A communication
system is also a dynamical process in which information teedcand decoded in real time. Thus,
an efficient communication system should process the phalyaipghabet states in transient, not to
walit for the system to settle down to its asymptotic staterelible communication system, on the
other hand, should have the transient alphabet states &vdé&ke steady states, having robust and
distinct profiles for high tolerance to small determinigterturbations as well as nondeterministic
noises. That is, an efficient and reliable communicationiesysneeds to have both ways for its
alphabet handling. In addition, a functional communicagsgstem must be able to shift from one
alphabet state to another for information encoding anddiago A transient state behaving like
a steady state is referred to metastable The capability to internally shift from one metastable
alphabet state to another is referred t@kstic

The purpose of this paper is to demonstrate that for a classwbn models introduced in [4]
they do possess both properties of metastability and pigstnd that both properties are mediated
by two ion pumps. More specifically, the neuron models treattassive electromagnetic current
and the passive diffusive current of an ion species diffiydrom the ion’s active current through
a one-way ion pump, with the passive currents modeled byimesn resistors and the ion pumps
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modeled by one-way inductors. It was shown in [4] that undier key assumption of having
only one one-way ion pump (with curredt;), among some other reasonable conditions, action
potentials (pulses) and spike-bursts can be generatedhvainé referred to as theative action
potentialsand thenative spike-burstgespectively. In this paper, we will show that if a second,
opposite-directional ion pump is included (with currentl,), then all the sudden a new, parallel
dimension is added to the phase space where the native @ndespike-bursts reside, and the
native pulses and spike-bursts can then roam into the newndiion and change their temporal
profile from one frequency or spike-per-burst number to lagofrequency or another spike-per-
burst number, but all the while maintaining their transmesmke voltage and current profiles from
their native phase space for many temporal episodes ayiibre asymptotically stable. The new
dimension that allows the metastable-plastic pulses aike-$ursts to exist is defined precisely
by the absolute sum of the ion pump currerts= |A;| + |As|, which will collapse onto the net
transmembrane-pump-current dimensign= A; — A, when the second pump is shut and closed
(A3 = 0), which in turn will collapse the new plasticity dimensionto the native phase space
itself, wiping out all the meta expatriates.

Since ion pumps require neuron cell’s ATP-to-ADP biochehénergy conversion to operate,
these results suggest a possible direct link between aeluttabolism and possible electrophysi-
ological mechanism for neural metastability and plasticihese results also support the view that
the membrane action potentials and spike-bursts can besdiew alphabet states ([7, 13]) for a
communication system that neurons are thought to be.

2. The Mathematical Models. We will describe the neuron models here with sufficiently-sel
contained essentials to construct them. We refer to [4] fooee comprehensive review.

First, the conceptual model of a neuron is conventionalbihgid cell membrane is modeled
as a capacitor, and there are various transmembrane chdan&in transportation which can be
thought all in parallel at this point until an exception isi® made otherwise later. There are two
types of ion current channels: the passive channels andtive ahannels. And the passive chan-
nels are further divided into two kinds: the electro charthed to the electromagnetic force of all
ions, and the diffusive channel for a particular ion spedigsto that ion species’s transmembrane
concentration. The active channels are made of ion pumpshwiransport individual ion species
in a fixed transmembrane direction: either inward or outwaite passive channels are not related
to biochemical energy conversion but the ion pumps are.

Here comes one of the key differences between our modelstardsan how to model these
channels. For our models, the electro channels are modgledraluctors (resistors) whogé’ -
characteristic is monotonically increasing wigh> 0 denoting the maximal slope which is the
conductance (usually considered in a relevant range of eitage and current). The diffusive
channels are modeled by diffusors (negative resistorgusecits effect is exactly opposite to the
electromagnetic force. As a result, the diffusive charsnB8l-characteristic is monotonically de-
creasing withd < 0 denoting the minimal (or maximal in magnitude) slope whighgferred to as
the diffusion coefficient. The conductors are used to modetty the current-voltage relation-
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Table 1: Model Taxon, Circuit Diagram, and Equivalent E guat

The pK"sNal Model The pK' sNa’, Model
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ship of ions’ electromagnetic gating mechanism while tHaugors are used to do the same but
for ions’ diffusive gating mechanism instead. Such gatiregchanisms are modeled differently by
Hodgkin-Huxley type models which treat them in terms of g@tprobability evolution. In this
regards, our approach seems more phenomenological buawidtde-off gain in simplicity, and
more importantly in practicality because resistors andhtieg resistors are ubiquitous components
in circuitry.

After the resistor/negative-resistor assumptions on #ssipe electro and diffusive channels
comes the question of connectivity. The connectivity of dipalar ion’s passive channels can be
one of two configurations: the electro and the diffusive ents going through separate parallel
channels; the electro and the diffusive currents goinguinca same channel. The former is re-
ferred to as garallel conductor-diffusoand the latter is referred to asarial conductor-diffusar
Each configuration will give rise to a distinct characteciso its joint IV -curve by Kirchhoff's
Current and Voltage Laws. For the parallel connectivitg tbtal current of that ion species is
always a function of the common voltage over the parallek, f(V'). For the serial connectivity,
the total voltage across the series is always a functionettdmmon current through the series,
V = h(I). When becoming truly nonlinear, the paralldl-characteristic/ = f(V'), usually
takes the shape of the letteN”, whereas the seridll/-characteristicl’ = h(I), usually takes the
shape of the letterS”.

For a parallel conductor-diffusor, let> 0 be the maximal conductance of the conductor and
d < 0 be the minimal diffusion constant of the diffusor. Then tlaeghlel conductor-diffusor has
an S-characteristic ify + d < 0 and the/V-curvel = f(V) is decreasing in a finite voltage
interval [v, vo]. Similarly, the serial conductor-diffusor has Ahcharacteristic ifl /g + 1/d < 0



org+d > 0, and the/V-curveV = h([) is decreasing in a finite interval , i;]. As demonstrated
in [4], the generation of action potentials require the k@’ -nonlinearity of an ion species, and
the generation of spike-bursts requires the parallelonlinearity of one ion species and the serial
S-nonlinearity of another ion species. When a conductdusdr is decomposed into the sum
of a linear resistor and a ramp-like diffusor, the form id@dicanonical. One justification for the
canonical decomposition is the reason that the electroatagorce affects all ion species in all the
voltage range, whereas the diffusive force of a particdaranly affects that ion’s transmembrane
flux in a finite range, outside of which the ion’s concentmatan a given side of the cell will
saturate in one extreme or another, giving rise to a rangeilaracteristic.

The active channel of a given ion species consists of an ionppior the ion species. An
ion pump is assumed to be fundamentally different from thespa channels in a couple ways.
First, ions are assumed to spiral their way through a punigeran a straight manner. Second, a
particular ion species is transported only in a fixed digewlity: either into the cell or outside but
not both, e.g., Nais pumped out from the cell and'kis pumped into the cell. The first assumption
makes an ion pump to behave like an inductor, and the secapeiy makes it to be a one-way
inductor. As a result, a particular ion species’s pump curré, and the voltage across the pump,
V, are modeled by the relatiod; = AAV, where\ > 0 is called the ion’s pump coefficient. It is
the I'V-characteristic of a variable inductor whose inductancgeesliated by its current to fix the
directionality of the pump:A(t) > 0 if and only if A(0) > 0. One important consequence ([4])
of these assumptions of ion pumps is that the directionafign ion pump implies the polarity of
that ion’s active and passive resting potentials: an owt@sp. inward) cation pump resulting in
a positive (resp. negative) extracellular resting pogtmti the cation.

As shown in [4], these assumptions about a neuron can basystally captured by a model
taxonomy, or a circuit diagram, or a system of differentgli@tions, each is qualitatively equiv-
alent to another in model description. Table 1 gives antil&in for this methodology, showing
what is called a pKsNa, model and a pK sNa’, model, using K and N& as prototypical ion
species for illustration. Of the model notation, “pKstands for K''s passive channels jparallel
connectivity while “sNa” stands for Nd'’s passive channels serial connectivity. If the parallel
(resp. serial) connection does not produce a true nonligéathe shape ofV (resp.S), the model
is denoted by as cksNal (resp. pK'cNa’) with “c” standing forconductor domination over its
diffusor counterpart. Because the conductive channehiayd a part of a conductor-diffusor com-
bination, a cX model can always be considered as a subsydtanpX and an sX model, and,
similarly, a cXyY model is a subsystem of a pXyY model and ag¥Xnhodel.

The =+ signs for the subscript, on the other hand, denote the iorppudirectionality with K~
pumped into the cell{) and Na pumped out the cell). Without a designatiod, the pumps
are assumed to share a common parallel structure whichnrhag a parasitic resistange With
it, the pumps are assumed to operate independently on thaimdth distinct pump coefficients
and distinct parasitic pump resistances. A subscript “@"thee other hand, means the absence of
an ion pump for the referred ion species, as for the class o5pt&; cCl; models.



Similarly description applies to other types of models, epdla sK* models are the same as
pK*sNa. models except that N& passive channels are in parallel and'«passive channels
are in series with the polarities of the passive restingmi@ts and the directionalities of the ion
pumps remain unchanged.

For circuit diagrams from Table 1, a vertical box circumisitrg a letterS stands for the serial
connectivity of the electro and diffusive currents of an gpecies and a horizontal box circum-
scribing a letter/V stands for the parallel connectivity of the electro andudiife currents of an
ion species. So a horizontal-box always goes with the pX taxon and a vertiSabox with the
sY taxon. As mentioned earlier, tifenonlinearity and theV-nonlinearity are the most typical
nonlinearities a serial conductor-diffusor and a paraidiductor-diffusor will have, respectively.

The default current direction is chosen to be from the insileell to the outside, with the
exception given to the external forcing currdpg, and the ion pump directions which are fixed:
Ana. > 0 is always outward and- Ak < 0 is always inward. However, the net Nd&"ion pump
currentis/, = Ax. — Ak with the outward direction set as its default. Thus, thealee inductor
symbols stand for ion pumps which can be combined in a sudiphgroup when the pump
structure is a shared parallel or be separated in a disjanatilpl. As mentioned above, we will
assume that the polarity of an ion’s passive resting pakrgiautomatically fixed by its pump
directionality, as in the cases @fx < 0 and Ex, > 0, respectively. The corresponding models
with Ex > 0 or Ex, < 0 cannot generate any oscillation as if for dead cells, nordmsistent
with an empirical fact that the active resting potentiaiskd and Na are negative and positive,
respectively. Thus, the circuit diagram and its model taxoiquely define each other leaving only
the particular functional forms for the parallel and sefiglcharacteristics to be specified.

For pKsNal model's system of differential equations from Tablel1+ fx (V') defines the
parallellV-characteristic of K's passive channels, which is always a functiofdfy Kirchhoff’s
Current Law. Also,V = hna.(I) defines the serialV-characteristic of N&'s passive channels,
which is always a function of by Kirchhoff’s Voltage Law. The first equation of the circaitstem
is derived from Kirchhoff’'s Current Law that the sum of athiismembrane currents is conserved
at 0 and the device characteristic for the bilipid membrana Bnear capacitorC'Vy, = Ic. The
second and third equations are for the ion pumps, and, degeond whether or not the pumps
are joint or disjoint, they are slightly different as showhhe last equation is a standard practi-
cal approximation ([2]) for the serial conductor-diffusofV -characteristics. More specifically,
for sufficiently smalle > 0, the equation quickly equilibriumizes to thg, ,-nullcline which is
purposely set to be thE//-curve of Na’s serial conductor-diffusor. This is especially necegsar
when the serial V-curve shapes like afi, a so-calledS-hysteresis for which the current cannot
be explicitly solved in terms of the voltage. Note also tha tircuit diagrams and the circuit
equations from Table 1 uniquely define each other as well.

Similarly, for a pN& sK* model,7 = fx.(V') defines the parallelV-characteristic of N&a's
passive channels and, respectivély= hi (1) defines the seriall/-characteristic of K's passive
channels, and both are left to be specified.



Table 2: 7V -Characteristic Curves

S-Nonlinearity N-Nonlinearity
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Conditions: Conditions:
g,>0,d, <0, g, +d, >0 g,>0,d, <0, g,+d, <0
with J= Na’, or K* with J= Na’, or K*

To complete any model for simulation, Table 2 gives some iipetl -characteristic func-
tional forms for both ions. Here, the voltage range + Ej, v, + Ej] is dominated by ion J's
transmembrane diffusion over its parallel electro chanaatl the same for the current range
i1, 5] for another ion’s diffusive channel over its serial eleath@nnel instead. The list includes
one type of piecewise linear functionals, which are carainidore specifically, using thév-
characteristic/ = fx(V), as an example] = ¢,V represents the canonical conductor, and
I=d (V—v)(vy <V <wg) +d (va —v1)(ve < V) represents the ramp-like canonical diffu-
sor. Notation(a < = < b) with a > —o0,b < +oo is aMat | ab convention for step functions:
(a <z <b=1ifa<z<band(a <z < b) = 0 otherwise. Witha = —oo orb = o0,
the notation is simplified tob&r < x < b) = (z < b) or (a < x < b) = (a < z), respectively.
The list includes one type of smooth functions which is qdiféerent from the listed piecewise-
linear type in shape. Another smooth and canonical typevesngin [4] which, on the other hand,
is very close in shape to the piecewise-linear type. Thardiksity of the cubic type from the
piecewise-linear type is used to demonstrate the metaspddtic phenomenon for a wider range
of functional forms. A general method to generate all sucitfionals is also given in [4].

3. The Result. For more direct insights into some of the circuit modelssitriore convenient



Table 3: Circuit Equations il Is1; , Variables
The pK"sNa. Model The pN& sK* Model

CVe' = —[Inap + fx(Vo — Ex) CVe' = —[Ixp + fra(Vo — Exa)

_'_IA - ]oxt] +IA - ]oxt]
I = Ms[Ve — 7Ia] Iy = MNs[Ve — 1]
Is' = Ma[Ve — v1A] Is" = Ma[Ve — 714]

E]Na,p/ - VC - ENa - hNa([Na,p) 6IK,p/ - VC - EK - hK([K,p)

to cast their circuit equations in another equivalent foyralchange of variables for the pump
currentsAy., Ak as bellow,

Na = 2(Is + In)

IA = ANa - AK 2
(Is — 1a)

equivalentl
Is = An, + Ak a y{

Here, I, is the net current for the NaK™ ion pump whereas; is the absolute sum of the indi-
vidual pump currents, which is expected to correlate with A P-to-ADP energy conversion of
the neuron cells. Itis straightforward to check that theieajant systems for the pksNaZ model
and the pNasK*™ model are as listed in Table 3. The equationgjrand s for the xK yNa’,
models are not as clean nor convenient as for theyta™ counterparts, and they are not shown
here. As it will become clear later that the advantage to lisé t/s-form of the equations for the
xK*yNal models is the fact that the total absolute pump curfemariable is decoupled from the
rest of the equations, and the fact tligs nontrivial nullcline,V = ~vI,, coincides that of ,’s
nullcline.

For the discussion on ion pump currents earlier in the Intctidn, we have correspondingly
A = —Ag and Ay, = —Ayn.. Thus, without the Na pump Ay, = 0, the native K phase
spaceVcAxIna,, corresponds to the 3-dimensional subspace- —Is of the full 4-dimensional
VelaIsIna p-space. Itis useful to notice that for the psNa’ (resp. pNasK®) models, whatever
the nullcline configurations thec, 14, Ina,, (resp. Ik ) equations define in the native subspace
I, = —Is, they will automatically extend without alteration intcetfull space parallelly along the
Is-axis.

Regarding the metastability and plasticity of action ptitds and spike-bursts, some relevant
results of [4] are summarized here. It was demonstratedtohdé¢polarized the membrane from
its resting potential, ion diffusion against concentmatgradient across the cell membrane must
dominate in some membrane potential range (ve.+ Ej, v, + E;]). More specifically, action
potentials require only one ion species’s diffusion dorioraover its conductive channel in par-
allel. They are the prominent feature of pXcY or just simpk models. On the other hand,
spike-bursts require one ion species’ diffusion domimabwger its conductive channel in parallel



for the burst and another ion species’ diffusion dominatwar its conductive channel in series
for the spikes (i.e. over a current ran@e i-]). They are the prominent feature of pXsY models.
Thus, K"-mediated action potentials are the result dfKparallel diffusion domination in pK
and pK'sNa models. Similarly, N&-K* spike-bursts are the result of't6 parallel diffusion
domination for the burst and Ni& serial diffusion domination for the spikes in pgNa“ mod-
els. Likewise, Na-mediated action potentials and KNa" spike-bursts are among the prominent
dynamical features of pN&K* models. Furthermore, the presence of an ion pump for the ion
species having passive channels in parallel is absolussigrgial for action potential generation
as well as for spike-burst generation — shutting it down s$wfi both types of spiking activities.
For examples, pKsNa! type models permit both types of spiking activities, rederto amative
action potentialsindnative spike-burstgespectively, but pksNa- do not. In other words, there
are native oscillatory inhabitants in the Ak Ina. ,-Space but not in th&: Ax./n. p-Space, and the
roaming metastable-plastic oscillations into the full@: Ak An.Ina p,-SPace (or equivalently
the Vi1 IsIna p-SPace) are the result of the addition of the'Naump, opposite in directionality
against the K pump.

3.1. Action Potential Metastability and Plasticity for pXyY Models. As demonstrated in [4],
the K*-mediated (resp. Namediated) action potentials are among the prominent rfestaf
pK™ type (resp. pNa type ) models for which the effective region of the actionguials is not
affected by the diffusion domination of ion Ndresp. K"). Certain but typical conditions need to
be satisfied for their generation. Chief among them is thélitimm of K*'s (resp. Na’s) diffusion
domination of all passive conductive channels. For the gi¥al (resp. pK'sNal) models, the
condition is.

d + g + gy, <0 (resp.dy, + gy, + 9 <0).

As an example, Fig.1 shows that if action potentials are fierenin a pK-sNa- model, they must
be metastable and plastic transient states.

The simulations are for the pt§Nal circuit equations with the piecewise linear functionals
fx, hna from Table 2. Here, the K-mediated action potentials are also referred to agdlses,
or just pulses for short. The start of a pulse is defined whemtémbrane potenti&t; crosses the
I5-nullcline surface (which coincidek’s nontrivial nullcline surface) while increasing. A pulse
terminates when the membrane voltage crosses the sameeshdawhile decreasing. The pulse
period (resp. frequency) is the time (resp. the recipro€abetween the start and the end of a
pulse. The pulse refractory period is the time between tlleoém pulse and the start of the next
pulse.

At a first glance, Fig.1(a) appears to show five distinct lioyitles. But, in fact, the only limit
cycle is the dashed cycle which is the native cycle on theveatibspacé, = —Is when the Na
pump is shut off A, (0) = 0). In this case, N&'s transmembrane diffusion does not dominate in
the effective region of the action potentials, and as a tetha /v, ,-equation can be solved exactly
with e = 0 and/y. , = g,, (Vo — Ex.) in the effective region. Substituting this relation inte first
Vc-equation and eliminating théy,-equation sincelx.(0) = 0 from the pK"sNa’ equations of
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Figure 1: Dimensionless simulations of a p#Na model with parameter valuesy,, =
0.17, dy, = —0.06, iy = 0.5, iy = 1, Ex, = 0.6, g. = 1, d, = —1.25, v; = 0.5, vy =
2, Bx = —0.7, C = 0.01, A = 0.05, vy = 0.1, I,x = 0, ¢ = 0.001. (a) The phase portrait in
the IsV15-space with the native limit cycle (dashed cycle) and 4 feriorbits (solid cycles).
The 2-dimensional nullcline configuration for the, 7, variables extends cylindircally into the
Is-dimension. (b) Top panel, time series plot for a typicalseulrain. Bottom panel, showing
the frequency of K-pulses, and the ratio of the pulse period over the refraqteriod between
adjacent pulses, all averaged over integration time iatédy50] for each selected; value.

Table 1 lead to a 2-dimensional system. As a result, theaativactor is a limit cycle. However,
when the N& pump is on withAy, (0) > 0, the Ax,-equation is included in the system which now
becomes 3-dimension. The four solid pieces of Fig.1(a) ahg wansient orbits over different
ranges of the absolute pump current varialyle (This point becomes obvious in the simulation
Fig.3(e,f) for a pK;sNa’, model.) Notice that every pulsing episode in i/ ,-profile tracks
around the samé&-nulicline surface, appearing asymptotically stable, morhetheless drifting
slowly in the absolute pump currefy.

The top panel of Fig.1(b) shows a typical train of pulses metiseries. The bottom panel
of Fig.1(b) shows the averaged pulse frequency over a fixed periodt = 50 for a discrete
set of starting/s value. Notice from the frequency plot that the gredtgrthe greater the spike
frequency. This is perfectly consistent with the equation for which/s(¢) can be viewed as a
positive proportionality coefficient for the rate of changé(t), and the greater thg, the shorter
the period of the metastable pulse. Also notice that the adtthe spike period over its refractory
period changes little.

3.2. Spike-Burst Metastability and Plasticity for pk*sNa- Models. Similarly, the Y-spike-X-
bursts are among the primary features of pXsY models for wttie effective region is affected
by the diffusion domination of both ion species. Again, agrtout typical conditions need to be



satisfied for their generation. Chief among them for & pKal model is the same Ks diffusion
domination condition
dy + Gy + gy, <0

and the condition of N&'s diffusion intervention
hNa(il) + ENa < Vg + EK

Fig.2 shows that if N&-spike-K'-bursts exist in a pKsNa model, they must be metastable and
plastic transient states.

Here, the generation of spike-bursts can be describedybaefbllows. What is an X-mediated
action potential for a pX type model now becomes an X-medibtest for a corresponding pXsY
type model. More specific, the start and the end of a bursti®piXsY model take place at the
same locations on th&, Is-nulicline surface as the action potentials do for the pX elodBut
unlike the action potentials, now Y’s diffusion does inteme, and the interrupted action potential
is now referred as burst In addition, the Y-mediated spikes are then inserted imantervened
period of the burst. For the simulation, the start and the el Y-spike are defined when the
corresponding orbit crosses the middle voltage valtie;+ [hy (i1) + hy(iz)]/2, of the S-shape
characteristic of ion Y’s serial conductor-diffusor whére tmembrane voltage increases and de-
creases, respectively. The spike period and frequencysdireed similarly.

Fig.2(a) shows the time-series of a typical spike-burste iBospike number 3 would remain
fixed for many more bursts before changing to 2 or 4 dependingpecific models. That is, they
appear to be asymptotically stable over a finite and longopeoif time, but are not in actual-
ity. Fig.2(b) shows the native spike-burst in dots and a festastable spike-bursts in solid with
isospike number equal to 7, 3, 2, 1, respectively, eachrtestat a different value ofs. If one
starts at the left most 7-isospike burst and continues thelation for the entirely transition to
reach the 1-isospike burst, the plot would show all the igasg bursts, and all the-to-(n — 1)
bursting transitions. Various measurements of the isespiksts are collected in Fig.2(c). It in-
cludes the spike frequency — the reciprocal of the averages hetween the start and the end of
a spike during a burst; the burst frequency which is simjlddfined; the refractory-period which
is the time from the end of a burst to the start of the next burbie figure also shows the ratio
of the burst-period to the refractory-period as a functibthe absolute current. It also shows
the isospike number plot. Notice that the spike frequen&y),(®e burst frequency (BF), and the
isospike number (IN) are related by SF = BHN.

Fig.2(d) shows a rough partial partition for isospike bsiist terms of individual ion pump
currents . It is the same patrtition in thg, Is variables but translated to théy,, Ax variables.
The region below the dash line correspondgte= Ax. — Ak > I (whose definition is defined
below). This region is then partitioned by links= Ax.+ Ak = constant, which in reality should
be interpreted as a narrow region in which transitiong-06-(n — 1) isospike bursts take place.
The planar region should be interpreted as an open regidmifutl state space with thé:, In.
variables hidden from the view. In fact, the full open regmontains the joint, attractive (or
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Figure 2: (a) The time-series plot for a typical spike-bufis} The dotted spike-burst is the native
spike-burst in the invariance spate = Is (or Ax. = 0). Metastable 7-, 3-, 2-, 1-isospike bursts
are shown along thés-axis. (c) Various frequencies plot. (d) A rough partitiohnoetastable
isospiking bursts in terms of individual ion pump curremtgh other variables occupying an open
region around the attracting branch of tie/x, ,-nullcline corresponding to the refractory phase
of the spike-bursts.
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conductive) branch of th&: Iy, ,-nullcline only, ,'s nullcline surface, which in turn corresponds
to the refractory phase of the spike-bursts (see [4] for aendetailed geometric illustration on
the nullcline surfaces). Here, the joint conductive brardds when K's diffusion becomes
dominant. In the voltage range for the piecewise-line cKses diffusive domination occurs in
[v1+ Ex, v+ Ex]. Corresponding to the left critical value+ Ey, K*’s diffusive domination starts
at thel; value in thel, variable. For any initial point from the-isospike region, the immediate
transient burst has exactlyspikes. The start of all bursts takes place precisely af thelue in
the I, variable and at, + Fx in the V., variable, respectively.

3.3. Spike-Burst Metastability and Plasticity of Other Models. To show the ubiquity of
metastable-plastic spike-bursts, three different modedsused here. We begin with an alterna-
tive pK*sNal model from Table 1 for which the cubic polynomial functionsri Table 2 are used
for K*'s N-shaped characteristic and Na S-shape characteristic. The functional forms are sig-
nificantly different from the piecewise-linear ones, presgg only the properties that,, v,] and

i1, 2] are the diffusion dominated ranges for KNat, respectively. By the method of [4], all the
functional forms can be determined from their derivativegeneral, and for the cubic polynomials
in particular, they are obtained as below:

|4
fK’(V):—%(V—Ul)(V—Ug), and fK(V):/O fi (v)do,
) = B B — i) — iy )= [ helGi)di
(1) = 2B (1= )(1 = ). and i (1) /Oha()d

A simulation is shown in Fig.3(a,b). Fig.3(c,d) shows a dation of the pNdsK® equations
from Table 3 with the piecewise-linedl/-curves from Table 2. And last, Fig.3(e,f) shows a
simulation of the pK ;sNa’", equations from Table 1 with the piecewise-lindaf-curves from
Table 2. Unlike the others, the absolute pump curdgrdrifts down and at a faster rate. This is
true for both the spike-bursts as shown and the action patemiot shown. Again, dotted curves
are for the native spike-burst attractors.

3.4. Spike Atrophy — Loss of Plasticity with One lon Pump. As mentioned earlier that the
native action potential is a 2-dimensional limit cycle onlanar subspace of the invariant space
Iy = —Is when the N& pump is shut {x, = 0). We can see from Fig.1(a) that the metastable-
plastic pulses exist only in the extended space alonddtexis when the second pump is turned
on. We can also see that when projected onto the subgpace- I5 along thels-axis, all the meta
pulses take up the same profile as the native limit cycle lsecthe nullcline configuration of the
equations that determines the shape of the oscillatiomglespendent of thés variable. Because
the system is autonomous and the metastable-plastic podsepy the samé-1,-phasespace
under projection, they cannot exist without the extra disi@m provided byls, or equivalently the
second opposite-directional Ngump.

The same argument and conclusion can also be made for gmikes-bIn particular, without
the Na" pump, the system is 3-dimensional and the spike-burst islian@nsional structure. The
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Figure 3: Metastability and plasticity simulations for iears models. (a,b) pKsNal model with
the cubic/V-curves. Parameter values; = 0.5, vy = 2.5, g, +d, = —1, i3 = 0.25, iy =
0.8, i + ﬁ = 227, Exa =06, BEx = —0.7, C=0.01, A=05,7v=0.1, I =0, € =
0.0005. (c,d) pNasK™ model with the piecewise-lineaf’-curves. Parameter values; =
1, d, =—121, v, = 0.7, vy = —0.2, Ex, = 0.6, g, = 0.17, d,, = —0.08, iy = 0.18, iy =
0.5, Ex = —0.7, C = 0.01, A = 0.05, v = 0.1, Iy = 0, € = 0.0005. (e,f) pK* sNa", model
with the same parameter values as Fig.2 exceptfo= 0.1, v, = 0.05, A\, = 0.05, A\, =0.1.

13



corresponding native spike-burst lies in the subspace- —I5. Again, for the same reason as
above, metastable-plastic spike-bursts cannot exisowitthe additional dimension provided by
the Is-variable.

4. DiscussionsThe main result of this paper can be summarized as follows.

1. pXLyY+ and pXyyY o, models withy = cands can generate metastable-
plastic action potentials of varying frequencies at dédfdrabsolute ion pump
currents.

2. pXisYs and pX.4SY+4 models can generate metastable-plastic spike-bursts of
varying isospike numbers at different absolute ion pumpesus.

3. The plastic spike-bursts of pX$Y+ and pX.;SY+, models are arranged in the
order of natural number progression in their isospike nusibgainst the abso-
lute ion pump current.

4. The action potentials and spike-bursts ofyyX, models withy = c and/or s
cannot be plastic.

These results cannot be derived from Hodgkin-Huxley typeet([9, 6, 12, 11, 1, 10, 8, 3])
because the latter do not distinguish neurons’ ion pump myegafrom their electro and diffusive
counterparts.

Many open questions remain. For examples, what is the kig@mspike number that a given
neuron model can have? How is it related to the native spiket® If this largest isospike number
is finite, what is the optimal range in the isospike numbeas #hneuron model should have? How
does a communication system work based on the assumptibththanetastable-plastic spike-
bursts are information alphabet? Last and perhaps mostrianty, does the phenomenon of ion-
pump-mediated metastability and plasticity exist in realnons? These questions and conceivably
many more need to be explored elsewhere. A few of which wiitoieied in [5].

Acknowledgement: Special thanks to Jack Hale and Shui-Nee Chow who believdtkiproject
in its inception when the outcome was nothing but uncertain.
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