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Abstract  The Canadian lynx and snowshoe hare pelt data by the Hudson Bay 
Company did not fit the classical predator–prey theory. Rather than following the 
peak density of the hare, that of the lynx leads it, creating the hares-eat-lynx (HEL) 
paradox. Although trappers were suspected to play a role, no mathematical model 
has ever demonstrated the HEL effect. Here we show that the long-held assumption 
that the pelt number is a proxy of the wild populations is false and that when the 
data are modeled by the harvest rates by the trappers, the problem is finally resolved: 
both the HEL paradox and the classical theory are unified in our mechanistic hare-
lynx-competitor-trapper (HLCT) model where competitor stands for all predators of 
the hares other than the lynx. The result is obtained by systematically fitting the data 
to various models using Newton’s inverse problem method. Main findings of this 
study include: the prey-eats-predator paradox in kills by an intraguild top-predator 
can occur if the top-predator prefers the predator to the prey; the benchmark HLCT 
model is more sensitive to all lynx-trapper interactions than to the respective hare-
trapper interactions; the Hudson Bay Company’s hare pelt number maybe under-
reported; and, the most intriguing of all, the trappers did not interfere in each other’s 
trapping activities.
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“I find the whole oscillation most mysterious.”—The closing words of a 
60-page mathematical analysis of the Hudson Bay Company’s hare and lynx 
fur data by Egbert R. Leigh, Jr. in 1968.

1  Introduction

The Hudson Bay Company’s fur trade data (Hewitt 1921; MacLulich 1937; Elton 
and Nicholson 1942; Leigh 1968; Odum and Barrett 1971) for the Canadian lynx 
and snowshoe hares is the oldest, the longest, and the most well-known data set 
in ecology. It has been extremely controversial and remains enigmatic to this day. 
Every book on introductory ecology must pay tribute to it, most (e.g. May 1973) 
would cite it as an example to support the classical predator–prey theory by Lotka 
(1925) and Volterra (1926), but only a few (e.g. Britton 2003) would point it out 
correctly that it does not. Unlike the classical theory which predicts the peak density 
of the predator to follow that of the prey, the peak volume of the hare pelt on average 
follows that of the lynx for some of the years. This paradox was discovered by Leigh 
(1968) and made widely known by Gilpin with an article titled ‘Do hares eat lynx?’ 
(Gilpin 1973). The net phase difference is more than 2 years with the lynx pelt data 
phase-advanced by 1 year on average from the hare pelt (Leigh 1968; Gilpin 1973; 
Bulmer 1974) but the field lynx population phase-lagged by 1 year from the field 
hare population (Keith 1963; O’Donoghue et  al. 1998; Stenseth et  al. 1998; Huf-
faker 1958) with maturation delay of the lynx being the main cause. Data aggrega-
tion cannot be the problem because pelts from different boreal regions of Canada 
were shown to be spatially synchronized in time (Blasius et al. 1999). Could some 
odd trading practice by the trappers, or the bookkeeping practice by the Hudson 
Bay Company, or both shift the lynx phase by 2 years? This is highly unlikely for 
two reasons: statistical averaging over large data set usually erase peculiarities and 
the absence of evidence for idiosyncratic practices by the company is probably the 
absence of such systematic practices. The phase divergence in opposite directions is 
so ‘mysterious’ (Leigh 1968) that it prompted a recent statistical study (Zhang et al. 
2007) to suggest that the pelt data is the result of ‘intrinsic self-regulation’ of both 
hare and lynx (Fig. 1).

Biologists never stopped trying to explain away the hares-eat-lynx (HEL) para-
dox (Finerty 1979; Weinstein 1977; Winterhalder 1980; Royama 1992; Krebs et al. 
2001; Vik et al. 2008). Royama (1992, p. 233) went for an easy solution that Leigh 
(1968) made a booking error by shifting his lynx data 1-year out of phase. There 
were various data segments in the literature from Hewitt (1921), to MacLulich 
(1937), Elton and Nicholson (1942), leading to the longest compilation appeared 
in Odum and Barrett (1971) (referred to as the Odum Data for simplicity in this 
paper). By comparing Leigh’s tabulation to Odum’s it seems Royama’s explanation 
is a good one. However, upon further examination on his suggested corrections, the 
paradox persists even if Leigh’s lynx data is shifted out of phase. Specifically, unless 
Leigh shifted his data by at least 2 years, Royama’s suggested fix would only put the 
lynx data in synchrony with the hare data, turning Gilpin’s old quip into a new muse 
‘Does lynx turn vegan?’, see Fig. 2. That is, if Leigh made a tabulation error by a 
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Fig. 1   Pelt data. Hudson Bay Company’s hare and lynx pelt data from Leigh (1968) and Odum and Bar-
rett (1971). There is insignificant difference for the hare pelt between the two sets. But for the period of 
1875–1903, one of the two for the lynx pelt seems out of place. The lows of the Odum data in those years 
seem much higher than those from the period before and the period after. Also, unlike a rather sharp drop 
after reaching it maximum in other years, the high return around 1876 lingered, as if the trappers hesi-
tated to go for the maximum return. If the Odum data is the benchmark, then Leigh under-counted the 
lynx pelt for many years of the period rather than shifted the time series backward
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Fig. 2   Did Leigh Err? Top Left: Leigh’s tabulation for the period of 1875–1903. The plots between the 
top left and the bottom right show some possible tabulation errors suggested by Royama. Backing the 
lynx data by 1 year (i.e. changing 1876’s return to 1875’s return, and so on) would only deepen the para-
dox. Advancing it 1 year would make the lynx an herbivore. Only by forwarding it 3 years would the 
data fit the classical theory perfectly. Bottom Right: Odum’s data for the same 1875–1903 period which 
makes the lynx an herbivore by the classical theory. Especially, the local loop near the top-right corner is 
of the HEL kind, of left-handed orientation. Squares mark the start of the orbits
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1-year shift, the paradox would not simply disappear. Furthermore, when Odum’s 
data is plotted for the same period of 1875–1903 as Guilpin did, the lynx was still 
not doing the job of eating the hares.

Although trappers were suspected to play a role for the HEL paradox (Finerty 
1979; Weinstein 1977; Winterhalder 1980), all statistical and mathematical studies 
in the literature (e.g. Bulmer 1974; Schaffer 1984; Stenseth et al. 1997, 1998; Bla-
sius et  al. 1999; Gamarra and Solé 2000; King and Schaffer 2001; Stone and He 
2007; Zhang et al. 2007; Vik et al. 2008) have made an inexplicable assumption that 
the pelt numbers is a proportional proxy of the populations in the wild, effectively 
rendering the trapper’s role nonessential. Figure 2 of Stenseth et al. (1998) was cited 
as an empirical basis for this assumption but the opposite can be equally inferred. 
Even at the conceptual level this proxy assumption is incredibly simplistic for obvi-
ous reasons. Just to name a few: trappers were not naturalists but resource exploit-
ers who were economically vested in if not entirely depended on the animals for 
survival—taking out the animals in large quantity irreplaceably for food and trade; 
and like a natural predator they adjusted their tactics in pursuit of their preys (Fin-
erty 1979; Weinstein 1977; Winterhalder 1980). These facts alone suggest that the 
trappers were too deeply embedded in the system to be excluded from any mathe-
matical model aimed at explaining their catch data or the hare-lynx interaction in the 
wild that the data implies. After all, the pelt data should be more about the trapping 
business than about the hare-lynx system in the field. In the field, the prey drives 
the predator. As of trapping, the lynx pelt drives the hare pelt because lynx fur is 
economically more valuable. In both cases, whichever is the driver leads the cycle. 
This is exactly what we will demonstrate in this paper. Namely, if the trappers pre-
ferred the lynx fur then the pelt cycle must be the HEL kind and if the preference is 
reversed then the pelt cycle is the classical kind.

Before we do that in a comprehensive way we first consider as a motivation a toy 
model in three trophics, prey x, predator y, and intraguild top-predator z:

It is a simple intraguild predator–prey model for which the top-predator is only of 
the Holling Type I. Figure 3 shows for two different parameter sets the catch cycle of 
the top-predator for which one parameter set is what we think should be but the other 
cycle is of the HEL kind. The former is because the per-predator per-prey catch rate 
of the prey by the top-predator is higher than that of the predator ( u1 ≫ u2 ) and the 
latter is because of the opposite ( u2 ≫ u1 ). These theoretical possibilities together 
with the supposition that trappers valued the lynx pelt more than the hare pelt imply 
the HEL phenomenon. If ecologists had known this, would they have tried to make 

(1)

dx

dt
= x

(
b − mx −

a1y

1 + h1a1x
− u1z

)

dy

dt
= y

(
b1a1x

1 + h1a1x
− d1 − m1y − u2z

)

dz

dt
= z

(
r1u1x + r2u2y − d3

)
.
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the HEL paradox to go away? It is very likely that Leigh has been right all along. 
His version of the Hudson Bay Company’s data is qualitatively good according to 
such trapper-included models. It would be questionable if the data did not show the 
HEL effect for any of the years.

Because of the HEL paradox the failure of the classical Lotka–Volterra theory 
for the hare-lynx system was spectacular. It constantly reminded us how little we 
knew about population cycles in nature. Leigh’s work (1968) was the first and 
the only but unsuccessful attempt to fit a population model to the fur data in the 
past. The HEL legacy he left behind was long lasting. It led to questions about the 
place of mathematical models in ecology (Hutchinson 1975; Hall 1988). (Statisti-
cal analysis is not considered strictly as mathematical modeling here but rather an 
extension of observation or a tool of observation by experimentalists.) The HEL 
problem has raised some basic questions. For example, can a piece of mathemat-
ics be called a mathematical model without ever being best-fitted to an empiri-
cal data? How to objectively select them from seemingly innumerable and often 
arbitrary choices? And what is knowable and what is not when a model of high 
dimensions is fitted to a low dimensional data set?
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Fig. 3   Trappers preference determines catch cycle chirality. Top panel: Equation (1) with 
u1 = 0.1, u2 = 1, r1 = 0.01, r2 = 0.1 , the top-predator applies a greater predatorial pressure on the 
predator ( u2 ≫ u1 ). The killed prey and predator orbit (in u1xz v.s. u2yz labelled as Catch) cycles 
clockwise, i.e. the paradoxical prey-eats-predator direction. Circles mark the initial points of the 
orbits. Bottom panel: With u1 = 1, u2 = 0.01, r1 = 0.1, r2 = 0.1 , the top-predator applies a greater 
predatorial pressure on the prey ( u1 ≫ u2 ). The killed prey and predator orbit cycles counter-
clockwise, the same as the population orbit. The other parameter values are the same for both cases, 
b = 1,m = 1, a1 = 0.5, h1 = 10, b1 = 0.8, d1 = 0.01,m1 = 0.01, d3 = 0.0015
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In this paper we will consider several models for the Canadian hare-lynx prob-
lem. We will make the following distinctions. First, arbitrary equations or functions 
will not be considered as model candidates for the data. This is the implied premise 
upon which any inverse problem is based for any scientific problem. For example, 
time-dependent polynomials of arbitrary degrees will not be considered despite they 
can fit any data perfectly since the coefficients of such polynomials almost always 
do not have meanings for the physical processes to be modeled. Likewise, the celes-
tial mechanics model for the N-body problem will not be considered either for eco-
logical problems because of its lack of mechanistic link to the latter even though it 
may fit better to the hare-lynx data than some of the ecological models do. In other 
words, the concept of a model is restricted only to those mathematical equations and 
functionals which either have some mechanistic justifications or are well accepted 
for the intended physical processes. A model without being best-fitted to a data is 
referred to as a conceptual model. A conceptual model that is best-fitted to a data is 
referred to as a provisional model. A provisional model that is the best amongst all 
provisional models is referred to as the benchmark model.

To best fit a model to a data is to have the least error between the predicted by the 
model and the observed from the data. To determine system parameter values for 
the least error is to solve the so-called inverse problem in mathematics, and the most 
effective method to solve inverse problems is by Newton’s gradient search method 
for which the most effective implementation is the line search method (Rohner 
1996; Ruszczynski 2006). The model selection protocol outlined above is referred 
to as benchmarking. All provisional models in this paper are determined by the line 
search method. We will demonstrate that all models without the trappers do not 
exhibit the HEL effect but all models with the trappers do, and of all the models 
with or without the trappers, the hare-lynx-competitor-trapper (HLCT) model has 
the least error, hence is qualified to be the benchmark model.

When a model fits a data well, it used to raise and still does this suspicion that it 
is a case of ‘over-fit’ because the model contains too many parameters or too many 
variables. The concern about ‘over-fit’ and the issue about polynomial pseudo mod-
els used to and still spread like an urban legend in the inverse problem community. 
In our opinion, any so-called ‘over-fit’ is always a bad fit if arbitrary functionals are 
used as it must not be allowed. Within the class of mechanistic models, ‘over-fit’ is 
a non-issue. As shown by our result, no matter how many different trophic levels, or 
how many species, or how many parameters a population model contains, as long as 
the trappers are not included in the model or the trapping rates are not used as the fit 
functionals, the best-fit time series will always result in the classical LEH oscillation 
rather than the paradoxical HEL oscillation and therefore produce a worse fit than 
our HLCT model does. In other words, having more variables or parameters does 
not always lead to a better fit. What does matter is to find the minimalistic, regard-
less of size, but mechanistic models to fit the data. Any model simpler than mini-
malistic but worse in fit is simplistic. Any model larger than minimalistic but worse 
in fit is unnecessarily complex.

We will introduce for the first time to our best knowledge a sensitivity analysis of the 
best fit to show expectedly that the trappers valued the lynx pelt more than the hare pelt, 
and to show unexpectedly that they did not interfere in each other’s trapping activities. 
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We will also introduce for the first time an uncertainty analysis of fitting high dimen-
sional models to low dimensional data to show that despite the dimensional deficiency 
some system parameters can be uniquely determined by the best fit.

2 � Method

In this paper we will first introduce various conceptual models in differential equations 
with as much mechanistic justifications as possible. We will then use Newton’s gradient 
search method and an effective implementation—the line search method—to best fit 
each conceptual model to the lynx-hare data from Leigh (1968) and Gilpin (1973). It 
is by the benchmark model that our observations and conclusions about the Canadian 
hare-lynx system will be derived.

2.1 � Models

For variable notations we will denote by t the time in year with t = 0 corresponding 
to 1875, the first data year of Leigh (1968) and Gilpin (1973). We will use H(t), L(t) 
for the head counts of hare and lynx in the wild at time t that we often breviate to 
H, L, suppressing the time variable. According to Stenseth et al. (1997), lynx is just 
one of many predators of the hare, including wolf, wolverine, red fox, great horned 
owl, hark owl, and other avian predators (Rohner 1996; Stenseth et al. 1997). Although 
coyote is also a predator of the hare but it was a recent immigrant to the region post the 
Hudsons Bay Companys data (O’Donoghue et al. 1998). Hence variable C = C(t) is 
used as a proxy for the combined predatory effect by all predators other than the lynx. 
Instead of a natural number it is simply a nonnegative real number used as an aggre-
gated index to measure this alternative predatory effect on the hare and the competing 
effect against the lynx. Similarly, variable T = T(t) is used as an index for the trappers, 
a proxy for the trapping effect on the hare and the lynx rather than the head count or 
family count or tribe count of the trappers. We note that just because there was no con-
current data available for the other predators nor for the trappers does not mean they 
had no impacted on the hare-lynx dynamics or they should not be included in a model. 
We take up the assumption that these four state variables are the minimal prerequi-
sites for any model intended to explain the Hudson Bay Company’s data. The variable 
and parameter definitions together with their units are listed in Table 1. The theoretical 
model is given as follows:

(2)

dH

dt
= H

(
b − mH −

a1L

1 + h1a1H
−

a2C

1 + h2a2H
−

u1T

1 + v1u1H + v2u2L

)

dL

dt
= L

(
b1a1H

1 + h1a1H
− d1 − m1L −

u2T

1 + v1u1H + v2u2L

)

dC

dt
= C

(
b2a2H

1 + h2a2H
− d2 − m2C

)

dT

dt
= T

(
r1u1H + r2u2L

1 + v1u1H + v2u2L
− d3 − m3T

)
.
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Explanation for the model is as follows. Without the predators and trappers 
( L = C = T = 0 ), the hare population is modeled as a logistic growth with the 
intrinsic growth rate b and the intraspecific competition coefficient m (which can 
be justified by the field study of Krebs et al. 1995). We will use Holling’s Type II 
functional form (Holling 1959) for the predation rate of the lynx on the hare with 
the encounter rate a1 and the handling time h1 . Parameter b1 is the consumption-to-
birth ratio (biomass conversion coefficient) of the lynx and parameters d1,m1 are its 
natural death rate and intraspecific competition rate respectively. Similar parameters 
notations, a2, h2, b2, d2,m2 , apply to the C-equation.

Like the predators, the trapping rates (the pelt harvest rates) of the hare and the lynx 
per unit index of the trapper are the joint Holling Type II functional forms (Murdoch 
1973; Lawton et al. 1974), u1H

1+v1u1H+v2u2L
,

u2L

1+v1u1H+v2u2L
 , with the encounter rates u1, u2 

and the handling times v1, v2 of the hare and lynx, respectively. However, unlike for the 
predator equations, parameters r1, r2 for the trapper’s equation are the intrinsic pelt-to-
recruit ratios, d3 is the trapper’s quit rate, and m3 is the trapper’s intraspecific 

Table 1   Model variables and parameters

Parameter Definition Unit

H Hare’s population Natural number
L Lynx’s population Natural number
C Competing predators’ population index Scalar
T Trapper’s population index Scalar
b Hare’s per-capita growth rate 1∕[year]

m Hare’s intraspecific competition rate 1∕[H]∕[year]

a1 Hare’s encounter rate with Lynx 1∕[year]

h1 Lynx’s handling time of Hare [year]∕[H]

a2 Hare’s encounter rate with COP 1∕[year]

h2 Competing predators’ handling time of Hare [year]∕[H]

u1 Hare’s encounter rate with Trapping 1∕[year]

v1 Trapper’s handling time of Hare [year]∕[H]

u2 Lynx’s encounter rate with Trapping 1∕[year]

v2 Trapper’s handling time of Lynx [year]∕[L]

b1 Lynx’s consumption-to-birth ratio Scalar
d1 Lynx’s per-capita death rate 1∕[year]

m1 Lynx’s intraspecific competition rate 1∕[L]∕[year]

b2 Competing predators’ consumption-to-birth ratio Scalar
d2 Competing predators’ per-capita death rate 1∕[year]

m2 Competing predators’ intraspecific competition rate 1∕[C]∕[year]

r1 Trapper’s Hare-to-recruitment ratio Scalar
r2 Trapper’s Lynx-to-recruitment ratio Scalar
d3 Trapper’s per-capita quit rate 1∕[year]

m3 Trapper’s intraspecific competition rate 1∕[T]∕[year]
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competition rate. That is, the system of equations models not only the ecological inter-
actions of the hare, lynx, and other predators, but also the economical interactions of 
the trappers with the natural system. The trapper equation is the same as those for the 
predators in form but the interpretations for its parameters are economical rather than 
ecological.

The continuous model Eq.  (2) is referred to as the hare-lynx-competitor-trapper 
(HLCT) model. We will also consider the following models which it contains: the hare-
lynx-trapper (HLT) model with C ≡ 0 for the HLCT equation; the hare-lynx-competi-
tor (HLC) model with T ≡ 0 ; and the HLCT1 model which has the same equation (2) 
except that the trapping rates are of Holling’s Type I forms with the zero handling times 
v1 = v2 = 0 . For comparison purpose we will also consider the vegetation-hare-lynx 
(VHL) model used in Blasius et al. (1999), King and Schaffer (2001) and Stone and He 
(2007).

2.2 � Gradient Search and Line Search for Least Error

Empirical data for a physical process P is a collection of time and real numbers, 
denoted in general by

Here the second subindex j is for different type of data, say j = 1 for the population 
of a prey and j = 2 for the population of a predator. We will refer to it as the jth 
data type for a total of � many types. Each data type is collected at the same or dif-
ferent data acquisition times but we will assume without loss of generality that tij is 
increasing in i and the earliest collecting time is set to 0, i.e. t(i+1)j > tij ≥ 0.

In this paper we will only consider differential equations as mathematical models for 
the process,

where t has the same time dimensional unit as tij , p the model parameters, 
x(t) = (x1, x2,… , xn)(t) is the state variables of the model at time t. For each j, we 
consider a fit functional, fj(tij, p, x0) , to the jth data type (y1j, y2j,… ykjj) , and consider 
the weighted Euclidean error between the predicted and the observed:

where the weight parameter wij has the reciprocal unit of yij to scale each term 
dimensionless. For example, we can use wij ≡ 1∕max1≤i≤kj{|yij|} assuming not all 

(tij, yij), i = 1, 2,… , kj, j = 1, 2,… ,�

(3)
dx

dt
= F(x, p)

x(0) = x0

E(F,f )(p, x0) =

√√√√√
�∑
j=1

kj∑
i=1

w2
ij
|fj(tij, p, x0) − yij|2
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yij = 0 in i, or analogous to the �-square test we can use wij = 1∕|yij| assuming all 
yij ≠ 0 . The usage of dimensional weights is essential when the best fit is sought for 
multiple data types for which the error, E(F,f )(p, x0) , has to be dimensional free for 
consistency. We also note that the state variable x(t) may or may not coincide in part 
or whole with the data type y. That is, fj , for any 1 ≤ j ≤ � , may or may not have the 
same dimensional unit as xk for any 1 ≤ k ≤ n.

By definition, the best fit of the model F to the data has the least error

at some (p∗, x∗
0
) , referred to as the global minimizer, among all choices of the initial 

conditions x0 and parameter values p. Therefore, by definition, a model F is a bench-
mark model if

holds for all provisional models G (with the same fit weights wij ). A benchmark 
model is only temporary as it can be replaced by new and better provisional models. 
We note that it is often the case that we cannot prove a minimizer we found by a par-
ticular method is indeed the global minimizer but instead the best local minimizer 
with respect to the search method, and hence is referred to as a provisional global 
minimum. Thus, the provision and benchmark designation for models in this paper is 
contingent upon the search method we used.

Finding local minima of the error function E(p, x0) is the same as finding local 
minima of the error function squared E2(p, x0) . The search is done in the parameter 
and initial state space (p, x0) , often along a fastest descending path. The methods 
we will use are all based on Newton’s gradient search method. That is, we seek to 
determine a path in the parameter and initial state space, (p, x0)(s) , so that it follows 
the negative gradient of E2(p(s), x0(s)) in search of a local minimum of the squared 
error:

where Dzf (z) denotes the derivative of function f with respect to its variable z, and 
(p0, x0,0) denotes the initial search point. A local minimizer is found if the path 
converges

and a local minimum is declared numerically after a sufficiently large number s. We 
note that at each search point, x(t, x0(s), p(s)) is a solution to the model differential 
equations Eq. (3). Thus, as a function of (t, s), x(t, x0(s), p(s)) in fact is the solution 
to a partial differential equation induced from the gradient search for which more 
details are given in the “Appendix”.

�(F, f ) = min
(p,x0)

E(F,f )(p, x0) = E(F,f )(p
∗, x∗

0
)

�(F, f ) ≤ �(G, g)

�(p, x0)

�s
= −∇E2(p, x0) = −2

�∑
j=1

kj∑
i=1

w2
ij
[fj(tij, p, x0) − yij]D(p,x0)

(fj(tij, p, x0))

(p(0), x0(0)) = (p0, x0,0)

(p∗, x∗
0
) = lim

s→∞
(p(s), x0(s))
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It is known that if the squared error has non-unique local extrema, a gradient 
search may not yield the global minimizer. In fact, finding the global minimizer is 
still an active research in the area of scientific computations. Another drawback for 
the gradient search method is that it can be time consuming in solving the resulting 
PDEs. A practical approach to both speeding up the search and to finding a better 
minimizer, which we will also adopt, is the line search method. Without loss of gen-
erality, we assume all the parameters and the initial states are non-negative. The line 
search method we will use in this paper works as follows.

For every initial guess (p0, x0,0) , we consider a hypercube centered at the initial 
guess with 0 < p < 2p0, 0 < x0 < 2x0,0 , componentwise. We will then partition 
each interval into a fixed even number, say 2N, of subintervals of equal length, with 
N discrete partitioning points to each side of the center. We will then search for a 
smaller error E(p, x0) along this and each coordinate line through the center (p0, x0,0) 
at these discrete points. For example, for the first parameter p1 there are 2N + 1 dis-
crete partitioning points qi with q0 = 0 , qN = p1,0 the initial guess, and q2N = 2p1,0 
the end of the line search segment for the parameter p1 . With all other parameters 
and initial states fixed at the initial guess value (p0, x0,0) , we compute E(p, x0) with 
pi = pi,0, i ≠ 1, x0 = x0,0 but p1 = qk for all k = 0, 1, 2,… 2N . This generates 2N + 1 
many values for E(p, x0) . Do the same for all other parameters and initial states to 
generate a total of (2N + 1) × [number of parameters and initial states] . Of which we 
select the smallest value of E(p, x0) and thus the next new initial guess (p0, x0,0) . We 
repeat this process until either the successive errors are within certain stoppage tol-
erance or if it runs out a predetermined number of iterations. The output of this line 
search is our provisional global minimizer (p∗, x∗

0
).

One can also run a gradient search after the line search just to increase the accu-
racy of such provisional minimizer, which we did use. Notice that if we know the 
error function E(p, x0) has all local minima inside a bounded region, then both the 
gradient search and the line search must converge to a local minimizer. In fact, all 
searches carried out for this paper converged, and it is in this sense each best fitted 
model is the provisional model for the Canadian hare-lynx system.

2.3 � Best‑Fit Sensitivity

Suppose a provisional global minimizer (p∗, x∗
0
) has been found for the error func-

tion E(p, x0) , a next question is how sensitive does the error depend on changes 
in the parameters and initial states? This question can be formulated by the Tay-
lor expansion of the error function. To be more specific, we first assume without 
loss of generality that the minimizer occurs in the interior of the parameter and 
initial state space (p, x0) > 0 componentwise. The justification is as follows. If 
the minimizer occurs on a boundary with one of the parameters pi = 0 , then that 
parameter can be effectively dropped from the model and we can restrict the 
model only to those system parameters whose minimizer components are strictly 
greater than zero. Similarly if the minimizer occurs on a boundary with one of 
the initial states xj = 0 , then the state of the model will stay invariant with the xj
-population zero for all future time, and hence it can be dropped from the model 
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to consider only a smaller system of equations. Hence, sensitivity of the best fit 
is referred in this paper to only those effective parameters and initial states for 
which the minimizer occurs in their interiors of definition. As a result, the first 
partial derivatives of the error function E at the minimizer are all zeros.

We now define the sensitivity of the best fit. As an example, consider the case 
of the first parameter p1 and expand E at the minimizer

where the dots represents the expanding terms for the other parameters and ini-
tial states. Because p∗

1
> 0 we can rewrite it as follows making the squared change 

dimensionless

By definition, the coefficient of the squared percentage change (p1−p
∗
1
)2

(p∗
1
)2

 is the sensitiv-
ity of the error with respect to the p1 parameter:

Similar definition applies to other parameters and initial states, denoted by Spi and 
Sxj,0 respectively. Note that all sensitivities are greater than or equal to zero because E 
is an interior local minimum at the point (p∗, x∗

0
).

It is important to note that the sensitivity can be used to compare deviations 
of the error from the best fit with changes of all parameters and initial states. For 
example, for the same squared relative changes in parameter p1 and p2 with 
(p1−p

∗
1
)2

(p∗
1
)2

=
(p2−p

∗
2
)2

(p∗
2
)2

 , the inequality Sp1 > Sp2 implies that the error function E(p, x0) 

is greater than its minimum E(p∗, x∗
0
) along the p1 axis than along the p2 axis. In 

this sense we can say the best fit of the model to the data is more sensitive to the 
parameter p1 than to the parameter p2 . Similar pair-wise comparison applies to 
all parameters and initial states. We also note that the S-sensitivity can be easily 
approximated from the line search method when at least three discrete points are 
used for each of the search range [0, 2(p∗, x∗

0
)] componentwise, enough for a dis-

crete approximation of that component’s second order partial derivative of the 
error function.

E(p, x0) = E(p∗, x∗
0
) +

1

2

�2E

�p 2
1

(p∗, x∗
0
)(p1 − p∗

1
)2 +⋯ ,

E(p, x0) = E(p∗, x∗
0
) +

(p∗
1
)2

2

�2E

�p 2
1

(p∗, x∗
0
)
(p1 − p∗

1
)2

(p∗
1
)2

+⋯ ,

(4)Sp1 ∶=
(p∗

1
)2

2

�2E

�p 2
1

(p∗, x∗
0
)
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2.4 � Dimensional Analysis: Best‑Fit Uncertainty and Sensitivity Certainty

It is often the case that due to practical limitations, empirical data are collected 
in fewer independent dimensions than the dimensions of the physical system. The 
Canadian lynx-hare system is such an example for which the pelt data in lynx and 
hare are available but in reality the foodweb to which these two species are embed-
ded has far more independently state variables from vegetation to competing herbi-
vores and carnivores and to trappers. Intuitively, there ought to be some degree of 
freedom allowed for the best-fitted parameter values of any provisional model. The 
questions are which parameters can be uniquely determined and which parameters 
cannot, and for the latter what is the degree of uncertainty, and will such uncertainty 
affect the best-fit sensitivity Sp,x0 ? These questions can be answered by the following 
theorem of dimensional analysis whose proof is a straightforward application of the 
Buckingham’s � Theorem (e.g. Logan 1996).

Theorem  Consider an �-dimensional data set

 an n -dimensional differential equation model x� = F(x, p) with x ∈ ℝ
n, p ∈ ℝ

m,  
n ≥ �, and scalar fit functionals fj(tij, p, x0). Assume the differential equations 
and the errors of fit, fj(tij, p, x0) − yij, are unit-free. Then there exist scalings 
�(p),Ki(p), qj = gj(p), and sj(p) so that the model and the weighted squared error

are transformed to a dimensionless model x̄� = G(x̄, q) and its corresponding 
squared error

with f̄j being dimensionless but sj having the same dimensional unit as yij , t̄ = t𝜏(p) , 
x̄(t̄) = x(t̄∕𝜏(p))∕Ki(p) , q = g(p) ∈ ℝ

[m−n−1]+, where [m − n − 1]+ is zero if 
m − n − 1 ≤ 0 and m − n − 1 otherwise.

We note that all physical systems are unit-free, namely equivalent under dimen-
sional unit conversions, and hence the theorem should applies to mechanistic concep-
tual models. The degree of freedom for the best fit is explained as follows. Notice that 
when m − n − 1 ≥ 0 , a best fit by the dimensionless model to the data in the scaled 
(m − n − 1) + n + � + 1 = m + � many quantities (q, x̄0, s, 𝜏) corresponds to an 

(tij, yij) for i = 1, 2,… , kj, j = 1, 2,… ,�,

E2(p, x0) =

�∑
j=1

kj∑
i=1

w2
ij
(fj(tij, p, x0), p) − yij)

2

E2(q, x̄0, s, 𝜏) =

�∑
j=1

kj∑
i=1

w2
ij
(sjf̄j(tij𝜏, x̄0, q) − yij)

2
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(n − �)-dimensional manifold of the same error value in the m + n dimensional param-
eter and initial condition space in (p, x0) . That is, n − � , which is the difference between 
the dimensional dimension m + n and the scaled, dimensionless dimension m + � , is 
the degree of freedom for the best fit of the model to the dimensional data. In other 
words, if n > � , we must expect infinitely many choices in the dimensional parameters 
to give the same best error fit. For particular model, the question is to determine which 
parameters can be uniquely determined for the best fit and which parameters cannot 
because of the inherent freedom for the fit.

We also note that for unit-free models the best fit sensitivity Sp,x0 is independent of 
the best fit uncertainty. This can be easily proved by the same argument for the Buck-
ingham’s � Theorem. More specifically, the relationship between the dimensional and 
the dimensionless parameters and variables are algebraic, and the dependence of the 
uncertain parameters and initial states on the free parameters and initial states is also 
algebraic. As a result the free parameters and initial states are canceled out in the sensi-
tivity values with respect to all the uncertain parameters and initial states. That is, even 
though the global minimizers in the parameters and initial states are not unique, their 
sensitivities are.

2.5 � Chirality: HEL Versus LEH Orientation

When the time-dependent populations or pelts of hare and lynx are plotted in the HL-
plane, the trajectory may proceed in a general counterclockwise direction, i.e. the lynx-
eats-hare (LEH) orientation, or respectively in a general clockwise direction, i.e. the 
HEL orientation. Describing it differently the LEH chase is also right-handed, or right 
chiral, and the HEL chase is left-handed, or left chiral. Chirality is a quantity designed 
for the handedness of the orientation. In particular, a positive chirality is for a right-
handed LEH chase and a negative chirality is for a left-handed HEL chase. Here is how 
the chirality of the hare-lynx trajectory is defined.

Let ti, i = 0, 1, 2,… , n , be an increasing sequence in time, and Hi, Li be the pop-
ulation for the hare and lynx respectively at the time ti . To define their chirality, let 
v⃗i = (Hi − Hi−1, Li − Li−1) be the direction or secant vector from point (Hi−1, Li−1) on 
the projected HL-plane to point (Hi, Li) . Now with respect to the direction v⃗i the next 
movement by the projected HL-trajectory takes place in the direction of v⃗i+1 , which can 
either right-handedly (counterclockwise) rotate up or left-handedly (clockwise) rotate 
down, or neither. The chirality, ci , at the time ti , is defined to be the coefficient of the 
curl vector from v⃗i to v⃗i+1 . More specifically, if a⃗ = (a1, a2) and b⃗ = (b1, b2) , then the 
curl of a⃗ to b⃗ is ����(a⃗, b⃗) ∶= (a1b2 − a2b1)� with � = (0, 0, 1) the standard vector 
base for the z-axis, and the sign of the curl coefficient, a1b2 − a2b1 = ����(a⃗, b⃗) ⋅ � , 
tells whether the orientation from a⃗ to b⃗ is right chiral ( ����(a⃗, b⃗) ⋅ � > 0 ) or left chiral 
( ����(a⃗, b⃗) ⋅ � < 0 ). That is, we define the local or point chirality of the HL-trajectory 
at time ti to be

ci = ����(v⃗i, v⃗i+1) ⋅ �, for i = 1, 2,… , n.
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The chirality for the trajectory is defined to be the time-averaged point chirality:

with Δti = ti − ti−1 . Note that this definition applies to sequences from numerical 
simulations as well as to the pelt data. It is in this sense that we say the HL-trajec-
tory or data is right chiral if c̄(H, L) > 0 or left chiral if c̄(H, L) < 0 for the rest of the 
paper.

3 � Result

We now apply the method outlined above to the HLCT conceptual model Eq. (2) and 
its various subsystems for comparison purposes. We will use both data sets by Leigh 
and Odum. Specifically, we fit the models to the period from 1875 to 1903 considered 
by Gilpin and others because of its peculiarity and use the best-fits to fit the longer 
period data from 1847 to 1903, which is the entire time duration for the Leigh data. The 
goal is to find the benchmark model and its practical implications.

Now denote the truncated data by HT ,i, LT ,i , the pelt for hare and lynx respectively 
in the ith year, with ti = i, i = 0, 1, 2,… , 28 , since the year of 1875. Since they are 
tallied annually we can take them as the annual catch rates by the trappers. As a 
result we will use the trapper’s catch rates for the fit functionals:

and the corresponding squared error:

for which ti1 = ti2 = ti = i,wi1 = 1∕H∗
T
,wi2 = 1∕L∗

T
, i = 0, 1, 2,… , 28 and

By the dimensional analysis theorem above we know for the HLCT model it has 
a degree-2 uncertainty for the best fit. To determine those uncertain param-
eters and initial states we transform the dimensional model Eq.  (2) into a dimen-
sionless model with a change of parameters and states. More specifically, the 
transformation and the inverse transformation are given in Table  2. For exam-
ple, the entries from the Scaled Parameters column are defined by the last 

c̄(H, L) =
1

tn − t0

n∑
i=1

ciΔti

HT (ti) ∶= fH(ti, x0, p) =
u1H(ti, x0, p)T(ti, x0, p)

1 + v1u1H(ti, x0, p) + v2u2L(ti, x0, p)

LT (ti) ∶= fL(ti, x0, p) =
u2L(ti, x0, p)T(ti, x0, p)

1 + v1u1H(ti, x0, p) + v2u2L(ti, x0, p)

E2(p, x0) =

28∑
i=0

[(
fH(ti, x0, p) − HT ,i

H∗
T

)2

+

(
fL(ti, x0, p) − LT ,i

L∗
T

)2
]

x0 = (H0, L0,C0, T0), H
∗
T
= max{HT ,i}, L

∗
T
= max{LT ,i}.
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Scaling column which defines the transformation from the dimensional parameters 
to the dimensionless ones, such as �1 = h1a1KH with KH = b∕m . Similarly, the 
third column defines the inverse transformation from the dimensionless param-
eters to the dimensional ones in the first column, such as h1 = �1KL∕(�KH) with 
KH = s1∕(�1�),KL = s2∕(��1) . The dimensionless variables and dimensionless time 
are H̄ = H∕KH , L̄ = L∕KL, C̄ = C∕KC, T̄ = T∕KT , t̄ = t𝜏 . To simplify notations we 

Table 2   Dimensional and dimensionless scalings

Dimensional 
parameter

Best fit Scaling Best-fit sensitiv-
ity

Scaled 
param-
eter

Best fit Scaling

b 2.05204 � 229.43 � 2.05204 b
m 0.00008 �∕KH 116.99
a1 0.00688 �∕KL 126.48
h1 0.02299 �1KL∕(�KH) 228.10 �1 3.82860 h1a1KH

a2 2.05204∕KC �∕KC 31.53
h2 0.00010KC �2KC∕(�KH) 116.21 �2 4.79425 h2a2KH

u1 0.12834∕KT �1�∕KT 6.77 �1 0.06254 u1KT∕b

v1 0.00024KT �1KT∕s1 12.59 �1 0.73228 v1u1KH

u2 8.44143∕KT �1�∕KT 83.81
v2 0.00345KT �2KT∕s2 125.70 �2 8.69302 v2u2KL

b1 0.05070 �1KL∕KH 201.99 �1 4.11368 b1a1KH∕b

d1 1.08531 �1��1 199.86 �1 0.12857 d1∕(b1a1KH)

m1 0.00068 �1��1∕KL 3.13 �1 0.02401 m1KL∕(b1a1KH)

b2 0.00005KC �2KC∕KH 78.27 �2 1.18188 b2a2KH∕b

d2 0.01995 �2��2 0.91 �2 0.00823 d2∕(b2a2KH)

m2 0.26139∕KC �2��2∕KC 71.66 �2 0.10778 m2KC∕(b2a2KH)

r1 0.00191KT �1��KT∕s1 22.37 �1 0.08837 r1u1KH∕(r2u2KL)

r2 0.02673KT ��KT∕s2 247.88 � 32.77715 r2u2KL∕b

d3 5.80864 �3�� 297.23 �3 0.08636 d3∕(r2u2KL)

m3 0.10828∕KT �3��∕KT 1.32 �3 0.00161 m3KT∕(r2u2KL)

s1 3104.74 u1KHKT

s2 2516.66 u2KLKT

KH 24191.63 s1∕(�1�) KH 24191.63 b / m
KL 298.13 s2∕(��1) KL 298.13 b∕a1

KC 1 free KC 1 b∕a2

KT 1 free KT 1 b1a1KH∕u2

Dimensional 
Initials

 H0 9741.78 1.52
 L0 93.79 12.27
 C0 1.24214KC 13.19
 T0 0.31729KT 6.52
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drop the bars for the new variables and time and obtain the following dimensionless 
model for Eq. (2):

together with the fit functionals and the squared error

Notice here that ti = i and t̄i = i𝜏 retain their dimensional and dimensionless identi-
ties for being a fixed sequence each rather than a variable.

A combined PDE search and line search for the dimensionless model yielded a 
provisional global minimizer for the dimensionless parameters listed in the second 
last column of Table 2 from � down to s2 . Translating it to the dimensional vari-
ables and state scalings we obtain the parameterized values in the second column 
of Table 2. As predicted by the theorem, four parameters ( m, a1, a2, u2 ) are scaled 
away but two more, s1, s2 , are created by the transformation as can be seen in the 
Scaled Parameter column, which in turn creates two free, parameterizing, auxiliary 
parameters which we take them to be KC,KT , the ‘carrying capacities’ for the other 
predator and the trapper respectively. Notice that their units remain to be free—they 
can be head-count, biomass, or for the case of KT , a pure index for the trapping busi-
ness from the perspective of Hudson Bay Company. For the provisional global mini-
mizer in the space of the dimensional parameters and initials, we see clearly from 
the second and the third columns that some parameters are uniquely determined by 
the global minimization of the squared error but some are not, namely the uncertain 
parameters and initial states. That is, different choices for the parameterizing pair, 

(5)

dH

dt
= H

(
1 − H −

L

1 + �1H
−

C

1 + �2H
−

�1T

1 + �1H + �2L

)

dL

dt
= �1L

(
H

1 + �1H
− �1 − �1L −

T

1 + �1H + �2L

)

dC

dt
= �2C

(
H

1 + �2H
− �2 − �2C

)

dT

dt
= �T

(
�1H + L

1 + �1H + �2L
− �3 − �3T

)

f̄H(t̄i, x̄0, q) =
H(t̄i, x̄0, q)T(t̄i, x̄0, q)

1 + 𝜏1H(t̄i, x̄0, q) + 𝜏2L(t̄i, x̄0, q)

f̄L(t̄i, x̄0, q) =
L(t̄i, x̄0, q)T(t̄i, x̄0, q)

1 + 𝜏1H(t̄i, x̄0, q) + 𝜏2L(t̄i, x̄0, q)

E2(q, x̄0, s, 𝜏) =

28�
i=0

⎡⎢⎢⎣

�
s1 f̄H(ti𝜏, x̄0, q) − HT ,i

H∗
T

�2

+

�
s2 f̄L(ti𝜏, x̄0, q) − LT ,i

L∗
T

�2⎤⎥⎥⎦
x̄0 = (H0∕KH ,L0∕KL,C0∕KC,T0∕KT ), t̄i = ti𝜏.
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KC,KT , will give rise to different values for those uncertain parameters but to the 
same minimum error value E(p∗, x∗

0
) = 0.4896.

The minimizer in the parameters and initial states was found for the dimension-
less model first, and then translated for the dimensional model. The dimensional 
minimizer was then checked and re-searched independently by both methods for the 
dimensional model, only after which were the sensitivities calculated and listed in 
the Best-Fit Sensitivity column.

Figures 4, 5 and 6 highlight some of the numerical result. Figure 4 clearly shows 
that the hare and lynx populations left in the wild is right-chiral and the respec-
tive catch by the trapper is left-chiral. Figure  4d also shows a typical gradient or 
line search in action. Figures 5 and 6 show more on the best-fit result. Specifically, 
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Fig. 4   Best fit by line search. a The best fit of the annual captured rates, HT ,LT , by the HLCT model to 
the pelt data, together with the hare and lynx populations, H, L(dashed curves). The best fit relative error 
is 0.4896∕29 ≈ 0.0169 per data-point. b Top panel: The point-wise right chirality of the model hare-lynx 
population in the wild and the left chirality of the model hare-lynx trap rate. Bottom panel: the period-
power plot for the lynx pelt data and that of the predicted lynx-trap rate as a result of the best fit. Both 
match exactly at the principle period mode around a 9.3-year cycle, and qualitatively at the secondary 
period mode about a 4.5-year cycle. c A hare-lynx phase plot to replicate the time-series plot of (a). It 
shows a 100:1 peak ratio between the wild population and the pelt for hare and a weak 2:1 peak ratio for 
the lynx. d By the line search method, the trapped lynx rate LT as a function of the searching iteration in 
10 steps. The companion search plot for hare is not shown
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twenty subinterval partitions are used for each of the line segment, (0, 2p0) and 
(0, 2x0) , and as a result the provisional minimizer sits at the center of each segment 
with ten searching points to each side. Because the same proportionality is used 
for each interval length and the same window size is used for all plots of the error 
function against the search intervals regardless the values of the components of the 
minimizer, these plots give a graphical depiction to the dimensionless sensitivity 
and a graphical comparison of the sensitivities among all parameters and initials. 
For example, between the recruitment parameters r1, r2 of the hare and lynx, respec-
tively, the best fit is less sensitive to hare pelt than to lynx pelt because Sr1 < Sr2 . 
This is represented by the top two graphs of Fig. 5 for which the concavity is more 
pronounced for the r2 parameter than for the r1 parameter. Similar comparisons can 
be done for all parameters and initial states, which are also captured by the sensitiv-
ity scores from Table 2.

A surprising finding from the last plot of Fig.  5 is that the intra-competition 
parameter m3 for the trappers can be set to zero with little change to the best fit. 
That is, as an interpretation there was little interference among the trappers. As a 

0 0.7293 1.4586 2.188 2.9173 3.6466

x 10−3

1

2

3

4

5

6

r1

0 0.0102 0.0204 0.0305 0.0407 0.0509
1

2

3

4

5

6

r2

0 2.2128 4.4256 6.6384 8.8513 11.0641
1

2

3

4

5

6

d3

R
el

at
iv

e 
E

rr
or

 E
(p

, x
0)

0 0.0413 0.0825 0.1238 0.165 0.2063
1

2

3

4

5

6

m3

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

E(p,x
0
)

H−L
H

T
−L

T
−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

C
hi

ra
lit

y

Fig. 5   Best-fit sensitivity and insensitivity. Four searching section curves of the error function (with 
square makers) are shown when the line search algorithm stopped upon finding the best fit. Averaged chi-
ralities are also plotted which consistently shows the model population is right chiral (with circle mark-
ers) and trapper’s catch rate is left chiral (without markers). Since each parameter’s search interval length 
is twice the global minimum if it is not zero, showing it in a fixed picture frame amounts to showing each 
parameter in its relative or dimensionless scale. The best-fit error is the lest sensitive to parameter m3 , 
leading to the interpretation that there was little competition or interference among the trappers
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result, parameter m3 can be effectively dropped from the HLCT model. The sensitiv-
ity graphs for parameters r1 and r2 show that the catch on lynx gives rise to a much 
higher recruitment rate for trappers in r2 than r1 for the catch on hare. It also shows 
the lynx-recruitment rate is much more sensitive than the hare-recruitment rate to 
the best-fit error. This lynx-biased preference by the trappers is further demonstrated 
in Fig. 6. For which the discovery rate of the lynx by the trappers, u2 , are higher and 
more sensitive than the hare’s rate u1 . Also, it takes a longer handling time to process 
the lynx fur ( v2 ) than the hare fur ( v1 ), and again the best-fit is more sensitive to the 
former than to the latter. All suggest that trappers prefer lynx pelt to hare pelt. This 
is quite consistent with the hypothesis that lynx fur was economically more valuable.

Figure 7 shows various results for the full Leigh data from 1847 to 1903. Fig-
ure  7a shows the pelt data and its chirality. Prominent features are the follow-
ings: (i) the 1875–1903 data is predominantly left-chiral, the main motivation for 
Guilpin’s work; (ii) except for the second cycle every cycle peak is left-chiral, i.e. 
the chirality curve dipping below the horizontal axis; (iii) the averaged chirality 
for the entire period (the average value of the chirality function) is also negative 
(left-chiral). Figure 7b shows that for the same parameter values as in Table 2 the 
HLCT model’s fit to the full data, which is surprisingly good on its own right. 
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Fig. 6   Trapping preference by sensitivity analysis. The same type of sensitivity plot as Fig.  5 but for 
four trapper-related parameters u1, v1, u2, v2 . Wherever the catch chirality curve becomes flat at 0 but the 
population chirality curve is not, there is no trapped animal, i.e., all trappers quit their trapping business, 
which happens if there is not enough lynx to find (low u2 ) or taking too much time to handle (high v2)
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Figure 7c shows the HLC-phase space of the model for the same parameter val-
ues but without the trapper ( T0 = 0 ). It shows if the ecological system were left 
alone, the field populations would be on a limit cycle, providing a support for the 
parameter values of Table 2 since we also expect the system to be cyclic without 
trapping.

Figure 7d shows a comparative study on the catch chirality if trapper’s prefer-
ence is changed. In particular, the HT–LT chirality is for the catch of Fig. 7b. The 
sHT–sLT chirality is for the catch of the model but for a different set of param-
eter values. Specifically, we first just swapped the values between u1, v1, r1 and 
u2, v2, r2 . This switched preference from the lynx to the hare for the trapper drives 
the species to extinction because of a too high predation intensity on the hare. 
We then reduced the trapping intensity on the hare to one-third of the switched 
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Fig. 7   Long data. a The full pelt data by Leigh and its chirality, which is mostly nega-
tive. b One best-fit for the same parameter values as Table  2 with the initial values: 
H0 = 11425.75,L0 = 61.03818,C0 = 1.32106,T0 = 0.21467 for a per-data-point fit error 0.01799. c The 
system without the trapper ( T0 = 0 ), showing a stable limit cycle, situated far away from all extinction 
surfaces, H = 0,L = 0 , and C = 0 . The nullcline surface for the H-equation and the other nullclines on 
the surfaces are also shown together with the limit cycle orbit. All variables are scaled by their ‘carry-
ing capacity’ values KH ,KL,KC , respectively. d Switching the trapping preference switches the chirality. 
Here sHT , sLT denote trapper’s catches when the parameter values are switched between u1, v1, r1 and 
u2, v2, r2 (see text for details). Chirality is most pronounced near the peaks of the catch cycle
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values, i.e. u1 = u2∕3, v1 = 3v2, r1 = r2∕3 (with the handling time lengthened 
three-fold for easing up on predation). This set of trapping preference is not 
enough to keep all trappers in business for a too high quitting rate d3 . After reduc-
ing the quitting rate to one-tenth of the original ( d3 ∶= d3∕10 ), the full dynam-
ics is on a limit cycle, and the catch is right-chiral (negative chirality as shown) 
because of trapper’s switched preference. We also carried out 100 searches for 
best-fit starting from 100 randomly chosen parameter sets in a hypercube in the 
parameter and initial value space that is centered at the changed values with twice 
the centering value for each parameter’s width for the hypercube. No limit cycles 
turned up as best-fit, lending another support for the parameter values of Table 2, 
and the biased preference on lynx pelt by the trapper as a consequence.

We also carried out a similar analysis on the Odum data set. Specifically, we 
restricted it to the same period as the Leigh data for 1845–1903 for comparison pur-
poses. As it is shown in Fig. 3a, the pattern of oscillation for the later period from 
1904 to 1935 is quite regular, fitting well to the classical theory, i.e. the lynx cycle 
lagged behind the hare cycle by about 2 years. This can be explained by the hypoth-
esis that a strict quota system for trapping was well established and enforced by that 
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Fig. 8   Best-fit to Odum’s data. a The Odum data and its chirality, which is mixed up to 1910 and con-
sistently positive (right-chiral) thereafter. b The mixed-chiral parameters from Table 3 are used to retro-
fit the long data from 1847 to 1903. c The same as (b) except for the right-chiral parameters of Table 3. d 
The same retro-fit but for the parameter values of Table 2
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time (Gibbard 1967). As a result the annual return in pelts is expected to be propor-
tional to field populations survey which is always right-chiral. In another words, the 
role of trappers can be effectively eliminated from the HLCT model.

Contrary to the later period, Fig. 8a shows the chirality for the early period was 
mixed but biassed toward right-chirality. We carried out best-fits for the period of 
1874–1903. Specifically, we used the same parameter values of Table  2 but with 
no trapping preference on either hare or lynx. That is, we used the average values 
of u1 and u2 for the new u1 and u2 , and similarly for v1, v2, r1, r2 . We then carried out 
400 searches starting randomly from a hypercube centered at the neutrality point 
with twice the value for each parameter and initial value’s width for the hypercube. 
Table 3 lists the best-fit which is of a mixed-chirality, a right-chirality, a left-chiral-
ity, and an as-is fit by the same best-fit parameter value for the 1875–1903 Leigh 
data. The left-chiral fit is better than the other two in terms of having a smaller fit 

Table 3   Best-fit to Odum’s 1875–1903 data

Mixed-chirality Right-chirality Left-chirality Parameter as is

b 2.052 2.4543 2.052 2.052
m 0.0021 0.0022 0.0002 8.00E−05
a1 0.0085 0.0015 0.0063 0.0069
h1 0.4651 2.9693 0.0534 0.023
a2 2.052 2.4543 2.052 2.052
h2 0.0031 0.0017 0.0002 0.0001
u1 8.4414 31.9998 0.2438 0.1283
v1 0.0234 0.0128 0.0003 0.0002
u2 8.4414 5.1331 8.4414 8.4414
v2 3.00E−08 0.0005 0.0031 0.0035
b1 1.0254 2.9943 0.1177 0.0507
d1 1.0853 0.3868 1.0853 1.0853
m1 0.0002 0.0001 0.0006 0.0007
b2 0.0003 0.0018 1.00E−05 1.00E−05
d2 0.0172 0.1713 0.0009 0.02
m2 0.0569 0.4641 0.0376 0.2614
r1 0.4665 0.4972 0.0021 0.0019
r2 0.0288 0.0098 0.0243 0.0267
d3 18.6594 37.5744 5.8086 5.8086
m3 1.322 0.6248 0.1083 0.1083
H0 384.5204 394.0555 6,091.1788 11,690.1411
L0 262.9796 1044.8171 123.8103 112.5549
C0 0.7725 1.1213 1.2421 1.3663
T0 1.845 1.1845 0.2313 0.2313
KH 968.75 1120.96 11,459.19 24,191.63
KL 241.48 1604.79 327.94 298.13
E(p, x0) 0.7251 0.6819 0.5543 0.6236
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error. More interestingly, the as-is fit which is automatically left-chiral is also bet-
ter than the mixed and right chirality fits. As one can see from the table, for the 
mixed-chirality, the parameter values for u1, u2 are comparable. For the right-chiral-
ity, u1 ≫ u2, v1 ≫ v2, r1 ≫ r2 , and for the left-chirality, u1 ≪ u2, v1 ≪ v2, r1 ≪ r2 . 
Figure 8b–d show the retro-fit time series to the lynx pelt data for the longer period 
of time from 1847 to 1903 and the chiralities for the HTLT-oscillations. We note that 
unlike the two left-chiral fits, the mixed and right-chiral fits are both sensitive (not 
shown) to the intra-interference parameter m3 for trappers. That is, these two fits lead 
to opposite conclusion of the left-chiral fits on m3.

We did not best-fit the HLCT model to the later segment of the Odum data 
between 1904 and 1935. One reason, which was mentioned early, is because the 
trapper variable T can be effectively eliminated from the model if the pelt returns 
were largely the result of a quota system. Another considering factor was the immi-
gration of coyotes into the hare-lynx region between 1910 and 1920 (page 1194 of 
O’Donoghue et al. 1998) that became a key predator of the hares, and a key compet-
itor of the lynx, which in turn should change the parameter values for the alternative 
predator variable C.

Figure  9 summarizes the result of a comparative study on various provisional 
models. Among which are the VHL model from Blasius et  al. (1999), the HLC 
model without the trappers, the HLT model without the other predators, and the 
HLCT1 model with the Holling Type I predation form for the trappers. The last three 
models are simply subsystems of the HLCT model Eq.  (2) setting T0 = 0,C0 = 0 , 
and v1 = v2 = 0 , respectively. For the first two models without the trapper, the pelt 
quantities are set to be proportional to the populations as HT = s1H, LT = s2L , 
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sion of T always fit better
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respectively, with si being the proportion parameters. As shown in the bar plot of 
Fig.  9, the two models without the trapper do not share the same chirality as the 
pelt data but all models with the trapper do. Both the VHL model and the HLC 
model without the trapper are incapable of left-chirality. Notice that even though 
HLC model has more parameters than VHL, its fit error is not better, disproving the 
conventional view that more parameters always yield better fits. In fact, no mater 
how many more parameters are added to either model, for example, adding mul-
tiple alternative predators of hares to VHL or to HLC, simply because of the fact 
the field hare and lynx populations are incapable of HEL oscillation, all propor-
tional catches will always fit worse than trapper-incorporated models. Two-hundred 
searches for best-fit are carried out for each model. In particular, for the HLC, HLT, 
HLCT1 models, the initial searching parameter and variable values are randomly 
chosen from a hypercube centered at the values of Fig. 4 with twice the centering 
value for the width of each parameter and variable for the hypercube. Even with this 
help from the best-fit values of the HLCT model, the alternative models incur higher 
fitting errors. Although the errors for the HLT and HLCT1 models look comparable 
to that of HLCT’s, their best-fitted dynamics without the trapper stop to be cyclic, a 
qualitative misfit. The important conclusion is that the HLCT model fits the data the 
best and hence becomes the benchmark model.

4 � Discussion

Model parameters for a physical system can be estimated by many ways. One of 
which is by the best-fit process presented here. By this approach the parameter val-
ues are forced to give the smallest error between the predicated and the observed. 
Ideally we like our model’s best-fit to perfectly match with independent observa-
tions, or be consistent with them inside a generous range. Such considerations can 
be used further for parameter selections and model refinement.

It is reported in Rowan and Keith (1956) and Bittner and Rongstad (1982) that 
a female hare has an average annual reproductive potential of 10.51 leverets with 
about the equal sex ratio. This translates to a per-capita rate of 5.2 births per year. 
How many would survive to adult is not clear but the birth rate puts an upper esti-
mate on the rate. Since our model is used to fit pelt data, which corresponds to adult 
size hares, our model estimate for the per-capita reproductive rate of hares at b ≈ 2 
(Table 3) is very reasonable. This can be interpreted two ways. One, for every 5.2 
births per year per adult hare, about 2 make to the size of a harvest pelt. Alterna-
tively, the 5.2 hares at birth are equivalent to about 2 hares at maturity. We note that 
as shown in Table 2, these three parameters ( b, a1, h1 ) are among those which are 
independent of the free parameters KC and KT and fixed by the best-fit. As a result 
these parameter values can be replaced by their field estimates in future benchmark-
ing of the models.

On the birth-to-consumption ratio b1 of the lynx on hare, the estimates from the 
two left-chiral fits of Table 3 is reasonable because the ratio must not be greater than 
one if we assume a lynx would have to consume multiple hares to give one birth 
of offspring. With this constraint, the mixed-chiral fit and the right-chiral fit of the 
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HLCT model to the Odum data are bad fit for violating this mass-conservation limit. 
Regarding the carrying capacity estimate on KH , KL in Table 3, the fit to Leigh’s 
data is more reasonable than all others because we should expect that as a rule of 
thumb a prey’s biomass should be of at least two order of magnitude greater than 
that of its predator (e.g. Deng 2010). In particular, the lynx to hare population in the 
wild should at least differ by a magnitude of three orders (see Fig. 5 of O’Donoghue 
et al. 1998). Because of this consideration, the mixed-chiral and the right-chiral fits 
to Odum’s data are not good. This does not mean there are not better fits with mixed 
and right chiralities. It simply means we have tried many searches but no better fits 
have been found yet.

These considerations lead at this moment only to the left-chiral fit to both Leigh 
and Odum data as a better alternative. Both fits imply that trapper’s intra-competi-
tion parameter m3 can be absent, suggesting, as mentioned before, that trappers were 
not interfering each other’s business. This was unlikely the case during the earlier 
time when white settlers emigrated from Europe to colonize North America. In fact, 
fur trade was the major economical engine that drove the North America expan-
sion because of strong demand of quality furs in Europe. However, by 1820’s the 
first wild game legislation was enacted in, e.g. Ontario, establishing for example the 
practice of hunting season which is still used today (Thompson 1967). By 1860, the 
first trapping line legislation was enacted in Ontario (Gibbard 1967). It gave a trap-
per the exclusive right to a trapping line on public land that was usually defined by 
rivers, mountain ridges, and valleys. In return the trapper must maintain the trapping 
line in good faith, harvest a minimal number of furbearer pelts each year, and file a 
mandatory catch report each year. It was and still is a criminal offence to steal a trap-
per’s catch or equipment, or to interfere another trapper’s activity by destroying his 
equipment, for instance. It was a surprise how well the best-fit of our model to the 
data had captured this piece of history which was hidden in the data all along. This 
was probably a good reason why biologists looked at the 1875–1903 period’s pelt 
data more closely because the earlier period was more unsettling for the trapping 
practice.

The missing order of magnitude on the carrying capacities on KH ,KL between 
our model estimate and the field study seems to suggest that the hare pelt was under 
reported. This seems to be consistent with the fact that hares were trapped for their 
meat and for their fur (Weinstein 1977). If this is the case, then we can simply 
increase the parameter value of s1 to fit the elevated hare data without changing any 
value of the dimensionless parameters. This in turn will raise the hare capacity value 
KH for a better fit to the field result, and change the best-fit parameter values from 
Table 2 accordingly.

We deliberately left out discrete models (e.g. Stenseth et al. 1997) for benchmark-
ing. This is due to the fact among many other drawbacks (Deng 2009) almost all 
discrete models in ecology violate the Time Invariance Principle (Deng 2008) with-
out which a model cannot be independently validated by experiments. Our result 
also supports the One-Life Rule postulation (Deng 2008, 2010) that every organism 
has a finite life span which is guaranteed by models with carrying capacities for all 
their species. This in turn is guaranteed by the positivity of all intraspecific competi-
tion parameters m,m1,m2 > 0 . Curiously this rule does not necessarily apply to the 
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economical–ecological interaction between the trappers and their habitat because 
our trapper equation does not model the birth and death of the trappers as a spe-
cies but rather the rise and fall of their trapping business. Our result indeed shows 
that interferences among trappers can be absent ( m3 = 0 ). That is, a trapper can go 
out of business and then get back into it again, not obeying the One-Life Rule for 
organisms. Our result also supports another fundamental theory in ecology—Hol-
ling’s theory of predation. Our best-fit shows that all the predation handling times 
( hi, vj > 0 ) must be non-zero and be sensitive to changes. These results suggest that 
ecological modeling must move beyond the Rosenzweig–MacArthur producer–con-
sumer model (Rosenzweig and MacArthur 1963) as well as from the Lotka–Volterra 
model for competitive species.

We have given a numerical demonstration for the phenomenon that the kill rates 
by a top predator on a predator–prey chain must rotate in opposite direction against 
the populations of the predator and prey. We believe this anti-chirality property can be 
proved mathematically for such three-trophic food chains, which we will leave it open 
for now. We have also tried to solve the inverse problem to fit models to empirical data. 
However, we have to leave it to future studies on model refinement so that all param-
eter values fall into their observed ranges. For instance, one can include another trophic 
level below the hare if the logistic growth model assumption for the hare is inadequate. 
One can also include alternative preys to the lynx to improve some of the parameter 
estimates for the lynx which is not strictly a specialist. In conclusion, benchmarking 
models for the Canadian hare-lynx data is an on-going process, and this paper is only a 
new start. We expect that ideas and methodologies presented here should prove useful 
for other problems (e.g. Stenseth et al. 1998; Hanski et al. 2001; Cattadori et al. 2002) 
in ecology and in biology in general.

Appendix

Gradient search for local minimum of the squared error E2(p, x0) in the parameters and 
initial states space (p, x0)

Formally, we let

�(p, x0)

�s
= −∇E2(p, x0) = − 2

�∑
j=1

kj∑
i=1

w2
ij
[fj(tij, p, x0) − yij]D(p,x0)

(fj(tij, p, x0))

(p(0), x0(0)) = (p0, x0,0)

x(t, s) = x(t, x0(s), p(s))

x(0, s) = x0(s)

X(t, s) = D(p,x0)
x(t, x0(s), p(s)) = (X1(t, s),X2(t, s))

X(0, s) = (0, I)

p(s) = p(s, x0,0, p0)

x0(s) = x0(s, x0,0, p0)
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Then they satisfy the following system of PDEs

The reason we need the variational equations in X for x is because a further expan-
sion of D(p,x0)

fj usually involves the variations of x in both the parameters and the 
initial states. One can show or verify directly that for the standard linear regression, 
x(ti) = a ti + b ∼ yi with p = a, x0 = b , we have the corresponding gradient search 
PDEs as follows:

It is a linear system of differential equations and it can be easily shown the global 
minimum exists, which can be solved explicitly as

�x(t, s)

�t
= F(x(t, s), p(s))

�X(t, s)

�t
= [DxF(x(t, s), p(s))X1(t, s)

+ DpF(x(t, s), p(s)),DxF(x(t, s), p(s))X2(t, s)]

x(0, s) = x0(s), X(0, s) = (0, I)

�p

�s
= −∇pE

2(p, x0) = − 2

�∑
j=1

kj∑
i=1

w2

ij
[fj(tij, p, x0) − yij]Dp(fj(tij, p, x0))

�x0
�s

= −∇x0
E2(p, x0) = − 2

�∑
j=1

kj∑
i=1

w2

ij
[fj(tij, p, x0) − yij]Dx0

(fj(tij, p, x0))

(p(0), x0(0)) = (p0, x0,0)

�x(t, s)

�t
= a(s),

�X(t, s)

�t
= (1, 0)

x(0, s) = b(s), X(0, s) = (0, 1)

�(a, b)(s)

�s
= −2

k∑
i=1

[a(s)ti + b(s) − yi][ti, 1]

(a(0), b(0)) = (a0, b0)

.

a∗ =
k
∑

tiyi −
∑

ti
∑

yi

k
∑

t2
i
− (

∑
ti)

2
, b∗ =

∑
t2
i

∑
yi −

∑
ti
∑

tiyi

k
∑

t2
i
− (

∑
ti)

2
.
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