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No ecologist will knowingly choose the Malthusian exponential growth model for population
dynamics, yet we use it unknowingly all the time. Take the following Rosenzweig-MacArthur

model as an example
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which is used by the authors and many others in the literature. It is haunted by the Malthusian
ghost. To see it, a thought experiment will do. Assume we are able to fix the prey population
throughout an experiment. Then the predator population will grow exponentially, which cannot
be right especially in laboratory settings which are always confined to limited spaces. The
exponential growth in turn induce artificial instability which underlies all the “paradoxes” in
theoretical ecology: the Enrichment Paradox, the Biological Control Paradox, the Competition
Exclusion Principle, etc. They are all Malthusian artifacts.

The simplest way to exorcize the Malthusian ill-effect is to include this intraspecific competition
term, —mY?, to the predator ([4, 5]). The simplest, comprehensive competition model is the

following
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Parameter mq, mo are referred to as the intracompetition parameter. The corresponding terms do

not have to mean additional death rate as a particular interpretation. It can alternatively mean
a reduced birth rate due to energy lost to competition, or other particular narratives. None of
the paradoxes persists in the invariant XY and X Z subsystems ([4]). Competition exclusion is
not always the case for the full system.

Regarding competition, one must define the concept of competitiveness of the predators, and
do it in a way which makes sense both biologically and mathematically. Here is my take. We
note first that the invariant subsystem XY and XZ can either have an equilibrium point or a
limit cycle as a global attractor. Call them XY and X Z global attractor respectively.

Definition: Predator Y is competitive if its average per-capita growth rate G(X,Y)
is positive along the X Z global attractor. Symmetrical definition applies to preda-
tor Z.
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For the equilibrium point case, let (X,, Z.) be the X Z attractor, then Y is competitive if and
only if G(X,,0) > 0. That is, Y can grow and pull away from the X Z-subsystem’s attractor.
For the limit cycle case, we only need to replace the criterion by the average value

% /0 ' G(X(t),0)dt

with T the period and (X (¢), Z(t)) the limit cycle attractor. It is a simple exercise in both cases
to show that the definition is equivalent to the statement that the global X Z attractor is not
attracting with respect to the full XY Z system. In other words, the linearization of the full
system along the attractors has a positive eigenvalue in the direction normal to attractor.

Given the definition, a result, similarly to what the authors wanted to prove, can be stated as
follows:

Theorem: For a system of 2 specialist predators competing for one common prey,
stable co-existence steady state occurs if both predators are competitive. Moreover,
the stable co-existence steady state is an equilibrium point if the competition-free

subsystems each contains a capacity equilibrium.

(The definition of capacity equilibrium is given in the Appendix.)

Esoterical mathematics is of little interest and usefulness. One extreme example is ref[3] of the
manuscript. The mathematical catalogues of the 2-d system from ref[3] are completely detached
from biology, so is the manuscript, although to a lesser extend. One should let biology drive
the categorization. Case in point, the phenomena of multiple equilibrium states, heteroclinic
orbits, etc. of the 2-d system enumerated in ref[3] only occupy a marginal parameter region of
the system, and thus command the least prioritized biological importance. The Routh-Hurwitz
conditions (i,ii) of page 7 of the manuscript wrap up many distinct biological scenarios, one of
which — the capacity equilibrium case —is extracted in the Appendix.

Last, it would be interesting if the authors can explain what does the Liapunov function (2.10)
stand for. For example, in the analogy of physics, does it mean some type of energy function?
Otherwise, it remains completely mysterious to mathematicians, and clueless to everyone else.
Appendix

For the full model (1), the XY Z-equilibrium lies on the nontrivial nullcline surfaces

F(X,Y,Z)=G(X,Y)=H(X,Z) =0,

which in practical terms define the per-capita growth equilibrium for individual species. With
my = my = 0, one finds immediately that G = 0 gives rise to X = X := d/[a1(by —dyhq)] while
H = 0 gives rise to X = Xy := dy/[az(by — dahs)]. Hence, XY Z-equilibrium exclusion occurs if
X1 # X5. The meaning of X, X, are given later.

Here, an XY Z-equilibrium always means to have all positive components. In contrast, an
XY-equilibrium has positive X, Y value for the competition-free XY-subsystem with Z = 0.
X Z-equilibrium point is similarly defined. Thus, the X-equilibrium is the predator-free prey
capacity (K, 0,0) for the X-equation with Y = Z = 0.
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Predator-Mediated Prey Capacity. The predator-free capacity K must continue with the
induction of predators. For example, fix Z = 0 and treat the X-equation as parameterized by its
predator Y. Then increasing Y from Y = 0 decreases the X-capacity equilibrium (K (Y,0),Y,0)
with K(Y,0) < K(0,0) = K for Y > 0. Increasing Y until a value, denoted by Y. > 0, the
X-capacity fails to exist. This results in a branch of the X-nullcline F'(X,Y,0) = 0 which we call
predator’Y mediated carrying capacity. It is given by the curve K (Y, 0) defined for 0 <Y < Y44,
satisfying the property that X = K(Y,0) decreases as Y increases.

Exactly the same definition for predator Z mediated prey capacity X = K (0, Z), as well as for
the joint Y Z predator-mediated prey capacity surface X = K(Y, Z) for which F(K (Y, Z),Y,Z) =
0 in a Y Z region, denoted by A, in the Y Z-plane. See Fig.1.

The region A is bounded by the Y-axis interval Z = 0,0 < Y < Y4, symmetrically the
Z-axis interval Y = 0,0 < Z < Za, and a boundary curve (Y Z),4., see illustration. This
curve, like many others, is of reciprocal relation between Y and Z. To explain, look first the
simple case without predator Z = 0. As we already know the termination of the Y-mediated X
capacity takes place at (Yyaz,0) € (Y Z)mae. Introducing predator Z > 0 leads to a smaller Y,
density required to terminate the predator-mediated capacity. That is, increasing either of the
two predators on the curve (Y Z),,q, decreases the other.

Analytically, the predator-mediated prey capacity is defined by the equation

OF
F(X.Y,Z) =0, 5o (X.Y,Z) <0.

This completes the preparation for the X-nullcline F' = 0.

Prey-Supported Predator Capacity. The predator nullclines can be analyzed similarly. First
of all, G(X,Y) = 0 is a surface in the XY Z-space. It divides the space into two parts: the per-
capita decay region G < 0 and the per-capita growth region G > 0. The origin X =0,Y =0
is in G < 0, and the predator-free prey capacity (K, 0) is assumed in the per-capita grow region
G > 0. (The case that G(K,0) < 0 is a trivial case for which there does not exist an XY Z-
equilibrium point.) The predator-free, per-capita equilibrium state is G(X,0) = 0 whose solution
is X introduced earlier for XY Z-equilibrium exclusion. It is predator Y’s survival threshold: For
X < Xy, predator Y always declines to extinction Y = 0. If m; = 0 and X > X is fixed, then
predator Y grows exponentially without bound. In contrast, if m; > 0 and for fixed X > Xj,
then predator Y is governed by a logistic growth, and every nontrivial initial density converges
to its prey-supported capacity G(X,Y) = 0. That is, the Y-capacity curve G(X,Y’) = 0 is defined
for X > Xj, and on it Y increases as X increases. Solve G(X,Y) =0 to get

1 alX

Y = — |[h—F— —
my 11+a1h1X

dl ,ifm1>(),

and X = X; if my = 0. Clearly, for the case m; > 0, it saturates at Y., = [bi/h1 — di]/m
as X — o00. As a result, for sufficiently large m; > 0, the predator-mediated X-capacity and
the prey-supported Y-capacity must intersect to create an XY -equilibrium point. For example,
this is the case if the Y-capacity saturation Y, amount is smaller than the amount Y, to
terminate the predator-mediated X-capacity. Such an XY equilibrium point is called the capacity
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FI1GURE 1. (a) Nullcline surfaces. (b) The projection of (a) to the Y Z-plane.
(a,b) is for the case of coexistence. Notice that the XY capacity equilibrium is
in Z’s per-capita growing region H > 0 and the X Z capacity equilibrium is in
Y’s per-capita growing region G > 0, hence both are competitive. (c) Coexisting
equilibrium exclusion in which only Z is competitive. The 3-d surfaces are not
shown for this case. Open circles are capacity equilibrium points of the invariant
subsystems. Filled circle is the capacity equilibrium of the full system.

equilibrium. It is unique because of the opposite incline of the two capacity branches. It is always
locally stable because its linearization takes the following form:

an a2 |
Q21 22

That the diagonal entries are negative is because the equilibrium lies on the X-capacity branch
and the Y-capacity branch for which both 0F/0X < 0 and 0G/JY < 0. The signs of other
entries are fixed by the predator-prey nature of the problem. For example, that a; < 0 is

_|__

because the per-capita growth rate F' is negatively suppressed by predation.

We consider next the competition interplay from predator Z to the XY-system. The XY-
nullcline FF' = G = 0 is a curve in the full space. The same reciprocal relation applies. More
precisely, the competition-mediated XY -equilibrium branch continues with nonvanishing com-
petitor Z, and increasing Z decreases the corresponding Y value of the XY-equilibrium. On
the Y Z-plane, the projection of this competition-mediated XY -equilibrium branch is a curve of
negative slope with two end points: (Ye,0), (0, Z;). Here (X, Y., 0) is the competition-free XY~
equilibrium: F'(X,, Y., 0) = G(X,,Y.) = 0; and (X1,0, Z;) corresponds to predator Y’s survival
threshold: F(X1,0,7;) = G(X1,0) = 0. For large X close to K, the competition-mediated
XY-equilibrium branch must lie on the predator-mediated X-capacity. That is, the projection
in the Y Z-plane lies in the X-capacity region A. It is important to note that values Xy, Z;
associated with predator Y’s survival threshold do not depend on Y’s intraspecific competition
parameter mq, but the XY capacity equilibrium point does. In particular, the greater the m;
value, the smaller the equilibrium value Y, becomes because of the intraspecific competition.
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Exactly the same analysis applies to the competition-mediated X Z-equilibrium branch. With
the symmetrical conditions, we add the Y Z-projection of the competition-mediated X Z-equilibrium
branch to the region A. It is of capacity-capacity type if X5 is close enough to K.

Existence and Stability of Co-Existing Equilibrium Point. By definition, Y is competitive
if it can grow per-capita at the X Z capacity equilibrium state. That is

lOl—Y:G(X,Y) . =

Y dt (X,Y,Z2)=Xz capacity equilibrium
That is, the X Z capacity equilibrium is a saddle in the full XY Z-system. Fig.1(a,b) is for a case
when both predators are competitive, and Fig.1(c) is for a case when Z is competitive, but Y is
not. (For the case where the subsystems have a stable limit cycle, see [6, 2].)

Now, the existence of the XY Z-equilibrium point depends on whether or not the XY -equilibrium

curve and the X Z-equilibrium curve intersect. For the Malthusian case m; = msy = 0, they do
not in general. For mq,ms small, they do not intersect neither, see Fig.1(c). In such cases, the

following order relation on the end points of the curves are typical:
Y, <Y;and 77 < Z,,

where F'(X1,0,7;) = G(X1,0) = 0 is associated with Y’s survival threshold and F'(Xy, Y5,0) =
H(X5,0) = 0 is associated with Z’s survival threshold. In such cases, only one predator is
competitive. For the configuration above, it can be easily shown that the XY -equilibrium point
is in Z’s per-capita growing region H > 0 and the X Z-equilibrium point is in Y’s per-capita
decay region G > 0, implying Z is competitive and Y is not.

Assuming that this is the configuration when we start to increase predator Z’s intracompetition
parameter my. The change does not move the XY-equilibrium curve, nor the end point (0, Y3)
of the X Z-curve. However, it decreases Z’s capacity equilibrium value Z, and increase its
corresponding X, < 1 value. Since Z, = [bsX./(1+ azhaX.) — do]/ma — 0 as my — o0, for large
enough msy, Z, must lie below Z;, i.e., the second order relation above is reversed to

Y, <Y, and Z, < Z;.

Biologically, Z’s intensive intraspecific competition allows an otherwise noncompetitive Y to
become competitive. As a result of a variant Intermediate Value Theorem, the two curve must
intersect to give an XY Z-equilibrium point because of these curves relative position switching,
Fig.1(a,b). This proves the existence. In this case, both predators are competitive.

As for the local stability, the linearization must take the following form

J=|+ — 0
+ 0 -

That the diagonal entries are all negative is because the equilibrium point lies on the predator-
mediated prey capacity surface and the prey-supported predator capacity surfaces. That is, it
is a capacity equilibrium point. That all other entries have the denoted fixed signs is due to
the competitive and predatory nature of the system. Without the need of explicitly finding the
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expressions of all entries, a simple exercise using the Routh-Hurwitz criterion shows that all
eigenvalues of this class of such matrixes have a negative real part, hence the local stability of
the co-existing XY Z-equilibrium point.

Further Comments. The system can have non-capacity equilibrium point, which is typically
unstable. It can be stabilized for large birth-to-consumption ratio by, by, which corresponds to
the case when both predators are reproductive efficient. A proof will take us too far from our
purpose above to demonstrate the co-existence of a stable equilibrium.

The only question left is whether or not this capacity equilibrium is a global attractor for the
full system. I believe it is without any additional condition. The Lyapunov method can be used
by the authors to this end.
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