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Homoclinic orbits and chaotic attractors are construcred progressively by singnlar perturba-
tions. More specifically, lower dimensional slow subsystems and fast subsystems arc constructed
separately as building blocks. The former are then modulated onto the latter via homotopy.
This gives a systematic way to implement Rossler's dual principle for mathematical modeling.
Systems constructed in this way are simple, Tobust, and ideal for the purposes of experimental
and theoretical analyses.

1. Introduction us with a greater degree of freedom in choosing sim-
pler models for future experimental and theoretical
investigations.

It turns out that an answer to this question
lies in a practicable version of the so-called dual
principle first postulated by Rossler in 1976. 1t was
stated in Rossler [1976] that “(cach of his artificially
constructed systems) consists of (1) an ordinary
two-variable chemical oscillator and (2) an ordinary
single-variable chemical hysteresis system.” He also
went on by claiming that “according to the samne
dual principle, many more analogous systems can
be devised, no matter whether chemical, biochem-
ical, biophysical, ccological, sociological, cconomic,
or electronic in nature.” For implementation of his

An important stage in mathemalical modeling
occurs when a sct of equations is written down
according to certain idealized physical laws. It is
usually not feasible, if not altogether impossible,
to take into account all the properties of the sys-
tem. A further mathematical idealization thus fol-
lows. The latter process is very much apparent in
the normal form theory in which normal forms are
derived from real systems yet stripped of all phys-
ical meanings. Studies on the normal forms have
contributed a great deal to our understanding on
nonlinear structures of dynamical systerns.

Therc is little difficulty involved in writing down
a normal form for, say, the Hopf bifurcation. How-
ever, it is a completely different matter 10 write dual principle, he suggested a trail-and-error pro-
down a system having & homoclinic orbit to a 085 as he wrote “..., the described system is just
Shil'nikov's saddle-focus equilibrium point, or a ho- ~ One out of a huge variety of possible combinations
moclinic orbit whose unstable manifold twists like  of an oscillator, on the one hand, and a switching
the Mibius band, or a system having an attracting ~ System, on the other.” However impractical, his ap-
strange toroid. Most important of all, if such a phe-  Proach has delivered a few unexpectedly, including
nomenological modeling is indecd possible, what. i the Rassler attractor; see Rissler [1976,1979]
the guiding principle behind it, il any? An answer The purpose of this paper is to describe a sys-
1o this question will undoubtedly shed some light on  tematic method to implement the Réssler dual prin-
how natural systems build themselves and provide  ciple. 1t has two key components, onc deals with
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the construction of the switching, or fast subsys-
tem €2 = h(z, y, 2, €) and the other the oscilla-
tor, or the slow subsystem & = f(x, v, 2, €),§ =
g(z, y, 2, €). The resulting system is in this singu-
larly perturbed form & flz, g, 2,80 =
o, v, 7 8), ¢ = iz, v, 7, ©)-

Roughly speaking, our method calls for the fol-
lowing forms for functions f, g, h. For ¢ = 0,
Rz, 4, 2, 0) = (2 — 21)(z — z2)p(x, y, 2) and
£z, y, 2, 0) = (z — 2)fi(e, v) + (z - 2)h(z ),
where z1, 2o are constants, p, fi, fa arc some care-
fully chosen polynomials with f = (f, g),fi =
(fi, 01), £2 = (f2, g2). Thus, 2 = z1, 22 arc two
branches of the slow manifold and the reduced slow
subsystem is & = (21 — z2)falz,9), ¥ = (21 — 22)
g2{z,y) on z = 21 and & = (22 — 1) ulw,9), ¥ =
(22 = z1)g1(z,y) on z = 2 respectively. The prop-
erties of this type of singular perturbations that are
critical to our method include:

(1) By choosing the factor p accordingly, one can
construct a hysteresis so that those parts of
2z = 21, 23 that are contained in the hysteresis
are asymptotically attracting.

(2) Because orbits from certain region containing
the hystercsis stay in a small neighborhood of
these attracting branches of the planes most of
the time, the dynamics in that region is com-
pletcly determined by our choices of fi, fo.
Thus, the virtually unlimited combinations in
choosing p, fi, f2 enable us to construct models
according to our specifications. This is what
we want to demonstrate in this paper. Exam-
ples are organized according to the types of hys-
tereses, which we will refer to as switches from
now on.

2. Simple Switches

2.1. Shil’nikov’s saddle-focus
homoclinic orbit

A system having such an orbit satisfies the condi-
tion that there is a homoclinic orbit of a saddle-
focus equilibrium point at which the lincarization
of the vector ficld has cigenvalues A\ * iw, p,

Fig. 1. The construction of a Z-switch. = are the sign for the fast component % in the regions partitioned by the nullelines

for (a) £ < 0, (b) £ =0, (c) € > 0.
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Our model system is

T=—(2+2)dlz—a)+(2-2)

(¢ —2)% + yz}
R? ’

g=—(z+2-b+(2-2) m

X [ﬂ(u: -2)+ay— ayL

X [a(w—Z)—/iyfa(x~2)

]
et =(4— 22 +2 - m(z +2)] - ecz,

where a, b, ¢, d, m, R, @, 8 arc parameters and ¢
the singular paramcter.

For the switching subsysiem, the nullcline
consists of the roots of the cubic polynomial
h(z, g, z,8) = (4—2%) [z + 2 —mz +2)] —ecz in
2. Ate=0,z=22and z+2—m(z +2) =0 for
h(z, ¥, 2,0) = 0. For 0 < ¢ < 1, the two inlersec-
tion points ¢ =z = —2and z =4/m — 2, z =2 of
the three plancs bifurcate into four turning points
due to the fact that & is a cubic polynomial. By
the continnity in 0 < & < 1, the rest of the planes
remains almost unchanged. That is, the mullcline
rearranges itself into three connected components
and a Z-shaped hysteresis emerges in the middle
as depicted in Fig. 1(c). Moreover, when treating
the z, y variables as parameters, the two horizon-
tal planes z = +2 consist of attracting equilibrium
points of the fast subsystem. We will call such a
hysteresis curve a Z-switch. We remark that this
techntique was used in Réssler [1979] and we will
use it in this paper to construct all fast switching
subsystems.

For the perturbed system (1) with 0 < e < 1,
orbits near the Z-switch fall quickly into a neigh-
borhood of either of the horizontal plancs z = 42
and stay there most of the time. When that is the
case for an orbit, it is approximated by the reduced
two-dimensional slow subsystern on z = +£2. More
specifically, near z = 2,

& =-dd(z—a), §=-4(y—b),

which is obtained by substituting 2 for z in the first
two equations of Eq. (1). Note that ford > 0, ¢ > 5,
every trajectory from the left of £ = 4/m — 2 moves
to the right until it reaches the top turning points
 =4/m—2, z = 2 of the Z-switch, sce Fig. 2(a). Tt
makes a downward turn at the turning points and
then behaves approximately like the fast subsystem.
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So, the trajectory quickly falls into a neighborhood

of the lower branch z = —2 of the Z-switch and is
approximated by the slow subsystem on z = —2:
. z—2)% +¢?
1:4[(1 72)7ﬁy7a(z-2)%],
z-2%+y°
4[5(1 -2+ ay— uy%} .

Expressing this cquation in terms of the polar
coordinates for (z — 2,y) yields

2 N
7‘:40{7‘(177;), 6=4.

H2
¥
. 1
: |
:\\»\:\ 1
: T
: . N (. by
— f__
L 71 L
0 R +
-——"‘* 1
: 1
. = Afm —2
(a)
. v

\ L =4/m -2

()
Fig. 2. The construction of the slow subsysters on (a) z = 2
and (b) z = -2 respectively. The right dotted linc indicates

the top turning edge while the left dotted line the bottom
turning edge. m — 1 and a > 4/m — 2 are shown here.
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Note that, for o > 0, there is a repelling equi-
librium point 7 = 0, or (2. 0). and an attracting
periodic orbit 7 = I, see Fig. 2(b). Thus, every tra-
jectory originated from the center (2, 0, ~2) spirals
ouiwards until it reaches the bottom turning points
r =2z = —2of the Z-switch. When that happens, it
makes an npward turn and behaves like the fast sub-
system again, quickly jutnping to the upper branch
2 = 2 of the Z-switch. This sets ofl another cycle
of relaxation oscillations.

Due to its normal hyperbolicity (¢f. Fenichel
[1979]). the center equilibrium (2, 0, —2) persists
for small £ > 0 and the eigenvalues of the lineariza-
tion at the center are approximately 4(a + i3) +
O(¢) and ~16m/e — ¢ + Ofg). For £ > 0 small,
it is a saddle-focus of the Shil’nikov type. When

(1)
Dotted lines in {a) roughly outline the Z-switch, &

Jowitha — 7,0 - 1435, ¢ = L.
a =105 and ¢ = (.08,

Fig. 3
Shil'nikov's orbit for K. {
d=15m=1543 R =

= 0, the 1op turning edge x = 4/m —2. 2 =2 is
parametrized by m. So, its projection onto the slow
branch z = —2 can be made to cross the equilibrium
poimt (2, 0, —2) at m = 1. Thus. it is plausible to
see that m can be chosen as a function m* of other
parameters so that for . = m* there is a homoclinic
orbit for 0 < € < 1. This observation together with
the fact that the dynamics of Eq. (1) is determined
by parameters a. b wheun it is near the top branch
= = 2 of the Z-switch and respectively by a, 3 near
the bottom branch z = —2 enable us to generate a
numerical homoclinic orbit shown in Fig. 3(a). It
was a trial-and-error process to fix the parameter
values in Fig. 3.

Note that a chaotic attractor is evident in
Fig. 3(b) and that is mainly due to the nonlinear
terms in the slow subsystem on z = -2, e.g., the
attracting periodic orbit r = R. The existence of a
Shil'nikov’s homoclinic orbit will not be affected by
the absence of these nonlinear terms. But it would
be not so casy to demonstrate experimentally the
existence of a strange attractor as we did here.

We point out that the existence of Shil’nikov’s
saddle-node homoclinic orbits in other dynamical
systems has been considered by, e.g., Arneodo et al.
[1982] and Gaspard & Nicolis [1983]. The associated
strange attractor has also been found in simulations
of Chua’s circuit, see Chua [1992,1993], Chua et al.
[1993] and the reference wherein.

2.2. Double spirals

Replacing the slow subsystem on the top branch of
the Z-switch of Eq. (1) by an oscillatory one yields
the following system:

i =(z+2)
kY2 42
% [/\(:l: k) - AMa— k)“ﬂ}
+(2-2z)
NV I
x [[\(I —2) -3y —alz— 2)%] s
g=(2+2) (2)
) (@~ k)2~ y?
b4 [u(z — k) Ay — )\yT}

+(2- z) [d(z - 2) 4 ay - ay(ilf

s (4 — 29 e 2 —mia+2)] —¢
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Fig. 4.

A strange attractor for K. (2) with a = 7. b= 1435, c = 1, m = 1543

(b)

34, R=60- 05 G=4 4 . L=

=4 and £ = 0.08. (a) The attractor projected on the ay-plane; (b) a three-dimension view of the atrractor

()

where A > O,¢ and k < -2 are new parameters.
Figures 4 and 5 correspond to the cases of p > 0
and p < 0 respectively. In the former case, orbits on
both the top and bottom branches of the Z-switch
spiral in the same counterclockwise direction while
in the latter case they do so in opposite directions,

We  remark that the co-directional-spiral
attractor has also been observed in the global un-
folding of Chua’s circuit, see Chua [1993] and Chua
et al. [1993]

2.3. Twisted homoclinic orbit

Roughly speaking, a s 1 having such an orbii
satisfies that the unstabie (or stable) manifold twists
like: » MObius band. On the other hand. the mani-

Generated for Eq. (2) with the same parameter values as in Fig. 4 except that & =
ected on the wy-plane; (b) a three-dimension view of the atlractor.

(b)

33, 0= -4 (s) The atrencior

fold around a nontwisied homoclinic ortii kok: like
a cylindrical band. The following system exhibits
the bifurcation from one twisting type to the other:

E=2-z)alx-2) +(z2+2)
x laa = za) + Bly = o)l

¥=02-2)db-a)z—2)/4+byl+ (21 2) {5
% [=Bl - zo) + aly - yo)l.

ei=(4— 282+ 2 mlz 4 2)) -

The reduced slow
bottom branches of the
lustrated in Fig
senied by dashed cury
that the reduced slow

on the fop

ol are henriaticuiis
the first bemg
it e directly
o on the

0 wi

bottam
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(b)

Fig. 6. The right and left dotted lines in each disgram in-
dicate the top and bottom turning cdges respectively. The
dashed curves represent the phasc portraits for the reduced
slow subsystems on the top branch of the Z-switch. (a) A
twisted case: (b) a nontwisted case.

branch is

&= dofr —2), §—db—a)(x—2)+4dby.

which satisfies the condition that the eigenvalnes
for the linearization at the only equilibrium point
(2, 0) arc 4a,4b and the corresponding eigenvec-
tors arc {4, —d} and (0.1) respectively. The pa-
rameter d is used to represent the intersection of
the (straighl} trajectory from the unstable cigen-
vector {4, —d} and the bottom turning edge 2 =
z = —2. Note that {4. —d} is the principal unsta~
ble eigenvector if a < b and the intersection point
{—2,d) in this case deteriines roughly where the
upturn of the bottom slow fow takes place. On the
top branch. however, the spiral center at (g, yo)

is used to either add or subtract twists from the
three dimensional structure. In fact, half twists of
any even number, say 2n, can be purposely added
around the homoclinic orbit by simply adding n
more full spirals to the unstable manifold of (zg, yo)
on the top slow branch before switching it down-
wards. This can be done by adjusting the parame-
ter value of 3 accordingly. As numerically shown in
Fig. 7 the unstable manifold of the hyperbolic equi-
librium point near (2, 0, —2) is twisted for d = —3.5
and nontwisted for d = ~0.2. Hence, the bifurca-
tion of twist must take place somewhere along a

(b
Fig 7. {a} A twisted homoclinic orbit for Eq. (8) with o = 1.
b=15 =2 m=1184" a = 0.01. 4 — b o = 01
Yo = —2.5= 001 and d (b} & nontwisted homoclinic
orbit for the same parameter values except for d = —0.2




[image: image7.png]one-paramcter family of the system and that fam-
ily can be parametrized by d. We remark that
bifurcations of chaotic dynamics must take place
iu this example (cf. Deng [1993a]).

2.4. Relazation-fold attractor

Being the same type as Eq. (1), the following system
was constructed by Deng {1992 for a relaxation-fold
attractor:

x {n(z:+0.5)7{71/7:1(1'-#0,5)

y=px{y—b)+

(3-2)

(z+0.5)2+
RZ

X [B(z+(l,5)+uy-zyy

ei=2(3—z)(x+z—1.5)+d(z—c).

The attractor is shown in Fig. 8. The actual folding
mechanism js sketched in Fig. @ in which one hot-
tom trajectory is tangent to the top turning edge
when projected onto the bottom branch along the
fast flow direction. The resulting fold is referred
o as a relaxation fold in Deng [1992]. We remark
that. the Réssler attractor has a different fold type
called branching-reinjection fold. For more details
ou these two fold types, see Deng [1992].

2.5. Inwvariant toroid

Using a different switch referred to as a toroid-
switch, we obtain an attracting invariant toroid in
the following system:

&= 2(Ar —py)+ (2~ 2)
2 2
x| — By — o= ii] s
g R

= 2w+ M)+ (2 - 2)

2?4 ]
r}; J

-
N “.31 + oy — oy

)z +mia? gt - h)

where koo BoX < 0, poov > U0 8 are parame-

UTALLETET .
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tion-fold attractor for Eq. (1) with a =
LR Ba=62,0-20,3=—12 4
1.006; (a) projected on the zy-planc, (b) a
three-dimensional view.

Fig. o
edge onto the botiom slow branch, 3
phace when an orbit from the botiom branch is Lengent w
the prajection to the first order

The dote line is the projection of the top: tming
A relaxavics: fold t
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(b)

Fiz. 10. A cross section of the toroid-switch. & are the sign
for the fast component # in the regions partitioned by the
nullclines for (a) € = 0, (b) € > 0.

Figure 10(a) shows the cross section of the level
set 2(2 ~ z)[z + m(z* + y?) ~ A = 0 on a typi-
cal plane containing the z-axis while Fig. 10(b) the
cross section of the switch for € > 0. Note that the
switch is rotationally symmetric with respect to the
z-axis. More specifically, the top and bottom turn-
ing edges are given by the circles 22 +y2 = h/m -2
and z% + y° = h/m respectively with the former
interior to the latter when projected onto the zy-
plane. The equilibrium points for the reduced slow
fiows on the top and bottom branches are sink and
source respectively so that all bottom trajectories
from the center are pushed outward to the upturn
circle while all top trajectories from far are pulled
inward to the downturn circle. In addition, these
two equilibrium points can be made either clock-
wise or counterclockwise spirals depending on the
signs of u, 4. Numerical simulations are shown in
Fig. 11.

2.6. Foided tori

Note that the reduced slow vector field on the bot-
iom branchk of the toroid-switch of Eq. (5) is

(b)

Fig. 11. (a) A knotted periodic orbit for Eq. (5) with m =
01, h=36c=LR=10,A~ -4 p=2a=24§=

3.0005. 1t is attracting on the invariant toroid with rotation
vector (4, £). (b) For the same parameter values except for

= —4,8= 4, it appears to be an irrational flow or a periodic
arbit with an extremely long period.

transversc not, only to the bottom turning circle but
also to the projection of the top turning circle on
the bottom branch. The same is also truc for the
reduced slow vector field on the top branch. This
prevents the system from developing chaos prone
folds, see Deng [1992]. Such transversality is a re-
sult of many symmetrical and special arrangements
in Eq. (5). To name a fow, circular spirals are
used for both the top and bottom slow flows; both
equilibria are aligned on the same z-axis; the top
and bottom branches are parallel planes; and the
side branch is a rotationally symmetric paraboloid.
Chaotic motion emerges if any one of these features
is purposely changed.

In the first example that follows, chaos is pro-
duced by slightly tilting the top branch of the toroid-
switch. This is done by replacing the factor (2—
the z-equation of Eq. (5) by (2—2)[a(z—2)2~bj—a
Here. b is near 1, € is small. and a is not necessarily
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(2 = 2)® when z is near 2. The modified system is

= z(Ar — py) + (2 - 2)
2 a2
X [uz — By — uz%} N
=z~ Ay} + (2~ 2)
oty
3 {Kiaﬂroy - uyT:[ 5
2[(2 — 2)[a(z — 2)° + b] — dz]
x [z +m{z? +y%) — b] — ec(z — 1),

I
I8

where a, b, d arc the additional parameters.
Figure 12(a) shows a side view of the limiting switch
at £ = 0 while Fig. 12(b) is the projection onto the

(b)
Fig. 12, (a) The cross section of the perlurbed toroid-switch
on the wz-plane when & = 0. (b) The projection of the per-

turhed switch onto he wy-planc
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(b}
Fig. 13. In (b}, the dashed curve is the projection of the top
turning edge. A quadratic type tangency with an orbit on
the bottom branch takes place at the relaxation-fold point. p.

plane. For comparison, dashed curves are used
to indicate the original, unperturbed counterparts.
Note that for b > 0 the top branch is lifted at one
end and lowered at the other end as the inner turn-
ing circle distorts and shifts to the right. These
changes amount to in cffect pinching part of the
invariant toroid and folding it back 10 the surface
as illustrated in Fig. 13(a). The folding mechanism
is the same relaxation-fold as in Eq. (4) and it is
depicted in Fig. 13(b). Numerical simulations are
shown in Fig. 14. We remark that simply tilting
the top branch will result in the same phenomenon
aud the cubic nonlinearity, especially when it starts
to fold the 1op branch into a Z-swilch for b < 0, is
made primarily for a different use later.

The next folded toroid example is taken from
Deng [1992 in which the circular spiral on the bot-
tom branch of the roroid-switch from Eq. (5) is
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TFig. 14 A folded toroid attractor for ¥q. (6} with a = 3, b= 0.8, e = 1, d = 0.1, m = 0.05, h = 3.312, R = 10, A = —2,
p=1,0=284—5andc=0.1 (a) The projecion of the attractor onto the wy-planc. The arrow marks the place where
the relaxation fold takes place. (k) A three-dimensional view of the attractor.

() ()

Fig, 15. A folded toroid attractor for Eq. (7) with a = Lh=276m- 026 R-5A=-2p=-10,a- 1
¢ == 048, (a) The prujection onto the zy-planc; (b} a three-dimensional view of the attractor

replaced by an elliptic one. The constructed system  where the new parameter a is used to distort the

is as follows: circular spiral into an elliptic spiral. A strange af-
tractor is shown in Fig. 15,

HAw = py) + (2-2) Strange tori attractors have also bee

demon-

oy g2 strated in Rossler [1979) as well as in Chua’s circuit.
X [(y.r - afly - {m"'T {Chua, 1993 aud Chua ot al., 1993.]

B (M) 5 (200 2) " 3. Combination Switches

3.1. ZZ-switch

b vy ol

Recall from Eq. (1) that the Shinikov saddle-focus
homoclinie orbit lies entirely on one branch of the
ez - 1, stable manifold of the equilibrinm point. Making

= 2l ol 4 ) - hi
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homoclinic orbit yields the following system:

T=—z2(z+2x—-x) —2(2 - 2)(z — 22)

T2+ y?
H?
¥=—2z+2—w) - 22 -2)(y—y2)

1'2+y2
RZ

+(4- zz){ar— By —ax

+(4722){ﬁr+ay-uy

et = 2(4 - 2%)[z - 2a(z/3+ 1))
X [z = 2b(x/3 — 1)} — ec(z + 2),
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where a, b, ¢, R, a, 3, 21, y1, T2, Y2 are parameters
and ¢ the singular parameter. In this example, we
put one Z-switch on the top of another Z-switch
to get a ZZ-switch, which is illustrated in Fig. 16.
In order to direct the reduced slow flows to vari-
ous turning edges of the three branches we simply
use saddle points in the top and bottom branches
(¢ = +2) and an outward spiral center in the mid-
dle (z = 0). Figure 17(a) shows what appears to be
our intended two homoclinic orbits and Fig. 17(b)
the attractor. We point. out that symmctry appears
in this system in many ways only becausc of its

(b)

Fig. 16, The construction of a ZZ-switch. % arc the sign for the fast component. 3 in the regions partitioned by the nullclines

for (a) £ =0, (b) € > 0.

(2}

Fig. 17 (a) Two Shilnikov

HB—ba =22~ L, =

yo = 0.5 and £ = 0.1

orbits of the same cquilibrivm point, for Eq. (8) with o =
(b} The attractor generated by foliowing one orbit

(b}

Libb=115¢c- 1, R=4. 0 = 0.5
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simplicity. It does ned plav any eritical role in this
example.

We remnark that the type of attractors shown
in Fig. 17(b) has also been found in the global un-
folding of Chua’s circnit, see Chua [1993] and Chua
4 al. [1993]

Next, we couple three oscillators together by a

7 7-switch and obtain this system:

G alz 4 S (16— ) fy =

(=4 fs.
G = 2z 4 4dg - (16 — 22)ge + 2(z — d)gs .

(9)

d o 2(16 - 2z - alx - o)
x|z ble = 4)] —s(z+ 7).

where

4,00,

= dla . 0.5.3, "y — olar,y,0.5,2.0,0),

fo— oy, 05.3.4.0) . gy - v, g, 0.5,3, ~4,0)
g2 = 0l g, 0.5,2,0,0), gy =9(ry,0.5.3,4.0),
and

@l u, o A, weso) — ol — x0) — 3y — yo)

wo)*
[
cac Ao rgou) — Bl - x) + oly — )

. m - wo)* 4 (y
- ofw - rgl———————

3?2

A ) 4 {y

. o
— oy = y)——— .

Mote that as shown in Fig. 18(b). the top oscilla-
Loy can also he connected to the bottom one directly

whereas in Fieo 1R8(a) ouly adjacent oscillators

sraciar for g
tor for Eg. (9 with ¢ =

@i

(0] with « -

Gl % G0 a0 -

Pl g, 6.7

can be switched 1o each other. One can also pur-
posely st off the top or bottom oscillator by dis-
connecting the top or the bottom branch from the
switeh. This will results in an instantancous change
in size for the attractor.

3.2. Toroid- Z-switch

In this example. we simply pui a Z-switch ou the
wop of a toroid-switchi. As mentioned carlier, such
coupling is easy to do by choosing b < 0 in Eq. (6).
Figure 19 shows two side views of the resulting
switch at the singular limit & = 0. Figure 20 shows
a curl like attractor and Fig. 21 two different views
of another attractor.

Note that ¢ = 0.5 in this example may be re-
garded as far away from the singular value £ — 0.
If the system were presented in a comtext different
than singular perturbations. it would be difficult to
trace the origin back to relaxation oscillations.

3.3. Toroid-toroid-switch

Tn this example. we will constriet an invariant don-
ble toroid. To do 50, we need 1o attach two toroid-
switches together side by side. Key elements include
this polynomial function:

eyt

; oyt (edy)?
A —

Hix, y

and the cquation

costated 1o the wext

boe B¢ PRI NV

and 0. —
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(a} (b)

Fig. 19. For the perturbed toroid-switch of Fq, (6), the top branch folds into a Z-switch when b < 0. This gives rise to &
witch. (a) The cross section of the combined switch on the zz-planc at = = 0. (b) The cross section with

combined toroid-
ye-plane.

(a) (1)

Fig. 20. A curl like attractor for Eq (6) with @ = 2, b = - 0.08, Ld=1m=026h=27 R=5A=-2u=1,
a=3, 8= -4, =05 (b) The same attractor with a Jonger integration time,

@) (b)

Fig. 21, Genorated with the same parareter values as in Fig. 20 oxcont for @ = 3, b 0.3, F 5. (a) Jooks like & (dosert)
stori whereas (b) looks like a calligraphic but nenexisting Chinese character
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It is casy to verify that the function z = 1 —
H(z, y) has one saddle point (0, 0} and two max-
imum points (£2v/2, 0) with the same maximum
value z = 2. It is also easy to see that the -
equation has one saddle at £ = 0 and two sources
at © = £2v/2. The model system is

& = a(L5 — 2)z(z° ~ 8)/16 + bz[a(az + By)
x [8 — (az + fy)]/16 ~ B(fz — ay)],
7 =a(l.5 - z)y + bz[Blax + By)

x [8— (az + By)*]/16 + a(fz — a)],
ez =2(1.5—z)[z— L+ H(z,y)] + (3/4 — 2),

(10)

where parameters a, b satisfy « = cosf, 8 = siné.
The switch’s cross scction on the zz-plane for
& = 0 is shown in Fig. 22(a). The outer closed curve

(b)

Fig. 22. (a) The cross section of the combined toroid-toroid-
switch with the zz-planc when £ = 0. + are the sign for the
fast component # in the regions partitioned by the millclines,
The curved nullcline is the cross section of the surface z =
1— H{x,y) with the planc. (b) The bottom and top turning
edges that correspond to the level curves z — 0, z = 1.5 of
z=1— H{z, y) respectively.

in Fig. 22(b) is the level sct 1 — H(z, y) = 0. Tt
forms the bottom turning edge which switches the
bottom slow flow upwards. Similarly, the two inner
closed curves are the level set 1 — H(z, y) = 1.5.
They form the top turning cdge, switching the top
slow flow downwards.

<

2v2

N
>

(b}
Fig. 23. (a) The phase portrait for the slow subsystem on
the bottom branch z = 0 of the combined switch. (b) The
phase portrait for the slow subsystem on the top branch z =
L5 of the combined switch.

Fig. 24. The mvariant double toroid for Eq. (10) with a =
b= 1,0 —0.08 and £ = 0.06. Arrows mark the attracting
periodic orbits. The two saddle points lie near the origin and
(0, 0, 1.5) respectively.
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Fig. 25

As shown in Fig. 23(a), the reduced bottom

system is

& = LSax(x? - 8)/16, y = 1.5ay
which has one saddle at the origin and two sources
at (£2v/2, 0). And, the reduced top vector field
is obtained by reversing the rednced bottom vector
field in time, followed by a # degrec rotation, see
Fig. 23(h). Figurc 24 shows an invariant double
toroid on which there are two saddle points, two
attracting and two repelling periodic orbits, and the
rest are heteroclinic orbits.

Similar to Eqs. (6, 7} on folded invariani
tori, it is also easy to introduce chaotic motions
in this casc. Presented here is ouc of such per-
turbed systems. Replacing the reduced bottom
flow by oscillations produced by this perturbed
Hamiltonian system & = —0H /0y, § = 8H/0z+cy,
we have

[o{az + By)

x [8 — (aw + By)?)/16 — BBz — ay)],

y:u(l,“ifz)( +r1/) + b8l + By)  (11)

dx
x [8 = (e + By)*)/16 + (P - ay)],
ez =2(1.5—2)[z— 1 + H(z,y)) + e(3/4 - 2).

Note that Fig. 22(b) can also be regarded as three
periodic orbifs on two typical level surfaces of the
Hamiltonian H for the unperturbed system & =
~0H/0y, y = O0H/0x. The perturbation term cy
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(b}

{a) A strange attractor for Eq. (11) with @ = 15, b = 3, ¢ = 0.5, § = 0 and £ = 0.03. (b) A knotted attracting
periodic orbil for e = 10, b =1, c =2, § = 0.1745 and ¢ = 0.06.

is purposely used to break up all such closed or-
bits and make them spiral outwards when modu-
lated onto the bottom branch. Figure 25(a) shows
a chaotic attractor and Fig. 25(b) a knotted attract-
ing periodic orbit.

4. A Three-Time-Scale Switch

The method presented above can also be used pro-
gressively to construct systems as building blocks
for higher dimensional systems which in turn are
used as building blocks for even higher dimensional
systems, and so on. The following example taken
from Deng, [1993b] is used to illustrate this point.

In contrast to all previous examples, this ex-
ample has a two-dimensional fast subsystem and a
onc-dimensional slow subsystem. Moreover, instead
of through a turning point, it switches the fast flow
to the slow flow through a homoclinic orbit.

To be precise, the system satisfies the follow-
ing properties. When parametrized by the slow
variable «, the fast subsystem in y, 2z has a branch
of stable cquilibrium points that terminates at a
saddle-node point. It also has a branch of attrac
ing periodic orbits that terminates at a homoclinic
orbit, see Fig. 26(a). For the perturbed system,
any orbit thal starts near the atiracting cquilib-
rium branch moves to the right until it rcaches the
saddle-node turning point. In a neighborhood of
that turning point, it makes an upward turn and
quickly jumps into a ncighborhood of the periodic
orbit branch. Then, it winds around the periodic or-
bit branch leftwards until it reaches the separatrix
homoclinic orbit. After passing the homoclinic or-
bit, the orbit falls into the other side of the unstable
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()

Fig. 26 (a) A depiction of Rinzel's geometrical mechanism
for bursting oscillations. 1t represents the phase portraits of

the fast subsystem parametrized by the slow variable . The
nullchine for the d-cquation of £q. (12) is z — k which is do-
picted here for k = 0. The two horizontal arrows indicate the
directions in which the r-variable moves when the z-variable
i eithier above or below the plane of nulicline = - &. (b) A
bursting-osciltation orbit for Fq. (12} with o 6, 6 = 0.8,
e=3,d=06e=005 f=055g=1h=—-1ln=11,
= 0.8, z0 = 1.9, 21 = —04, 21 = 0.021, g2 = 0.0065 and
k— (115612

manifold and is altracied to the attracting equilib-
rinm branch again. setting off another round
of so-called bursting-oscillations.  This two-time-
scale mechanisin was first used by Rinzel [1985]
for the glucosc-induced
bursting-oscillations for the membrane potential of

as a qualitative model

pancreatic $-cells. It has been demonstrated in
Terman {1992] that the dynamics generated by this
geometrical mechanism must be chaotic and it can
also give rise to complicated bifurcations as observed
in many numerical simulations, sec the references in
Deng [1993bj.

In Deng [1993b], we first constructed the fast
subsystem in variables 3,z as another singularly
perturbed system, treating variable @ as a parame-
ter. We then coupled the fast, and slow subsystems
together by turning z into a slowly drifting variable.
The resulting system is given as follows:

=alk—2z),

e2e19 = —by(y — yo)iyolz ~ 20) + nzey]

jal
e,

2t = d(yo — ¥)[f (2 — 29)(2 — hz) - €] — gy,

(12)

where a, b, ¢, d, €, [, g, b, k, n are parameters and
£1, €2 are singular parameters. The differentiation
here is taken with respect to a time variable, say t.
Casting this system in terms of the slow time-scale
7 = gyt, £9 > 0 with respect to the singular variable
£ results in the following system:

=eqalk —z),

Bl
I

1y’ = —buy — vo)lwo(x — 20) + napy]

Yo
o).

2 =d(yo - y) {f(z —z1)(z —hx)+el —gy.

(13}

The (ast subsystem with respect to eu is ob-
tained by setting £; = 0 in Eq. (13). The resulting
system below is two-dimensional with the x-variable
as a parameter:

ey’ — —byly - yo)luol(z — 20) + nzey!

(14)

This system is agam singularly perturbed in <) and
variable y is the faster of the fast variables, The
Z-switch is sketched in Fig. 27(a) for e; > 0. It
consists of the roots of the cubic polvnomial —by{y—
wodlyolz - z0) 4 nzoy) — cyely — B iny for £, > 0.




[image: image17.png]The slow subsystem of Eq. (14) is obtained by
setting £ = (. It is & one-dimensional system

= dlyo —y)f(z — 21)(z — ha) +¢] - gy

sitting on the singular surface —by(y — yo)lya(z —
20) + n20y] = 0. When reduced to the singular
branch ¢ = 0, the slow subsystem is

2 =dyolf(z — 21)(z ~ hx) + €.

For e = () there are two branches of equilibrium
points: z = z; &~ —0.4 and z = hz with h =~ ~1,
as illustrated in Fig. 27(b). Being the roots of the
quadratic polynomial f(z—z)(z —hz) +e¢ in z, the
two branches bifurcate and reorganize themsclves
into two new branches for 0 < e < 1 as illustrated
in Fig. 27(c). Note that each knee point of the new

Constructing Homaoclinic Orbits and Chaotic Attractors 839

branches becomes a saddle-node bifurcation point
with i as the bifurcation parameter. The slow sub-
system of Eq. (14) on the other singular branch
y = yo is simply Z = —gyy with ¢ = 1, a flow with
constant velocis guo < 0. The parametrized fast
phase portrait is shown in Fig. 26(a). Now, cou-
pling the slow system & = a(k — 2) with Eq. (14)
gives rise to Bq. (12).

Intuitively, the resulting vector field of Eq. (12)
slowly drifts to the right near the steady state
branch y ~ 0, z &~ 2z because & = a{k — z) > 0
for k > 2;. In contrast, the trains of rapid oscil-
lations in variables y, = move slowly to the lcft be-
cause & = a(k—2) < 0. The fast transition from the
steady state branch to the branch of periodic oscilla-
tions takes place near the knee point z =~ —z, = 0.4,
y &~ 0, 2 & 21. The reversed fast transition takes

Fig. 27.

(a) Solid curves are nullclines for the faster '-equation of the fast system (14) with £ > 0. The Z-

witch lies on its

side. = are the sign for ' in the regions partitioned by the nuliclines. The two branches other than the Z-switch are outside
the region of interest. (b, c) By treating @ as a parameter, the solid curves consist of equilibrium points of the slow subsystem
of Eq. (14) on the brauch of singular manifold y = 0. They correspond to e = 0, 0 < ¢ < 1 respectively. The left most knee
poiut is the saddle-node bifurcation point required by Rinzel's geometrical mechanism and the other knee is ontside the region

of interest.
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Glucose, mM

Vimv)
20

(a)

Fig. 28.
{h) The z-variablo time-serics for Eq. (12) with the

{a) Mombrane potential record obtained from a single f-cell with a 6-min. exposure to o
ame parameter valucs as in Fig. 26(b) and k

(b)

ch gincose concentration.
—0.222, ~0.0076, 0.0268,

0.1512, 0.2756, 0.4 respectively from Lop down. Calibrating the graded glucase concentrations, the k values are also spaced

equally with the step size 0.1244.

place near x = 0, y =~ 0, z = 0. Tn fact, the exis-
tence ol a homoclinic orbit o t some parame-
ter value of k =2 0 and the only equilibrium point for
the perturbed system is near z = k, y = 0, x = z/h.
This realizes Rinzcl’s two-time-scale mechanism for
bursting-oscillations in two successive steps of sin-
gular perturbations and the order of time scales is
r<z<y.

A numerical orbit of Eq. (12) is shown in
Fig. 26(b). Figurc 28 compares the time-series of
the z-variable with the glucose-induced bursting-
oscillations for the membrane potentials in pancre-
atic fJ-cells. The numerical simulations mateh the
experimental data very well, see Deng [1993b) for
more details.

5. Conclusion

‘We have demonstrated a systematic, practical, and
simple way to construct homoclinic orbits and
chaotic attractors. The method is based on homo-
topy coupling of fast subsystems of the Rossler type
and slow subsystems which satisfy certain geometric
specifications. This method can also be used pro-
gressively 1o construct systems as building blocks
for higher dimensional ms which in turn are
used as building blocks for even higher dimensional
systems, and so on. Systems constructed in this
way arc simple, robust, and ideal for experimen-
tal and theoretical manipulations. Tn this practical
sense, these models may be regarded as the origing
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as well as normal forms for the dynamical struc-
tures they are designed to portrait. Morcover, the
construction of such a model may provide us with
a better understanding about the geometry of the
natural system the model describes.
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