On Stability of Heegaard Splittings
Fengchun Lei

Ana Wright

December 3, 2018
Outline

Background and definitions
- 2-Manifolds and 3-Manifolds
- Compression Body
 - Handlebody
 - Trivial Compression Body
- Heegaard Splitting
- Stabilization

Stabilization Theorem
- Proof Idea
2-Manifolds

Def: Topological spaces which are locally homeomorphic to \mathbb{R}^2.
3-Manifolds

Def: Topological spaces which are locally homeomorphic to \mathbb{R}^3.
Compression bodies
Compression bodies
Compression bodies
Compression bodies

Call the “outside” surface $\partial_+ C$ and let $\partial_- C := \partial C \setminus \partial_+ C$.

Dual construction of compression bodies
Dual construction of compression bodies
Dual construction of compression bodies

Here we start with $\partial_- C$ and build up to $\partial_+ C$ rather than the other way around.
Dual construction of compression bodies

Here we start with $\partial_- C$ and build up to $\partial_+ C$ rather than the other way around.
Compression bodies
Types of compression bodies

Def: A **handlebody** is a compression body C where $\partial_- C = \emptyset$.

Def: A **trivial compression body** is $S \times I$ for some surface S.
Remark: All handlebodies retract to a graph known as the **spine** of the handlebody.
Heegaard splitting

Def: A **Heegaard splitting** of a 3-manifold M is a pair of compression bodies V and W such that

- $V \cap W = \partial_+ V = \partial_+ W = F$
- $V \cup W = M$.

This is denoted $(F, V, W), (M, F)$, or $V \cup_F W$.
Heegaard splitting

Def: A Heegaard splitting of a 3-manifold M is a pair of compression bodies V and W such that

- $V \cap W = \partial_+ V = \partial_+ W = F$
- $V \cup W = M$.

This is denoted $(F, V, W), (M, F)$, or $V \cup_F V$.
We can split S^3 into two 3-balls (handlebodies of genus 0).
Heegaard splitting

We can split S^3 into two 3-balls (handlebodies of genus 0).
Heegaard splitting

We can split $T^3 \ (S^1 \times S^1 \times S^1)$ into two handlebodies of genus 3.
We can split $T^3 (S^1 \times S^1 \times S^1)$ into two handlebodies of genus 3.
We can split $T^3 (S^1 \times S^1 \times S^1)$ into two handlebodies of genus 3.
Heegaard splitting

We can split $T^3 \ (S^1 \times S^1 \times S^1)$ into two handlebodies of genus 3.
Heegaard splitting

We can split $T^3 \ (S^1 \times S^1 \times S^1)$ into two handlebodies of genus 3.
Heegaard splitting
Heegaard splitting
Def: An **elementary stabilization** of a Heegaard splitting \((M, F)\) is a connect sum between the pairs \((M, F)\) and \((S^3, T)\) where \(T\) is an unknotted torus.
Def: An elementary stabilization of a Heegaard splitting \((M, F)\) is a connect sum between the pairs \((M, F)\) and \((S^3, T)\) where \(T\) is an unknotted torus.
Def: An elementary stabilization of a Heegaard splitting \((M, F)\) is a connect sum between the pairs \((M, F)\) and \((S^3, T)\) where \(T\) is an unknotted torus.
Stably equivalent

Def: Two Heegaard splittings \((M, F)\) and \((M, F')\) of the same 3-manifold \(M\) are **stably equivalent** if there exists some Heegaard splitting \((M, F'')\) such that:
Stabilization Theorem

Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

Proof Idea/Beginnings: Let \((F, V, W)\) and \((F', V', W')\) be Heegaard splittings of an orientable, closed 3-manifold \(M\). Isotopy \(V'\) and \(W\) to be disjoint.
Stabilization Theorem

Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

Proof Idea/Beginnings: Let \((F, V, W)\) and \((F', V', W')\) be Heegaard splittings of an orientable, closed 3-manifold \(M\).

Isotopy \(V'\) and \(W\) to be disjoint.
Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

Proof Idea/Beginnings: Let \((F, V, W)\) and \((F', V', W')\) be Heegaard splittings of an orientable, closed 3-manifold \(M\). Isotopy \(V'\) and \(W\) to be disjoint.
Stabilization Theorem

Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

Proof Idea/Beginnings: Let \((F, V, W)\) and \((F', V', W')\) be Heegaard splittings of an orientable, closed 3-manifold \(M\). Isotopy \(V'\) and \(W\) to be disjoint.
Stabilization Theorem

Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

Proof Idea/Beginnings: Let \((F, V, W)\) and \((F', V', W')\) be Heegaard splittings of an orientable, closed 3-manifold \(M\). Isotopy \(V'\) and \(W\) to be disjoint. Let \(X = V \setminus V' = W' \setminus W\).
Stabilization Theorem

Theorem (Reidemeister, Singer)

Any two Heegaard splittings of an orientable, closed 3-manifold are stably equivalent.

Proof Idea/Beginnings: Let \((F, V, W)\) and \((F', V', W')\) be Heegaard splittings of an orientable, closed 3-manifold \(M\). Isotopy \(V'\) and \(W\) to be disjoint.

Let \(X = V \setminus V' = W' \setminus W\).
Let \((S, Y, Y')\) be a Heegaard splitting of \(X\).
Reference

Lei Fengchun
On Stability of Heegaard Splittings
(1999)