A Topological Journey Through Spaces and Knots

Ana Wright

February 9, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Topology

Topology is the study of spaces that can stretch and compress.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Moving Dimension to Dimension

A **manifold** is a topological space that locally looks like \mathbb{R}^n for some *n*.

・ コット (雪) (小田) (コット 日)

Spheres of Different Dimensions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Spheres of Different Dimensions

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Spheres of Different Dimensions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Examples of Manifolds

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Non-orientable Manifolds

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Non-orientable Manifolds

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

Knot Theory

In what ways can we put a circle in 3-dimensional space?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Every knot projection can be checkerboard colored.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Every knot projection can be checkerboard colored.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The crossing information of any knot projection can be chosen to get a diagram of the unknot.

<ロ> (四) (四) (三) (三) (三) (三)

The crossing information of any knot projection can be chosen to get a diagram of the unknot.

<ロ> (四) (四) (三) (三) (三) (三)

The crossing information of any knot projection can be chosen to get an alternating diagram.

Reidemeister's Theorem

Any pair of diagrams of the same knot are related by a sequence of the Reidemeister moves below:

Tricolorability

A knot is **tricolorable** if the strands of its diagram can be colored with 3 colors such that:

- each crossing uses all different colors or all one color
- more than one color is used

Tricolorability is Well-Defined

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Invariants

A **knot invariant** is a property of knots which can be determined for each knot which is constant for equivalent knots. Knot invariants:

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Tricolorability
- Unknotting number
- Crossing number
- LOTS more...

Some Fun Knots and Links

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Topology and Knot Theory

Thank you!

