A Topological Journey Through Spaces and Knots

Ana Wright

February 9, 2021

Topology

Topology is the study of spaces that can stretch and compress.

Moving Dimension to Dimension

A manifold is a topological space that locally looks like \mathbb{R}^{n} for some n.

Spheres of Different Dimensions

Spheres of Different Dimensions

?

Spheres of Different Dimensions

?

Examples of Manifolds

Non-orientable Manifolds

Non-orientable Manifolds

Knot Theory

In what ways can we put a circle in 3-dimensional space?

What Can We Do With Knot Projections?

Every knot projection can be checkerboard colored.

What Can We Do With Knot Projections?

Every knot projection can be checkerboard colored.

What Can We Do With Knot Projections?

The crossing information of any knot projection can be chosen to get a diagram of the unknot.

What Can We Do With Knot Projections?

The crossing information of any knot projection can be chosen to get a diagram of the unknot.

What Can We Do With Knot Projections?

The crossing information of any knot projection can be chosen to get an alternating diagram.

Reidemeister's Theorem

Any pair of diagrams of the same knot are related by a sequence of the Reidemeister moves below:

Tricolorability

A knot is tricolorable if the strands of its diagram can be colored with 3 colors such that:

- each crossing uses all different colors or all one color
- more than one color is used

Tricolorability is Well-Defined

Invariants

A knot invariant is a property of knots which can be determined for each knot which is constant for equivalent knots. Knot invariants:

- Tricolorability
- Unknotting number
- Crossing number
- LOTS more...

Some Fun Knots and Links

Topology and Knot Theory

Thank you!

