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Conventions

I am assuming knowledge of rings, modules and ideals at the level of a first year
graduate course, e.g. UNL’s Math 817–818. I will also assume knowledge of tensor
products, localization, and some basic aspects of homological algebra.

This is a course in commutative algebra, so we stipulate that throughout the course

• all rings, unless specified otherwise, are commutative, unital, and nontrivial,
meaning that 0 6= 1.

• all ideals I are assumed to be strict subsets of R. We will call R itself an improper
ideal.

• all ring homomorphisms R→ S are assumed to map 1R 7→ 1S
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Chapter 0

What is this course about?

In 1637 Fermat attempted to solve the following equation in the integers:

xn + yn = zn, where n ≥ 3 is an integer.

A naive approach would be to factor this equation in the cyclotomic integers Z[ξ] as

n−1∏
i=0

(x+ ξ2i+1y) = zn, where ξ is a primitive root of 1, ξ2n = 1

and try to identify the factors on both sides. But this is doomed to failure because
Z[ξ] is not a UFD for n ≥ 23. The realization of this problem prompted Dedekind
to study factorization properties of rings and introduce the notion of ideals. Since
factorizations of elements are only ever unique up multiplication by units, he wanted
to study factorizations of ideals, e.g. (xn+yn), which are unchanged when the generator
is multiplied by a unit. This marked the birth of commutative algebra.

What? In this course we study commutative algebra, i.e. the theory of commutative
rings and the structure of their ideals and modules. The notion of localization of a
ring is one of the main differences between commutative algebra and the theory of
non-commutative rings. It leads to an important class of commutative rings, the local
rings that have only one maximal ideal.

Why? Commutative algebra is essentially the study of the rings occurring in alge-
braic number theory, such as the cyclotomic integers, and algebraic geometry, such as
the polynomial ring in several variables C[x1, . . . , xn]. We study it for its own sake in
this class and explore the connections to group representation theory, algebraic geom-
etry, and homological algebra.

Brief history (adapted from Wikipedia): The subject, first known as ideal theory,
began with Richard Dedekind’s work on ideals mentioned above. Later, David Hilbert
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introduced the term ring to generalize the earlier term number ring. Hilbert introduced
a more abstract approach to solve problems in classical invariant theory. In his 1890
paper he proved Hilbert’s basis theorem, Hilbert’s syzygy theorem, defined what we
now call the Hilbert function and used these to prove finiteness for rings of invariants.
In turn, Hilbert strongly influenced Emmy Noether, who recast many earlier results
in terms of an ascending chain condition, now known as the noetherian condition.
Another important milestone was the work of Hilbert’s student Emanuel Lasker, who
introduced primary decomposition.

The main figure responsible for the birth of commutative algebra as a mature sub-
ject was Wolfgang Krull, who introduced the fundamental notions of localization and
completion of a ring, as well as that of regular local rings. He established the concept of
the Krull dimension of a ring and his principal ideal theorem is widely considered one
of the most important foundational theorems in commutative algebra. These results
paved the way for the formalization of algebraic geometry through commutative alge-
bra, an idea pioneered by Oscar Zariski and Alexandre Groethendieck, which would
revolutionize the latter subject.
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Chapter 1

Finiteness conditions

January 27, 2021
Here is some motivation from group representation theory which shows why finite-

ness conditions are desirable.
Recall that in representation theory, a group G acts on a finite dimensional vector

space V = Kn over a field K by linear transformations. We learned that the following
are equivalent ways to describe such an action:

Definition 1.1. A K-linear action of G on V = Kn can be defined by each of the
following equivalent statements:

• (v 7→ g · v) ∈ AutK(V ), e · v = v, and (gh)v = g(hv) for each g, h ∈ G and v ∈ V
• ρ : G→ AutK(V ) ∼= GLn(K) is a group homomorphism and g · v := ρ(g)(v)

• V is a K[G]-module (recall that K[G] is the group ring of G).

Now fix a basis for V , say {x1, . . . , xn} so that V = SpanK{x1, . . . , xn}. We will
consider the polynomial ring R = Sym(V ) = K[x1, . . . , xn] generated by {x1, . . . , xn}.
Note that V ⊆ R can be viewed as the set of homogeneous polynomials of degree one.
We will extend the action of G from V to R in the following manner.

Lemma 1.2. Let G be a group, K a field, V = SpanK{x1, . . . , xn} a finite dimensional
vector space, and R = K[x1, . . . , xn]. Any K-linear group action ρ : G → AutK(V )
induces a group homomorphism

Φ : G→ Autring(R), Φ(g)(f(x1, . . . , xn)) = f(g · x1, . . . , g · xn).

Proof. One needs to show for well definedness that Φ(g) is a ring automorphism. Using
g−1 in the definition of Φ (rather than g) is needed for proving that Φ is a group
homomorphism:

Φ(gh)(f(x1, . . . , xn)) = f((gh) · x1, . . . , (gh) · xn)

= f(g(h · x1), . . . , g(h · xn))

= Φ(g)f(h · x1, . . . , h · xn)

= Φ(g)Φ(h)(f(x1, . . . , xn)).
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One also needs to show Φ is a group homorphism. I leave both tasks as exercise.

Remark 1.3. Note that R = K[x1, . . . , xn] is an (infinite dimensional) K vector space.
The map Φ above is in fact K-linear because it commutes with multiplication and
Φ(k) = k for each constant polynomial k ∈ K. Therefore we can also view it as a
group homomorphism

Φ : G→ AutK(R)

which makes R into an (infinite dimensional) K-linear representation of G.

Notation 1.4. We denote the action of G on R in Lemma 1.2 above by

g · f(x1, . . . , xn) = f(g · x1, . . . , g · xn). (1.1)

This determines a subring of R.

Definition 1.5. For any K-algebra R and any group G of K-linear automorphisms of
R define the ring of invariants with respect to the action of G on R to be

RG = {f ∈ R | g · f = f for all g ∈ G}.

Example 1.6. Let Sn be the symmetric group on n letters acting on R = K[x1, . . . , xn]
via σ(xi) = xσ(i). Then

σ · f(x1, . . . , xn) = f(xσ(1), · · · , xσ(n)).

If n = 3, then f = x2
1 + x2

2 + x2
3 is invariant, while g = x2

1 + x1x2 + x2
2 + x2

3 is not, since
swapping 1 with 3 gives a different polynomial.

How many invariant polynomials are there? It is easy to see that there are infinitely
many, for example fd = xd1 + xd2 + · · ·xdn is invariant for any d ∈ N. However, the
Fundamental Theorem of Symmetric Polynomials (FTSP) says that every element of
RSn can be written in terms of finitely many invariant polynomials called fundamental
invariants.

Theorem 1.7 (Fundamental theorem of Symmetric Polynomials = FTSP). If R =
K[x1, . . . , xn], every symmetric polynomial in R, i.e., every element of RSn can be
written as polynomial expression in the elementary symmetric polynomials

e1 = x1 + · · ·+ xn

e2 =
∑
xixj

...

en = x1x2 · · ·xn.

In symbols, FTSP says that RSn = K[e1, . . . , en].
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For a concrete example, f above is

f = e2
1 − 2e2 = P (e1, e2, e3), where P (y1, y − 2, y3) = y2

1 − y2.

FTSP says that a set of fundamental invariants of the symmetric group are the
elementary symmetric polynomials e1, . . . , en listed above. Another set of fundamental
invariants of the symmetric group are the polynomials fj =

∑n
i1= x

j
i with 1 ≤ j ≤ n.

Question 1.8 (Finite generation problem for rings of polynomial invariants). If G is
a group acting K-linearly on R = K[x1, . . . , xn] as in (1.1), is there always a finite set
of invariant polynomials f1, . . . , ft (such that every element of RG can be expressed as
a polynomial expression in terms of them, i.e. RG = K[f1, . . . , ft]?

We will answer this question in the affirmative for finite groups, under mild condi-
tions on char(K), as Hilbert and Noether did, by the end of the chapter.

1.1 Finitely generated algebras and modules

January 29, 2021

1.1.1 Finitely generated algebras

Definition 1.9 (Algebra). Given a ring A, an A-algebra is a ring R equipped with
a ring homomorphism ϕ : A → R called the structure map. (If R is not assumed
commutative we require the image of ϕ to be contained in the center of R.) This
defines an A-module structure on R given by restriction of scalars, that is, for a ∈ A
and r ∈ R, ar := ϕ(a)r which is compatible with the internal multiplication of R i.e

a(rs) = (ar)s = r(as) for all a ∈ A, rs ∈ R.
Remark 1.10. The definition above only depends on the image of ϕ, which is a subring
A′ = ϕ(A) ⊆ R. The A-algebra structure of R is the same as its A′ algebra structure
with structural map given by the inclusion A′ ↪→ R. So we will usually assume,
unless specified otherwise, that A ⊆ R and ϕ = A ↪→ R. In this case the A-module
multiplication ar coincides with the internal (ring) multiplication on R.

Example 1.11. • A ↪→ A[x1, . . . , xn] makes the polynomial ring into an A-algebra
called the free A-algebra on {x1, . . . , xn}

• Mn(A) is a (non-commutative) A-algebra w.r.t ϕ : Mn(A)→ A, a 7→ aIn

Definition 1.12. An A-algebra homomorphism between A-algebras R, S with struc-
ture maps ϕ : A → R and ψ : A → S is a ring homomorphism f : R → S that makes
the following diagram commute

A

R S

ϕ

ψ

f
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Exercise 1.13. Show that

HomA−alg(R, S) = HomA−mod(R, S) ∩ Homrings(R, S)

Proposition 1.14. The collection of A-algebras and A-algebra homomorphisms forms
a category denoted 〈〈A-Algebras〉〉.

Definition 1.15 (Algebra generation). Let R be an A-algebra with structure map
ϕ : A → R and let Λ ⊆ R be a set. The A-subalgebra of R generated by Λ, denoted
A[Λ], is the smallest (w.r.t containment) subring of R containing Λ and ϕ(A).

A set of elements Λ ⊆ R generates R as an A-algebra if R = A[Λ].

This can be unpackaged more concretely in a number of equivalent ways:

Lemma 1.16. The following are equivalent:

1. Λ generates R as an A-algebra, i.e. R = A[Λ].

2. Every element in R admits a polynomial expression in Λ with coefficients in ϕ(A),
i.e.

R =

{∑
finite

ϕ(a)λi11 · · ·λinn | a ∈ A, λj ∈ Λ, ij ∈ N

}
.

3. The ring homomorphism ψ : A[X] → R, where A[X] is a polynomial ring on a
set of indeterminates X, ψ|X maps X to Λ bijectively and ψ|A = ϕ (the structure
map), is surjective.

Proof. I will only sketch (1)⇒ (2). Consider the set

S =

{∑
finite

ϕ(a)λi11 · · ·λinn | a ∈ A, λj ∈ Λ, ij ∈ N

}
.

It is easy to check that this is a subring of R and that it contains Λ and A. Thus
A[Λ] ⊆ S by the definition of A[Λ]. Since A[Λ] = R it follows that A[Λ] = S = R.

For (2)⇒ (3) note that S = Im(ψ).

Exercise 1.17. Prove Lemma 1.16.

Note that the homomorphism in part (3) need nor be injective.

Definition 1.18. If the homomorphism ψ is injective (so an isomorphism ) we say
that R ∼= A[X] is a free A-algebra. The set Ker(ψ) measures how far R is from being
a free A-algebra and is called the set of relations of R.

We say that a set of elements X = {r1, . . . , rn} of R are algebraically independent
over A if the algebra A[r1, . . . , rn] is a free A-algebra. Equivalently, this means that no
polynomial expression with coefficients in A and “variables” r1, . . . , rn is 0 in R.
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Definition 1.19 (Algebra-finite). We say that a ring homomorphism ϕ : A → R is
algebra-finite, or R is a finitely generated A-algebra, if there exists a finite set Λ that
generates R as an A-algebra, i.e. R = A[Λ].

The term finite-type is also used with the same meaning (but I will not use it).

Corollary 1.20. Every finitely generated A-algebra is a quotient of a finitely generated
free A-algebra.

Proof. Follows from part (3) of Lemma 1.16.

Example 1.21. The ring K[x1, . . . , xn]Sn of Example 1.6 is generated by {e1, . . . , en}
as a K-algebra. In fact in this case K[x1, . . . , xn]Sn = K[e1, . . . , en] is a free K-algebra
(there are no relations between the elementary symmetric polynomials)

Example 1.22. The ring Mn(A) is generated by Λ = {Eij | 1 ≤ i, j ≤ n} as an
A-algebra, where Eij has 1 in position ij and 0 elsewhere. However in this case there
are relations EijEkl = δjkEil between the generators.

Example 1.23. Let A = K be a field, and B = K[x, xy, xy2, xy3, · · · ] ⊆ C = K[x, y],
where x and y are indeterminates. Any finitely generated subalgebra of B is contained
in K[x, xy, . . . , xym] for some m, since we can write the elements in any finite generating
set as polynomial expressions in the finitely many specified generators of B. But, every
element of K[x, xy, . . . , xym] is a K-linear combination of monomials with the property
that the y exponent is no more than m times the x exponent, so this ring does not
contain xym+1. Thus, B is not a finitely generated A-algebra even though C is.

Proposition 1.24 (Transitivity for algebra-finite). Let A ⊆ B ⊆ C be rings. Then:

• A ⊆ B algebra-finite and B ⊆ C algebra-finite =⇒ A ⊆ C algebra-finite,

• A ⊆ C algebra-finite =⇒ B ⊆ C algebra-finite.

• A ⊆ C algebra-finite 6=⇒ A ⊆ B algebra-finite.

More generally, for ring homomorphisms ϕ, ψ

• ϕ : A→ B,ψ : B → C algebra-finite =⇒ ψ ◦ ϕ : A→ C is algebra-finite.

Exercise 1.25. Prove Proposition 1.24.

Remark 1.26. 1. Any surjective ring homomorphism ϕ : A → R is algebra-finite:
the target is generated by 1R.

2. Since any homomorphism φ : A → R can be factored as φ = ψ ◦ ϕ where ϕ is
the surjection ϕ : A → A/Ker(ϕ) and ψ is the inclusion ψ : A/Ker(ϕ) ↪→ R,
to understand algebra-finiteness, it suffices to restrict our attention to injective
homomorphisms by the last bullet point of Proposition 1.24.

February 1, 2021
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1.1.2 Finitely generated modules

We will also find it quite useful to consider a stronger finiteness property for rings/maps.

Definition 1.27. (Module generation) Let M be an A-module and let Γ ⊆ M be a
set. The A-submodule of M generated by Γ, denoted

∑
γ∈ΓAγ, is the smallest (w.r.t

containment) submodule of M containing Γ.
A set of elements Γ ⊆ M generates M as an A-module if the submodule of M

generated by Γ is M itself, i.e. M =
∑

γ∈ΓAγ.

This also has some equivalent realizations:

Lemma 1.28. The following are equivalent

1. Γ generates M as an A-module.

2. Every element of M admits a linear combination expression in the elements of Γ
with coefficients in A, that is

M =

{
n∑
i=1

aiγi | ai ∈ A, γi ∈ Γ, n ∈ N

}
.

3. The homomorphism θ : A⊕Y → M , where A⊕Y =
⊕

y∈Y Ay is a free A-module
with basis Y and θ|Y maps Y to Γ bijectively, is surjective.

If the map θ is injective, M is called a free A-module and Γ is called a basis of M .
The kernel of the homomorphism in part (3) is called the set of syzygies on Γ.

Exercise 1.29. Prove Lemma 1.28.

Definition 1.30 (Module-finite). An A-module M is said to be finitely generated if
there exists finite set Γ such that M =

∑
γ∈ΓAγ.

A ring homomorphism ϕ : A → R is module-finite if R is a finitely-generated A-
module.

The following follows from part (3) of Lemma 1.28.

Corollary 1.31. Every finitely generated A-module is a quotient of An for some n ∈ N.

As with algebra-finiteness, surjective maps are always module-finite in a trivial way.
Thus, it suffices to understand this notion for ring inclusions.

The notion of module-finite is much stronger than algebra-finite, since a linear
combination is a very special type of polynomial expression. To be specific:

Lemma 1.32 (Module-finite ⇒ algebra-finite). If ϕ : A → R is module-finite then it
is algebra-finite. The converse is not necessarily true.
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Example 1.33. 1. If K ⊆ L are fields, L is module-finite over K just means that
L is a finite field extension of K.

2. The Gaussian integers Z[i] satisfy the well-known property (or definition, de-
pending on your source) that any element z ∈ Z[i] admits a unique expression
z = a + bi with a, b ∈ Z. That is, Z[i] is generated as a Z-module by {1, i};
moreover, they form a free module basis!

3. If R is a ring and x an indeterminate, R ⊆ R[x] is not module-finite. Indeed, R[x]
is a free R-module on the basis {1, x, x2, x3, . . . }. It is however algebra-finite.

Exercise 1.34. Show that the inclusion of K[x] ⊆ K[x, 1/x] is not module-finite.

As with the algebra-finite property, we have:

Proposition 1.35 (Transitivity for module-finite). Let A ⊆ B ⊆ C be rings. Then

• A ⊆ B module-finite and B ⊆ C module-finite =⇒ A ⊆ C module-finite, and

• A ⊆ C module-finite =⇒ B ⊆ C module-finite,

• but again, A ⊆ C module-finite 6=⇒ A ⊆ B module-finite.

Proposition 1.36. Let 0→M ′ →M →M ′′ → 0 be an exact sequence of modules.

• If M ′,M ′′ are finitely generated, then M is finitely generated.

• If M is finitely generated, then M ′′ is finitely generated.

• If M is finitely generated then M ′ need not be finitely generated.

Exercise 1.37. Prove Propositions 1.35 and 1.36.

For counterexamples relevant to the third bullet points in the above propositions
see problem 5 on homework 1.

1.2 Integral extensions

We have seen that a module-finite inclusion of fields is just a finite field extensions.
Recall that finite field extensions are algebraic. Now we introduce a similar concept to
being an algebraic element but for rings instead of fields.

Definition 1.38 (Integral element/extension). Let ϕ : A → R be a ring homo-
morphism and r ∈ R. The element r ∈ R is integral over A if there are elements
a0, . . . , an−1 ∈ A such that

rn + an−1r
n−1 + · · ·+ a1r + a0 = 0;
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i.e., r satisfies a equation of integral dependence over A.
We say that R is integral over A if every r ∈ R is integral over A.
If A ⊆ R, the integral closure of A in R is the set of elements of R that are integral

over A. The integral closure of a domain A in its fraction field is usually denoted A.

Evidently, an integral extension of fields is the same as an algebraic field extension,
but the condition that there exists an equation of algebraic dependence that is monic
is stronger in the setting of rings.

Example 1.39. What is the integral closure of Z in Q?
If r = p/q satisfies the equation in the definition of integral element, then p | a0

and q | 1 so r ∈ Z. Conversely, every element of Z is integral over Z, so the integral
closure of Z in Q is Z.

Exercise 1.40. The ring Z[d] = {a+ b
√
d | a, b ∈ Z} is integral over Z.

The integral closure of Z in Q(
√
d) is

{
Z[
√
d] if d 6≡ 1 (mod 4)

Z[1+
√
d

2
] if d ≡ 1 (mod 4).

Like our other types of ring maps, we see that r ∈ R is integral over A if and only
if r is integral over the subring ϕ(A) ⊆ R, so we can restrict our focus to inclusion
maps A ⊆ R.

February 3, 2021

Proposition 1.41. Let A ⊆ R be rings.

1. If r ∈ R is integral over A then A[r] is module-finite over A.

2. If r1, . . . , rt ∈ R are integral over A then A[r1, . . . , rt] is module-finite over A.

Proof. 1. Suppose r is integral over A, satisfying the equation rn +an−1r
n−1 + · · ·+

a1r + a0 = 0. Then A[r] =
∑n−1

i=0 Ar
i. Indeed, given a polynomial in p(r) of

degree ≥ n, we can use the equation above to rewrite the leading term amr
m as

−amrm−n(an−1r
n−1 + · · ·+ a1r + a0), and decrease the degree in r.

2. Write A0 := A ⊆ A1 := A[r1] ⊆ A2 := A[r1, r2] ⊆ · · · ⊆ At := A[r1, . . . , rt]. Note
that ri is integral over Ai−1: use the same monic equation of ri over A. Then,
the inclusion A ⊆ A[r1, . . . , rt] is a composition of module-finite maps, hence is
module-finite.

The name “ring” is roughly based on this idea: in an extension as above, the powers
wrap around (like a ring).

Next we want to make precise the relationship between integral and module-finite.
We will need a linear algebra fact. The classical adjoint of an n×n matrix B = [bij]

is the matrix adj(B) with entries adj(B)ij = (−1)i+j det(B̂ji), where B̂ji is the matrix
obtained from B by deleting its jth row and ith column. You may remember this
matrix from Cramer’s rule.
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Lemma 1.42 (Determinant trick). Let R be a ring, B ∈Mn×n(R), v ∈ Rn, and r ∈ R.

1. adj(B)B = det(B)In×n.

2. If Bv = rv, then det(rIn×n −B)v = 0.

Proof. 1. When R is a field, this is a basic fact of linear algebra. We deduce the
case of a general commutative ring from the field case.

The ring R is a Z-algebra (every ring is a Z-algebra, but generally not finitely
generated as such), so we can write R as a quotient of some polynomial ring Z[X].
Let ψ : Z[X]→ R be a surjection, let aij ∈ Z[X] be such that ψ(aij) = bij, and let
A = [aij]. Note that ψ(adj(A)ij) = adj(B)ij and ψ((adj(A)A)ij) = (adj(B)B)ij,
since ψ is a homomorphism, and the entries are the same polynomial functions
of the entries of the matrices A and B, respectively. Thus, it suffices to establish
the lemma in the case R = Z[X]. Now, R = Z[X] is an integral domain, hence
a subring of its fraction field. Since both sides of the equation live in R and are
equal in the fraction field (by linear algebra) they are equal in R.

2. We have (rIn×n−B)v = 0, so det(rIn×n−B)v = adj(rIn×n−B)(rIn×n−B)v =
0.

Theorem 1.43 (Module finite implies integral). Let A ⊆ R be module-finite. Then R
is integral over A.

Proof. Let r ∈ R. The idea is to show that multiplication by r, realized as a linear
transformation over A, satisfies the characteristic polynomial of that linear transfor-
mation.

Write R =
∑t

i=1Ari. We may assume that r1 = 1, since we can always enlarge a
set of module generators. By assumption, we can find aij ∈ A such that

rri =
t∑

j=1

aijrj

for each i. Let C = [aij], and v be the column vector (r1, . . . , rt). We then have rv =
Cv, so by the determinant trick, det(rIn×n−C)v = 0. In particular, det(rIn×n−C) = 0.
Exapanding as a polynomial in r, this is a monic equation with coefficients in A.

Theorem 1.44 (Module-finite = algebra-finite + integral). Let A ⊆ R be rings. R is
module-finite over A if and only if R is integral and algebra-finite over A.

Proof. (⇒): This direction follows from Lemma 1.32 and Theorem 1.43.
(⇐): If R = A[r1, . . . , rt] is integral over A, so that each ri is integral over A, then

R is module-finite over A by Proposition 1.41.

Corollary 1.45. If R is generated over A by integral elements, then R is integral.
Thus, if A ⊆ S, the integral closure of A in S forms a subring of S.
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Proof. Let R = A[Λ], with λ integral over A for all λ ∈ Λ. Given r ∈ R, there is a
finite subset L ⊆ Λ such that r ∈ A[L]. By the theorem, A[L] is module-finite over A,
and r ∈ A[L] is integral over A.

For the latter statement,

{integral elements} ⊆ A[{integral elements}] ⊆ {integral elements},

so equality holds throughout, and {integral elements} is a ring.

Exercise 1.46 (Integral localizes). Let A ⊆ R be rings and S ⊆ A a multiplicatively
closed set. If A ⊆ R is integral then S−1A ⊆ S−1R is integral.

1.3 Noetherian rings and modules

You might recall the notion of noetherian rings form Math 817–818 where it was proved
that finite factorizations into irreducible elements exist in noetherian rings.

Definition 1.47 (noetherian ring). A ring R is noetherian if for every ascending chain
of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · there is some N so that In = In+1 for all n > N . If this is
the case, we say that the chain eventually stabilizes.

This condition also admits some equivalences.

Proposition 1.48 (Equivalences for noetherian ring). The following are equivalent for
a ring R.

1. R is a noetherian ring.

2. Every nonempty family of ideals has a maximal element (under containment).

3. Every ascending chain of finitely generated ideals of R eventually stabilizes.

4. Every ideal of R is finitely generated.

Proof. (1)⇒(2): We prove the contrapositive. Suppose there is a nonempty family of
ideals with no maximal element. This means that we can inductively keep choosing
larger ideals from this family to obtain an infinite properly ascending chain.

(2)⇒(3): Think of a the elements of an ascending chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals
as a family of ideals. If IN is a maximal element of this family then IN = In for all
n ≥ N by the definition of maximal.

(3)⇒(4): We prove the contrapositive. Suppose that there is an ideal I such that
no finite subset of I generates I. For any finite S ⊆ I we have (S) ( I, so there is
some s ∈ I r (S). Thus, (S) ( (S ∪ {s}). Inductively, we can continue this to obtain
an infinite proper chain of finitely generated ideals, contradicting (3).

(4)⇒(1): Given an ascending chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · let I =
⋃
n∈N In.

The ideal I is finitely generated, say I = (a1, . . . , at), and since each ai is in some Ini
,

there is an N such that each ai is in IN . But then In = I = IN for all n > N .

13



Example 1.49. 1. Any field is noetherian: the only ideals are (0) and (1).

2. If R is a PID, then R is noetherian: every ideal is finitely generated.

3. A ring that is not noetherian is a polynomial ring in infinitely many variables
K[x1, x2, . . .]: the ascending chain of ideals (x1) ( (x1, x2) ( (x1, x2, x3) ( · · ·
does not stabilize.

Note: a subring of a noetherian ring need not be noetherian. K[x1, x2, . . .]
is a subring of its fraction field which is a noetherian ring by (1).

4. Another ring that is not noetherian is the ring R = K[x, x1/2, x1/3, x1/4, x1/5, . . . ]
A nice ascending chain of ideals is

(x) ( (x1/2) ( (x1/3) ( (x1/4) ( · · · .

This is also a non-noetherian subring of a noetherian ring, namely K[x] the
integral closure of K[x] in its fraction field.

We can get new noetherian rings from old by quotienting.

Remark 1.50. If R is a noetherian ring, and I is an ideal of R, then R/I is a noetherian
ring as well since there is an order-preserving bijection

{ideals of R that contain I} ↔ {ideals of R/I}.

Definition 1.51 (Noetherian module). An R-module M is noetherian if every ascend-
ing chain of submodules of M , M1 ⊆M2 ⊆M3 ⊆ · · · , eventually stabilizes.

Example 1.52. If R is a noetherian ring then R is also a noetherian R-module.
However a noetherian ring need not be a noetherian module over a subring.
For example, consider Z ⊆ Q. These are both noetherian (as rings) by Q is not a
noetherian Z-module because it has an ascending sequence of submodules which does
not stabilize

0 ( 1/2Z ( 1/2Z + 1/3Z ( 1/2Z + 1/3Z + 1/5Z ( · · ·

There are analogous criteria for modules to (1)–(4) above namely:

Proposition 1.53 (Equivalences for noetherian module). The following are equivalent
for a module M :

1. M is a noetherian module.

2. Every nonempty family of submodules has a maximal element.

3. Every ascending chain of finitely generated submodules of M eventually stabilizes.

4. Every submodule of M is finitely generated.
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In particular, a noetherian module must be finitely generated.

Exercise 1.54. Prove the above proposition.

Remark 1.55. Condition (2) of Propositions 1.48 and 1.53 allows us to avoid using
Zorn’s Lemma. So noetherianity is able to bypass any logical controversy.

Lemma 1.56 (Noetherianity in exact sequences). In an exact sequence of modules

0→ N →M → L→ 0

M is noetherian if and only if N and L are noetherian.

Proof. Homework 1 problem 4.

Corollary 1.57. A module M is noetherian if and only if Mn =
⊕n

i=1M is noetherian.
In particular, if R is a noetherian ring then Rn is a noetherian module for n ∈ N.

Proof. By induction on n:

• the case n = 1 is a tautology
• for n > 1 consider the short exact sequence

0→Mn−1 →Mn →M → 0

and apply Lemma 1.56 and the inductive hypothesis to get the desired conclusion.

Next we see that over noetherian rings the noetherian property for modules is
equivalent to the module-finite condition.

Proposition 1.58. Let R be a noetherian ring. Then M is a noetherian module if
and only if M is finitely generated.

Proof. If M is noetherian, it (and all of its submodules) is finitely generated by the
equivalences in Proposition 1.53.

Now let R be noetherian and M be f.g.. By the Corollary above the free module
Rn =

⊕n
i=1Rei is noetherian for all n ∈ N. Now, a finitely generated module M is

quotient of a finitely generated free module, Rn, so is noetherian by Lemma 1.56.

This has two interesting corollaries that I will leave as exercises.

Corollary 1.59. 1. If R is noetherian, then any submodule of a finitely generated
R-module is also a finitely generated module.

2. If A is noetherian and A ⊆ R is module-finite then R is a noetherian ring.
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In fact a stronger statement is true: for an extension of a noetherian ring the
algebra-finite condition is sufficient to imply the noetherian property for the extension.
This will be the contents of Hilbert’s basis theorem, Theorem 1.61. This was proven
by Hilbert in 1890.

Definition 1.60. If R is a commutative ring and x is an indeterminate the set

R[[x]] =

{∑
i≥0

rix
i | ri ∈ R

}

with the obvious addition and multiplication is called the (formal) power series ring
in the variable x with coefficients in R.

If x1, . . . , xd are distinct indeterminates the (formal) power series ring in all of these
variables is defined inductively as

R[[x1, . . . , xn]] = (R[[x1, . . . , xd−1]]) [[xd]].

Theorem 1.61 (Hilbert Basis Theorem = HBT). Let A be a noetherian ring and let
x1, . . . , xd be indeterminates. Then A[x1, . . . , xd] and AJx1, . . . , xdK are noetherian.

Proof. We give the proof for polynomial rings, and indicate the difference in the power
series argument.

By induction on d, we reduce to the case d = 1. So we wish to show that A
noetherian implies that A[x] is a noetherian ring.

For f ∈ A[x] define the leading coefficient of f to be the unique element lc(f) ∈ A
such that

f = lc(f)xdeg(f) + lower degree terms

Let I ⊆ A[x] be an ideal and let

J = {lc(f) |f ∈ I}.

Then J is easily seen to be an ideal of A, which is finitely generated because of the
noetherian hypothesis on A. Let J = (a1, . . . , at). Pick f1, . . . , ft ∈ A[x] such that the
leading coefficient of fi is ai and set N = maxi{deg fi}.

Claim: Every f ∈ I can be written as f = g + h with g ∈ I ∩∑N
i=0 Ax

i and
h ∈ (f1, . . . , ft).

Proof of claim: The proof is by induction on deg(f).
Base case: if deg(f) ≤ N then take g = f, h = 0.
Inductive step: assume that deg(f) > N and that every element of I of degree

strictly smaller than deg(f) can be written as in the claim. Now lc(f) ∈ J , hence
lc(f) =

∑t
i=1 aibi for some bi ∈ A. Thus we can cancel off the leading term of f

by subtracting a suitable linear combination of the fis. Specifically the polynomial
f ′ = f −∑t

i=1 bifix
deg(f)−deg(fi) has degree strictly less than deg(f). By the inductive
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hypothesis f ′ = g′+h′ with g′ ∈ I ∩∑N
i=0Ax

i and h′ ∈ (f1, . . . , ft). Setting g = g′ and
h = h′ + bifix

deg(f)−deg(fi) proves the claim.
Since A is noetherian and I ∩∑N

i=0Ax
i is a submodule of a finitely generated free

A-module, it is also finitely generated as an A-module (see Corollary 1.59), say by
{ft+1, . . . , fs}.

Then I = (f1, . . . , ft, ft+1, . . . , fs) since if f = g + h as in the claim we can write g
as an A-linear (hence also A[x]-linear) combination of ft+1, . . . , fs and we can write h
as an A[x]-linear combination of f1, . . . , ft.

In the power series case, take J to be the coefficients of lowest degree terms of
elements in I.

Corollary 1.62. If A is a noetherian ring, then any finitely generated A-algebra is
noetherian. In particular, any finitely generated algebra over a field is noetherian.

Proof. Any finitely generated A-algebra is a quotient of a free finitely generated A-
algebra by Lemma 1.16. By HBT, since A is a noetherian ring, any free finitely
generated A-algebra is noetherian. By Remark 1.50 it follows that R is a noetherian
ring.

Remark 1.63. The converse of this Corollary is false.

1.4 Application: invariant rings of finite groups

We now want to move towards answering our Question 1.8 using our various notions
of finiteness.

Theorem 1.64 (Noether’s theorem on finite generation for rings of invariants). Let K
be a field and R a finitely generated K-algebra. Let G be a finite group acting K-linearly
on R, i.e. there is a group homomorphism Θ : G→ Aut〈〈K-algebras〉〉(R).

Then RG is a finitely generated K-algebra.

Proof. Let R = K[u1, . . . , ud], let t be an indeterminate and let r = |G|. Extend the
action of G to R[t] by letting g · t = t for all g ∈ G. Consider for 1 ≤ i ≤ d the
polynomials

fi =
∏
g∈G

(t− gui) = tr + ci,r−1t
r−1 + · · ·+ ci,1t+ ci,0 ∈ A[t]

and notice that g(fi) = fi for all g ∈ G, thus ci,j ∈ RG for all i, j.
The ring S = K[cij]1≤i≤d,0≤j≤r is noetherian by HBT since it is a finitely generated
K-algebra.

In the extension tower
K ⊆ S ⊆ RG ⊆ R

we have
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• S ⊆ R = S[u1, . . . , un] is module-finite by Proposition 1.41 because each ui is
integral over S

• Since S ⊆ R is module-finite S ⊆ RG is also module-finite by Corollary 1.59
• since K ⊆ S and S ⊆ RG are algebra-finite (the latter is even module-finite),

then K ⊆ RG is algebra-finite by transitivity.

The history is a follows: Hilbert, in his famous 1980 paper, gave a proof that for G =
SLn(C), the ring of invariants of G acting on the ring of polynomials R = C[x1, . . . , xn]
is finitely generated. I will include a problem on homework set 2 that uses some of the
same technique Hilbert used.

His proof goes as follows:

• show that RG is a direct summand of R by constructing an analogue of the
Reynolds operator (This step is tricky; I won’t give details on why it works.)

• apply Hilbert’s basis theorem to see that R is a Noetherian ring (this is why
Hilbert proved that theorem)

• apply the homework problem that states direct summands of noetherian rings
are noetherian to conclude RG is a noetherian ring

• let I be the ideal of RG generated by the elements of RG of positive degrees
• then I has a finite set of generators f1, . . . , ft which can be chosen to be homo-

geneous
• finally, show that RG = C[f1, . . . , ft]

Of course, the notion of noetherian ring had not been invented in 1890. Emmy
Noether’s contribution was to recognize that this notion is the key to the proof above.
Defining and studying this notion, she was able to generalize Hilbert’s proof to any R
and finite G as shown in Theorem 1.64. Noetherian rings are named in her honor.

Remark 1.65. Note that the proof of Theorem 1.64 as well as Hilbert’s proof are non-
constructive as they do not give an explicit set of algebra generators for RG invariants.
Finding such a set of fundamental invariants for a given group is a difficult problem.

February 10, 2020
Now, we prove a technical theorem that relates all our finiteness notions. The

statement is a bit complicated, but the result will be pretty useful.

Theorem 1.66 (Artin-Tate Lemma). Let A ⊆ B ⊆ C be rings. Assume that

• A is noetherian,

• C is module-finite over B or C is integral over B, and

• C is algebra-finite over A.

Then, B is algebra-finite over A.
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Proof. Let C = A[f1, . . . , fr] and C =
∑s

i=1 Bgi. Then,

fi =
∑

bijgj and gigj =
∑

bijkgk

for some elements bij, bijk ∈ B. Let B0 = A[{bij, bijk}] ⊆ B. Since A is noetherian, so
is B0.

We claim that C =
∑s

i=1 B0 gi. Given an element c ∈ C, write c as a polynomial
expression in f , hence we have that c ∈ A[{bij}][g1, . . . , gs]. Then, using the equations
for gigj, we can write c in terms of just B0-linear combinations of the gi as required.

Now, since B0 is noetherian, C is a finitely generated B0-module, and B ⊆ C, then
B is a finitely generated B0-module, too. In particular, B0 ⊆ B is algebra-finite. We
conclude that A ⊆ B is algebra-finite, as required.

With this we can give a different proof of Noether’s theorem.

Second proof of Noether’s Theorem. Observe that K ⊆ RG ⊆ R, that K is noetherian,
K ⊆ R is algebra-finite, and RG ⊆ R is module-finite because it is algebra-finite and
integral as in the first proof. Thus, by the Artin-Tate Lemma, we are done!

Here is a summary for the chapter

• As R rings ⇐X
Module - finite ⇒ integral

F*¥AIgebEa-fiuite}#
• AER rings t A Noetherian
Module finite ⇒ R is a Noetherian A - module

Algebra

'

- finite ⇒ R is a Noetherian ring
*

Module - finite
• A E Bec rings , ×e) Algebra -aefiuite}Integer

AE B and Bee satisfy X ⇒ A EC satisfies
X

AE c satisfies X ⇒ Bec satisfies X

If A is Noetherian :

AEB need not satisfy X

AE c module - finite ⇒ AEB module- finite

AE c algebra - finite
Beta module . finite } ⇒ A E B algebra

- finite
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Chapter 2

Algebraic geometry

A motivating question to lead us to our next big theorem is the following:

Question 2.1. To what extent is a system of polynomial equations
f1(x1, . . . , xn) = 0
...

ft(x1, . . . , xn) = 0

with f1, . . . , ft ∈ K[x1, . . . xn] determined by its solution set?

Let’s consider one polynomial equation in one variable. Over R,Q, or other fields
that aren’t algebraically closed, there are many polynomials with an empty solution set.
On the other hand, over C, or any algebraically closed field, if f(z) = 0 has solutions
z1, . . . , zd, we know that f(z) = α(z − z1)a1 · · · (z − zd)ad , so that f is determined up
to scalar multiple and repeated factors. Note that if we insists that f has no repeated
factors, i.e. ai = 1 for all i, then f is determined up to scalar multiple. Another way
to say this is that the ideal (f) is uniquely determined by z1, . . . , zd, if we insist that f
does not have repeated factors.

More generally, given any system of polynomial equations f1 = · · · = ft = 0, where
fi ∈ K[z] for some field K, notice that that z = a is a solution if and only if it is
a solution for any polynomial g ∈ (f1, . . . , ft). But since K[z] is a UFD, we have
(f1, . . . , ft) = (f), where f is a GCD of f1, . . . , ft and so z = a is a solution to the
system if and only if f(a) = 0.

We will move on to polynomial equations in (finitely) many variables next.

2.1 Affine algebraic sets and the Nullstellensatz

Definition 2.2. For a field K the affine n-space over K denoted An
K is the set of

n-tuples of elements of K

An
K = {(a1, . . . , an) | ai ∈ K}.
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2.1.1 Points and maximal ideals

We will prove the following correspondence, which can be considered as an algebraic
description of affine space:

Theorem 2.3. If K is an algebraically closed field, then every maximal ideal of
K[x1, . . . , xn] has the form (x1−a1, . . . , xn−an) for some elements a1, . . . , an ∈ K and
the function

An
K → {maximal ideals of K[x1, . . . , xn]},
(a1, . . . an) 7→ (x1 − a1, . . . , xn − an)

is bijective.

To prove this we need to go over some notions of field theory.

Definition 2.4. Let K ⊆ L be an extension of fields. A transcendence basis for L over
K is a maximal algebraically independent subset of L.

Remark 2.5. 1. Every field extension has a transcendence basis. This is given by
Zorn’s Lemma once we see that a union of an increasing chain of algebraically
independent sets is algebraically independent. Indeed if there were a nontrivial
relation on some elements in the union, there would be a nontrivial relation on
finitely many, and so a relation in one of the members in the chain.

2. Every set of field generators for L/K contains a transcendence basis. This is also
given by Zorn’s lemma considering algebraically independent subsets of the given
generating set.

3. Observe that {xλ}λ∈Λ is a transcendence basis for L over K, if an only if there is
a factorization

K ⊆ K({xλ}λ∈Λ) ⊆ L

where the first inclusion is purely transcendental , or isomorphic to a field of
rational functions, and the second inclusion is algebraic (integral). If the lat-
ter were not algebraic, there would be an element of L transcendental over
K({xλ}λ∈Λ), and we could use that element to get a larger algebraically inde-
pendent subset, contradicting the definition of transcendence basis. Conversely,
if K ⊆ K({xλ}λ∈Λ) ⊆ L with the first inclusion purely transcendental and the
second algebraic, {xλ}λ∈Λ is a transcendence basis.

February 12, 2021
Here is a fact we will use later, whose proof we omit.

Theorem 2.6. Let K ⊆ L be an extension of fields. If X and Y are two transcendence
bases for L over K, then either both X and Y are finite and |X| = |Y | or both X and
Y are infinite.
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This justifies the following definition.

Definition 2.7. The transcendence degree of a field extension L over K is the cardi-
nality of any transcendence basis for the extension.

We will need to understand algebra-finite field extensions. Below we show that for
field extensions algebra finite is equivalent to module-finite which is equivalent to finite
(degree) extension.

Lemma 2.8 (Zariski’s Lemma). Let K ⊆ L be fields. If L is a finitely generated
K-algebra, then L is a finite dimensional K-vector space. In particular, if K is alge-
braically closed then L = K.

Proof. Let L = K[h1, . . . , hd]. Since in particular h1, . . . , hd generate L as a field
over K, we can choose a transcendence basis for L/K from among the h’s, and after
reordering, we may assume that h1, . . . , hc form a transcendence basis, and hc+1, . . . , hd
are algebraic over K ′ = K(h1, . . . , hc) = Frac(K[h1, . . . , hc]). Since h1, . . . , hc form a
transcendence basis, these elements are algebraically independent and so K[h1, . . . , hc]
is a free K-algebra.

Then L is integral and algebra-finite over K ′, hence module-finite. Thus, if c = 0,
we are done. Suppose that c 6= 0; we will obtain a contradiction to complete the proof.

We can apply the Artin-Tate Lemma to K ⊆ K ′ ⊆ L to see that K ′ is algebra-finite
over K. In particular, there are fi, gi in the polynomial ring K[h1, . . . , hc] such that
K ′ = K[f1

g1
, . . . , fc

gc
]. This implies that any element of K ′ can be written as a fraction

with denominator (g1 · · · gc)n for some n. The element 1
g1···gc+1

∈ K ′ cannot be written
this way; if so, we would have

v

(g1 · · · gc)n
=

1

g1 · · · gc + 1
,

for some v ∈ K[h1, . . . , hc] with g1 · · · gc - v (since the polynomial ring K[h1, . . . , hc] is
a UFD). But, the equation g1 · · · gcv + v = (g1 · · · gc)n contradicts this.

Now if K is algebraically closed and ` ∈ L, since L/K is finite then ` is algebraic
over K, thus ` ∈ K.

Example 2.9. Let K be a field and m a maximal ideal of the polynomial ring
K[x1, . . . , xn] for some n. Then K[x1, . . . , xn]/m is a finitely generated K algebra
and hence by Zariski’s Lemma 2.8 K ↪→ K[x1, . . . , xn]/m is finite field extension (or,
more precisely, K[x1, . . . , xn]/m is a finte extenion of the image of K under the quotient
map K[x1, . . . , xn]→ K[x1, . . . , xn]/m).

For example if K = R, then for every maximal ideal m of R[x1, . . . , xn] we have
that R[x1, . . . , xn]/m is isomorphic to either R or C. Both do occur; for example
R[x](x− r) ∼= R for any r ∈ R and R[x]/(x2 + 1) ∼= C.

IfK is algebraically closed, for example ifK = C, then the mapK ↪→ K[x1, . . . , xn]/m
must be an isomorphism for every maximal ideal m.
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Now we can prove Theorem 2.3.

Proof of Theorem 2.3. To see that the map is well defined observe that the ideal ma =
(x1 − a1, . . . , xn − an) of K[x1, . . . , xn] is maximal, since

K[x1, . . . , xn]/(x1 − a1, . . . , xn − an)
∼=−→ K.

by means of the evaluation map

x1 7→ a1, . . . , xn 7→ an.

Now for the surjectivity of the map

An
K → {maximal ideals of K[x1, . . . , xn]}.

Suppose m is a maximal ideal of K[x1, . . . , xn]. Then, since K ↪→ K[x1, . . . , xn]/m is
algebra-finite then K ↪→ K[x1, . . . , xn]/m is a finite field extension by Lemma 2.8 and
furthermore since K = K there must be an isomorphism:

K
∼=−→ K[x1, . . . , xn]/m.

Let a1, . . . , an ∈ K be the preimages of x1 + m, . . . , xn + m under this isomorphism.
Then xi − ai + m = 0 for all i and hence

(x1 − a1, . . . , xn − an) ⊆ m.

But these are both maximal ideals and so they must in fact be equal.
Lastly the map is one to one because if (x1 − a1, . . . , xn − an) = (x1 − a′1, . . . , xn −

a′n) = m, then a′i − ai = (xi − ai)− (xi − a′i) ∈ m for all i. Since a′i − ai belongs to K,
if it was not 0 it would be a unit, but then it would not belong to the proper ideal m.
So we must have ai = a′i for all i.

February 15, 2021

2.1.2 The ideal-algebraic set correspondence

Starting with a system of equations we can consider its set of solutions .

Definition 2.10. For a subset T of the ring K[x1, . . . , xn], we define the subset V (T )
of An

K to be the set of common zeros or the zero set or vanishing set of the members
(equations) in T :

V (T ) = {(a1, . . . , an) ∈ An
K | f(a1, . . . , an) = 0 for all f ∈ T}.

Sometimes, in order to emphasize the role of K, we will write this as VK(T ).
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Definition 2.11. A subset of An
k of the form V (T ) for some subset T ⊆ K[x1, . . . , xn]

is called an algebraic subset of An
k . In other words, an algebraic subset of An

k is the set
of simultaneous solutions of some (possibly infinite) collection of polynomial equations.

Definition 2.12. An irreducible algebraic set, i.e. an algebraic set that cannot be
written as the union of two proper algebraic subsets, is called an affine algebraic variety.

Example 2.13. Here are some simple examples of algebraic sets:

• For K = R and n = 2, V (y2 +x2(x+ 1)) is a “nodal curve” in A2
R, the real plane.

Note that we’ve written x for x1 and y for x2 here.

• For K = R and n = 3, V (z − x2 − y2) is a paraboloid in A3
R, real three space.

Note that x = x1, y = x2 and z = x3.

• For K = R and n = 3, V (z − x2 − y2, 3x− 2y + 7z − 7) is circle in A3
R.
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• The field matters: VR(x2 + y2 + 1) = ∅, while VC(x2 + y2 + 1) 6= ∅.

• For any field K and elements a1, . . . , an ∈ K, we have

V (x1 − a1, . . . , xn − an) = {(a1, . . . , an)}.

So, all one element subsets of An
K are algebraic subsets.

• Different systems of polynomial equations can have the same solutions: the origin
in An

K is given by

V (x1, . . . , xn) = V (x2
1, . . . , x

2
n) = {(0, 0, . . . , 0)}.

Example 2.14. Here are some examples of sets that are not algebraic:

• The set X = {(x, y) ∈ A2
R | y ≥ 0}.

Suppose f(x, y) = 0 for every (x, y) ∈ X. Viewing f ∈ R[x, y] = R[x][y] we can
write

f(x, y) = y · g(x, y) + h(x)

for some polynomials g ∈ R[x, y], h ∈ R[x]. Since (x, 0) ∈ X, we have f(x, 0) = 0
for each x ∈ R. Thus h(x) = 0 for all x ∈ R and thus h(x) = 0. It follows that y
divides f .

Similarly, for each a ∈ R we can write

f(x, y) = (y − a) · g(x, y) + h(x).

If a ≥ 0, we have (x, a) ∈ X for all x ∈ R, so f(x, a) = 0 and this yields (y−a) | f
by the same argument as above.

In the UFD R[x, y] we now have that f is divisible by infinitely many non-
associate irreducible polynomials y−a with a ≥ 0. This is only possible if f = 0.

We have established that if X = V (T ) then T = {0}. But V (0) = A2
R, a

contradiction.
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• The subset A2
K \ {(0, 0)} is not an algebraic subset of A2

K if K is infinite. Why?

• The graph of the sine function is not an algebraic subset of A2
R. Why not?

We can also go the opposite way: start with a subset of affine space and consider
the equations that it satisfies.

Definition 2.15. Given any subset X of An
K for a field K, define

I(X) = {g(x1, . . . , xn) ∈ K[x1, . . . , xn] | g(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X}

Lemma 2.16. For any subset X of An
K, I(X) is an ideal of K[x1, . . . , xn].

Proof. Clear from the definition.

Example 2.17. • I({(a1, . . . , an)}) = (x1 − a1, . . . , xn − an), for any field k.

• I({(x, y) ∈ A2
R | y ≥ 0}) = (0).

Proposition 2.18 (Properties). Here are some properties of the functions V and I:

1. For any field, we have V (0) = An
K and V (1) = ∅.

2. If I ⊆ J ⊆ K[x1, . . . , xn] then V (I) ⊇ V (J).

3. If I, J ⊆ K[x1, . . . , xn] then

V (I + J) = V (I) ∩ V (J) and V (I ∩ J) = V (I) ∪ V (J).

4. I(∅) = (1) = K[x1, . . . , xn] (the improper ideal).

5. I(An
K) = (0) if and only if K is infinite.

6. If S ⊆ T are subsets of An
K then I(S) ⊇ I(T ).

In regards to the fifth property, notice that if K = {k1, . . . , ks} is a finite field, then
the following polynomial is a non zero element of I(An

K):

f =
n∏
i=1

s∏
j=1

(xi − kj)

Exercise 2.19. Supply a proof to the previous Proposition.

February 17, 2021

Definition 2.20. For any ideal I in an arbitrary ring R the radical of I, is
√
I = {f ∈ R | fn ∈ I for some n > 0}

We say an ideal I is radical if I =
√
I.
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Example 2.21. The ideal (x2) of K[x] has radical
√

(x2) = (x), so it is not a radical

ideal. However (x) is a radical ideal since
√

(x) = (x).
The above example is a bit misleading. In general, to compute the radical of an

ideal it is not enough to take “radicals” of the generators by removing powers higher
than 1. This approach does work however for ideals generated by monomials.

Proposition 2.22 (Properties of radicals). 1. for any ideal I we have I ⊆
√
I

2. for any ideal I we have that
√
I is a radical ideal, i.e.

√√
I =
√
I.

3. all prime ideals and in particular all maximal ideals are radical.

4. the improper ideal R is radical.

The image of the function I lands in the set of radical ideals:

Lemma 2.23. If X is a subset of An
K then I(X) is a radical ideal.

Proof. We show that
√
I(X) = I(X): let f ∈

√
I(X), then fN ∈ I(X) for some

N ∈ N and thus

f(a1, . . . , an)N = 0 in K for each (a1, . . . , an) ∈ X.

It follows that f(a1, . . . , an) = 0 for each (a1, . . . , an) ∈ X, i.e. f ∈ I(X).

We nexts show that we can adjust the source of the function V to be the set of
radical ideals without reducing its image.

Proposition 2.24. For a subset T of K[x1, . . . , xn] we have

V (T ) = V ((T )) = V (
√

(T ))

where (T ) denotes the ideal generated by T .

Proof. Each of ⊇ is clear from the properties of V and the containments

T ⊆ (T ) ⊆
√

(T )

Suppose a := (a1, . . . , an) ∈ V (T ). Then a is a root of each f ∈ T and hence it is a
root of anything of the form

∑
i gifi with gi ∈ k[x1, . . . , xn]. That is, a ∈ V ((T )). For

any f ∈
√

(T ), we have fn ∈ (T ) for some n and hence fn(a) = (f(a))n = 0, whence
f(a) = 0 (since K is a reduced ring).

Corollary 2.25. Every algebraic set can be written as V (I) for a radical ideal I.

Proof. IfX ⊆ An
K is an algebraic set thenX = V (T ) for some subset T ⊆ K[x1, . . . , xn].

Now take I =
√

(T ), which is a radical ideal by the properties of radicals and satisfies
X = V (I) by the previous proposition.
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Corollary 2.26. Every algebraic subset of An
k is the set of simultaneous solutions of

some finite set of polynomial equations.

Proof. By Proposition 2.24, every algebraic subset as has the form V (I) for some ideal
(in fact, for some radical ideal) I. By the Hilbert basis theorem, I = (f1, . . . , fm) for
some f1, . . . , fm ∈ K[x1, . . . , xn] and hence V (I) = V ({f1, . . . , fm}).

Henceforth we will thus restrict ourselves to considering the correspondences

{radical ideals in K[x1, . . . , xn]}
I

�
V
{algebraic subsets of An

K}

We finally answer our Question 2.1 by the following correspondence, which says
that an algebraic set uniquely determines its largest system of equations, which is a
radical ideal.

Theorem 2.27 (Ideal-algebraic set correspondence). When K is an algebraically closed
field, the functions

I : { algebraic subsets of An
k } → { radical ideals of k[x1, . . . , xn] }

and
V : {radical ideals of k[x1, . . . , xn]} → { algebraic subsets of An

k }
are mutually inverse, order-reversing bijections of posets.

We first prove an important particular case in which V (J) = ∅ determines J .

Theorem 2.28 (Hilbert’s Nullstellensatz (Weak Form)). Let K be an algebraically
closed field, and suppose J is an ideal of K[x1, . . . xn]. We have

V (J) = ∅ if and only if J = K[x1, . . . , xn].

Remark 2.29. One direction is easy. The non-trivial direction, in it’s most basic form,
says the following: Suppose we are given a system of polynomial equations

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

... =
...

fm(x1, . . . , xn) = 0

in n variables with coefficients in some algebraically closed field K. If the system has
no solutions over K, then for some polynomials g1, . . . , gm we have

∑
i gifi = 1. (The

converse is clear.)
For example, when n = 1, it says that if f1(x), . . . , fm(x) do not share a common

root in K, then their collective gcd is 1. This case is easy to prove, and is essentially
equivalent to the definition of “algebraically closed”. It’s much harder and much less
obvious for n > 1.
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Proof. If J = K[x1, . . . , xn], then V (J) = ∅ since 1 = 0 has no solutions.
We show that if J ⊂ K[x1, . . . , xn] is a proper ideal, then V (J) 6= ∅. Since J

is proper, it is contained in some maximal ideal m. Since K is algebraically closed,
by Theorem 2.3 we know m = (x1 − a1, . . . , xn − an) for some ai ∈ K. Since J ⊆
(x1 − a1, . . . , xn − an), we have

V (J) ⊇ V ((x1 − a1, . . . , xn − an)) = {a1, . . . , an}.

February 19, 2021
To attack the Strong Form of the Nullstellensatz, we will need an observation on

inequations.

Remark 2.30 (Rabinowitz’s trick). We write x = (x1, . . . , xn) and a = (a1, . . . , an).
Observe that, if f(x) is a polynomial, f(a) 6= 0 if and only if there is a solution
y = b ∈ K to yf(a) − 1 = 0. In particular, a system of polynomial equations and
inequations

f1(x) = 0, . . . , fm(x) = 0, g1(x) 6= 0, . . . , gn(x) 6= 0

has a solution x = a if and only if the system

f1(x) = 0, . . . , fm(x) = 0, y1g1(x)− 1 = 0, . . . , yngn(x)− 1 = 0

has a solution (x, y) = (a, b). In fact, this is equivalent to a system in one extra variable:

f1(x) = 0, . . . , fm(x) = 0, yg1(x) · · · gn(x)− 1 = 0.

Theorem 2.31 (Hilbert’s Nullstellensatz (Strong Form)). Let K be a an algebraically
closed field and let J be an ideal in the polynomial ring R = K[x1, . . . , xn]. Then

I(V (J)) =
√
J.

Remark 2.32. The Strong Form implies the Weak Form: If V (J) is empty, then 1 ∈
I(V (J)) and hence 1n ∈ J by the Strong Form, which gives that J = (1).

Proof. By Proposition 2.24 the equations in
√
J vanish on V (J), so

√
J ⊆ I(V (J)).

For the converse, suppose that f(x) vanishes on V (J). Let J = (g1, . . . , gm). Con-
sidering the system

g1(x) = 0, . . . , gm(x) = 0, f(x) 6= 0.

If a is a solution for the first m equations then a ∈ V (g1, . . . , gm) = V (J). Since f
vanishes on V (J) we see that f(a) = 0, which contradicts the last equation. Hence the
system above has no solution. By the remark above, this implies that

Z(JS + (yf − 1)) = ∅,
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where JS + (yf − 1) is an ideal in the polynomial ring R = K[x1, . . . , xn, y]. By the
Weak Nullstellensatz, we see that 1 ∈ JS + (yf − 1). Write J = (g1(x), . . . , gm(x)),
and

1 = r0(x, y)(1− yf(x)) + r1(x, y)g1(x) + · · ·+ rm(x, y)gm(x).

We can apply an evaluation map R→ Frac(R) sending y 7→ 1/f to get

1 = r1(x, 1/f)g1(x) + · · ·+ rm(x, 1/f)gm(x).

Since each ri is polynomial, there is a largest negative power of f occurring; say that
fn serves as a common denominator. We can clear denominators multiplying by fn to
obtain (on the LHS) fn as a polynomial combination of the g’s (on the RHS). Thus
f ∈ J .

Proof of Theorem 2.27. The Nullstellensatz gives I(V (J)) = J for any radical ideal J .
Given an algebraic set X we have by definition and Corollary 2.25 that X = V (J)

for some radical ideal J . So V (I(X)) = V (I(V (J)) = V (J) = X by the Nullstellensatz
again.

Remark 2.33. In fact, V (I(X)) = X holds for any field and any algebraic subset X:
If a ∈ X, then for any g ∈ I(X), g(a) = 0 by definition and thus a ∈ V (I(X)).
Conversely, we use that X = V (J) for some ideal J , and so if a /∈ X, then g(a) 6= 0 for
some g ∈ J . But g ∈ I(X) by the definitions, and so a /∈ V (I(X)).

Thus, in the statement of the Corollary, V ◦I is the identity, and so I is an injection
and V is a surjection for any field K. But I will fail to be onto and Z can fail to be
injective, for a non-algebraically closed field K.

2.2 The category of algebraic sets and algebraic

morphisms

We now make the collection of algebraic subsets into a category. For simplicity, we’ll
restrict attention to algebraically closed fields, although much of this holds for any
field.

Definition 2.34. Suppose X is an algebraic subset of An
K and Y is an algebraic

subset of Am
K . A morphism of algebraic sets or algebraic map or regular map from X

to Y is a set-theoretic function G : X → Y defined coordinatewise by polynomials
g1, · · · , gm ∈ K[x1, . . . , xn], that is

G(a1, . . . , an) = (g1(a1, . . . , an), · · · , gm(a1, . . . , an)) for all a ∈ X.

Not every choice of g1, · · · , gm will give such a morphism, because the tuple (g1(a), · · · , gm(a))
has to satisfy the equations of Y .
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Example 2.35. For each algebraic variety X we get an identity morphism by setting
gi(x1, . . . , xn) = xi in the definition above

idX : X → X, idX(a1, . . . , an) = (a1, . . . , an) for all a ∈ X.

Definition 2.36. Two algebraic subsets X and Y are isomorphic if there are algebraic
maps G : X → Y and H : Y → X such that G ◦H = idY and H ◦G = idX , in which
case each of G an H is referred to as an isomorphism of algebraic sets.

Remark 2.37. An isomorphism of algebraic sets must be a bijection, but the converse
is not true (see the second example below).

Example 2.38. Let X = V (xy − 1) ⊆ A2
K (i.e., X is a hyperbola) and define G :

X → A1
K by G(a, b) = a. Then G is an algebraic map (indeed, it’s given by a linear

polynomial) and its image is A1
K \{0}, which is not an algebraic subset of A1

K . So, the
set-theoretic image of a morphism of algebraic sets need not be algebraic.

February 22, 2021

Example 2.39. Let Z = V (y − x2) be the parabola (graph of f(x) = x2). Then Z is
isomorphic to A1

K via the mutually inverse morphisms G : Z → A1
K , G(x, y) = x and

H : A1
K → Z,H(x) = (x, x2).
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Example 2.40. Let Y be the classical cuspidal curve:

Y = Z(y2 − x3) ⊆ A2
K .

Define
G : A1

K → Y G(t) = (t2, t3).

G is an algebraic map from A1
K to Y since the component functions are polynomial

functions of t and (t3)2 − (t2)3 = 0 for all t.
Note that G is a bijection of sets, but, it is not an isomorphism of algebraic

subsets! There does not exist an algebraic morphism

H : Y → A1
K

such that G ◦H and H ◦G are both the identity function. We will justify this later.

Example 2.41. Let X be the classical nodal curve in A2
K given by

X = V (y2 − x2(x+ 1)).

Define an algebraic map

G : A1
K → X G(t) = (t2 − 1, t3 − t).
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G is an algebraic morphism since it is represented by polynomials functions and for
any t ∈ A1

K , we have G(t) ∈ X since

(t3 − t)2 − (t2 − 1)2(t2 − 1 + 1) = t6 − 2t4 + t2 − (t4 − 2t2 + 1)t2 = 0.

The function G is surjective and the preimage of every point on X is single point
with one exception: the fiber of (0, 0) ∈ Z consists of two points, 1 and −1, provided
char(K) 6= 2. Since G is not a set-theoretic bijection it cannot be an isomorphism.

Theorem 2.42. The collections of affine algebraic sets over a fixed field K and the
algebraic maps between them form a category 〈〈Algebraic Sets〉〉K.

A few remarks on this, instead of an honest proof:

• the objects of this category are really pairs (X,n) where X is an algebraic subset
of An

K . However, we will usually refer to objects as just X.
• the morphisms between X ⊆ An

K and Y ⊆ Am
K are

Hom〈〈Algebraic-Sets〉〉K (X, Y ) = {G : X → Y | G(x) = (g1(x), . . . , gm(x)), gi ∈ K[x1, . . . , xm]}

• I will not prove this carefully, but note that the composition of two morphisms
of algebraic sets F : X → Y , G : Y → Z is their composition as functions. This
is a morphism of algebraic sets, as the composition of two polynomial maps is a
polynomial.

• as seen in Example 2.35 each algebraic set X is equipped with an identity mor-
phisms idX

Remark 2.43. It is important to note that the morphisms described above and in
Definition 2.34 are viewed as functions. In particular different tuples of polynomials
g1, . . . , gm can determine the same morphism G.

Lemma 2.44. Let X be an algebraic subset of An
K and let f, g ∈ Hom〈〈Algebraic-Sets〉〉K (X,A1

K).

Then f = g if and only if there is an equality of equivalence classes f = g in

K[x1, . . . , xn]

I(X)
.

Proof. We have

f = g in Hom〈〈Algebraic-Sets〉〉K (X,A1
K) ⇐⇒ f(a) = g(a) for all a ∈ X

⇐⇒ (f − g)(a) = 0 for all a ∈ X
⇐⇒ f − g ∈ I(X)

⇐⇒ f = g in
K[x1, . . . , xn]

I(X)
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We fix this issue by considering a better ring of functions.

Definition 2.45. For an algebraic subset X of An
K , the coordinate (function) ring or

the ring of regular functions of X is the K-algebra

K[X] := K[x1, . . . , xn]/I(X).

Definition 2.46. We call an affine K-algebra any ring of the form

K[x1, . . . , xn]/IA for some ideal IA ⊆ K[x1, . . . , xn].

Definition 2.47. An algebra A is reduced if an = 0 implies a = 0 in A.

We now see that coordinate rings have both of these properties.

Lemma 2.48. If X is an algebraic set then K[X] is a reduced affine K-algebra.
Conversely, if K is an algebraically closed field then any reduced affine K-algebra

is a coordinate ring.

Proof. Recall that I(X) is a radical ideal. Then for f ∈ K[x1, . . . , xn], f
n

= 0 in K[X]
if and only if fn ∈ I(X) if and only if f ∈

√
I(X) = I(X) if and only if f = 0 in K[X].

Conversely, let A = K[x1, . . . , xn]/J be an affine K-algebra. Then A is reduced
if and only if J =

√
J . Setting X = V (J) and using the strong Nullstellensatz gives

I(X) = I(V (J)) =
√
J = J . Thus A = K[X].

Remark 2.49. The generators of the coordinate ring K[X] as a K-algebra are the
coordinate functions a.k.a. the projection functions onto each of the n coordinates:
xi : X → AK

1 , xi(a) = ai.

February 24, 2021
We now enhance Lemma 2.48 to another important correspondence in algebraic

geometry: algebraic sets are uniquely determined by their coordinate rings.
In the following we consider the category of algebraic sets over a fixed field K

defined previously and the category of reduced affine K-algebras. The morphisms in
the latter category are K-algebra morphisms. In other words, this is a full subcategory
of 〈〈K-Algebras〉〉.

Theorem 2.50 (Algebraic set–coordinate ring correspondence). For an algebraically
closed field K, the following categories are equivalent

〈〈Algebraic Sets〉〉K ∼= 〈〈Reduced affine K-algebras〉〉

Proof sketch. An equivalence may be given by the contravariant functors

Φ : 〈〈Algebraic Sets〉〉 → 〈〈Reduced affine K-algebras〉〉

X 7→ K[X] and (G : X → Y ) 7→ Φ(G)
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where Φ(G) is defined as follows: For each algebraic set morphism

G : X → Y,G = (g1, . . . , gm), gi ∈ K[x1, . . . , xn],

let Φ(G) : K[Y ]→ K[X] be given by

Φ(G)(f(y1, . . . , ym)) = f(g1(x), . . . , gm(x)) = (f ◦G).

An inverse of Φ may be given by the functor

Ψ : 〈〈Affine K-algebras〉〉 → 〈〈Algebraic Sets〉〉

defined on objects as follows:

K[x1, . . . , xn]/J 7→ V (J).

Let g : A → B be a morphism of affine K-algebras. Set A = K[x1, . . . , xm]/IA
and B = K[x1, . . . , xn]/IB and let f i := g(xi) ∈ B and let fi ∈ K[x1, . . . , xn] be any
representative for the coset fi. The functor Ψ sends g to the morphism of algebraic
varieties Ψ(g) : V (IB)→ V (IA) given by

Ψ(g) : V (IB)→ V (IA), Ψ(g)(b1, . . . , bn) = (f1(b1, . . . , bn), . . . , fm(b1, . . . , bn)).

Let’s check that the image of the map above really lands in V (IA). Indeed, if f ∈ IA
then f = 0 in A and so g(f) ∈ IB. Using this,

f(Ψ(g)(b1, . . . , bn)) = f(f1(b1, . . . , bn), . . . , fm(b1, . . . , bn)) = g(f(b1, . . . , bn)) = 0,

which shows that Ψ(g)(IB) ⊆ V (IA).

The following is an immediate consequence of the theorem.

Corollary 2.51. For any field K, a pair of algebraic subsets X and Y are isomorphic if
and only if their coordinate function rings K[X] and K[Y ] are isomorphic K-algebras.

Proof. If G and H are mutually inverse morphisms of algebraic varieties X and Y then
Φ(G) and Φ(H) are mutually inverse morphisms of their coordinate rings K[X] and
K[Y ] by properties of functors.

Similarly, if f and g are mutually inverse morphisms of coordinate rings K[X]
and K[Y ] then Ψ(f) and Ψ(g) are mutually inverse morphisms of algebraic varieties
X, Y .

Let’s illustrate the use of this corollary with some examples:
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Example 2.52 (Compare with Example 2.40). Assume K is an algebraically closed
field. The cuspidal cubic X = Z(y2 − x3) is not isomorphic to A1

K , even though there
is a bijective algebraic morphism G : A1

K → X given by a 7→ (a3, a3).
Let’s consider Φ(G) : K[X] = K[x, y]/(y2 − x3) → K[A1

K ] = K[t], that is the
K-algebra homomorphism given by x 7→ t2, y 7→ t3. The image of this map is K[t2, t3]
and in fact

K[X] = K[x, y]/(y2 − x3) ∼= K[t2, t3] ( K[t].

Since Φ(G) is not surjective we see that G cannot be an isomorphism of algebraic sets.
To see that there is no isomorphism of algebraic sets between X and A1

K note that
if there were such an isomorphism, then we would have an isomorphism of K-algebras
K[t] ∼= K[x, y]/(y2 − x3). But this is impossible since K[x, y]/(y2 − x3) isn’t a PID:
the ideal (x, y) isn’t principal.

Let’s prove k[x, y]/(y2 − x3) isn’t a PID: If it were, then the image J of I in the
quotient ring R/(x2, xy, y2) = k[x, y]/(x2, xy, y2) of R would also be principal. That is
we would have (x, y) = (g) in k[x, y]/(x2, xy, y2) for some g = ax + by+ higher order
terms. As a k-vector space (x, y) is two dimensional and any such g would generate an
ideal that is merely (at most) one-dimenisonal, and hence this is not possible.

Example 2.53 (Compare with Example 2.39). The parabola V (y− x2) is isomorphic
to A1

K , for any algebraically closed field K. This is true since

K[x, y]/(y − x2) ∼= K[x]

as K-algebras.
A similar result holds for the graph of any polynomial f(x).

Example 2.54. One must be a little careful for non-algebraically closed fields. Note
that for K = R, the algebraic subsets V (x2 + y2 + 1) and ∅ are isomorphic, but the
K-algebras K[x, y]/(x2 + y2 + 1) and K[x, y]/(1) = 0 are not. This doesn’t contradict
the Theorem since (x2 + y2 + 1) is not equal to I(X) for any X.

2.3 The prime spectrum and the Zariski topology

We have thus far associated to each algebraic X set a ring, K[X], its coordinate ring,
which you should think of as the ring of functions X → K = A1

K . We now go the
opposite way: given K[X] how do we recover the underlying set X? We can recover
the points of X as the set of maximal ideals of K[X] since the maximal ideals of K[X]
are in correspondence with the points of X. We have technically only proven this for
X = An in Theorem 2.3 but this implies the general case.

More generally, for an arbitrary ring R, not necessarily an affine algebra, if we
think of R as functions on a mystery space Z what should Z look like? A first attempt
at an answer would be the set of maximal ideals of R. However this answer is not
satisfying as it is not functorial: given a ring map R→ S, the maximal ideals of S do
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not necessarily correspond to maximal ideals of R. To fix this we must enlarge the set
of ideals we consider to all prime ideals. So the correct answer is Z = Spec(R) and we
can make this into a topological space.

Definition 2.55. • The prime spectrum or spectrum of a ring R is the set

Spec(R) = {p | p a prime ideal of R}.

• The maximal spectrum of a ring R is the set

mSpec(R) = {m | m a maximal ideal of R}.

Definition 2.56. A topological space is a set X together with a collection of subsets
of X called the closed sets. They must satisfy:

1. The empty set and X itself are closed.

2. A finite union of closed sets is closed.

3. An arbitrary intersection of closed sets is closed.

Definition 2.57. Let R be a ring. The Zariski topology on Spec(R) is defined by
taking the Zariski closed sets to be the sets V(I) for all (proper and improper) ideals
I ⊆ R, where

V(I) := {p ∈ Spec(R) | p ⊇ I}
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Proposition 2.58 (Properties of Zariski closed sets). For any ideals I, J, I1, . . . , In of
a ring R we have

1. V(R) = ∅

2. V((0)) = Spec(R)

3. V(I ∩J) = V(I)∪V (J) and more generally V(I1∩ · · · ∩ In) = V(I1)∪ · · · ∪V (In)

4. V(I + J) = V(I) ∩ V (J) and more generally V(
∑

I∈I I) =
⋂
I∈I V(I) where I is

an arbitrary set of ideals of R.

Proof. Exercise.

Theorem 2.59. For any ring R, the Zariski topology on Spec(R) satisfies the axioms
of a topology given in Definition 2.56.

Proof. This follows from the above propostition.

37



Remark 2.60. Let’s consider the case where R = K[X] is an affine algebra and see
what these notions represent. I will use the word variety for irreducible algebraic set
below.

maximal ideal ma ∈ mSpec(R)  point a ∈ X
prime ideal p = P ∈ Spec(R)  generic point of the algebraic set Y = V(P ) ⊆ X
closed set V(I)  all subvarieties Y ⊆ V(I) ⊆ X
distinguished open set D(f)  all subvarieties Y ⊆ X such that Y 6⊆ V(f)

So we can think of mSpec(R) as being the points of X and of Spec(R) as an enriched
version of X where we have added a new “generic point” point for any subvariety of
X. Specifically, we call the point p ∈ Spec(R) the generic point of the algebraic subset
V (p) ⊆ X.

In summary, V(I) contains all the points of the vanishing set V (I) = X, but also
additional “generic points”.

Example 2.61. Here is a picture of Spec(K[x, y]) (from Eisenbud-Harris’s book) il-
lustrating the geometric meaning of several primes: the prime (0) is the generic point
of A2

K , the prime ideals which are not maximal are generic points of various curves in
the plane, while the maximal ideals (x− a, y − b) correspond to points (a, b) ∈ A2

K .
8 BROOKE ULLERY

Generic point of the curve

HxL : Generic Point
of the x- axis

Hx-a, y-bL

H0L :Generic Point of
the Affine Plane

HyL : Generic Point
of the y- axis

The example of the a�ne plane can be easily extended to a�ne n-space, An
K .

Just like in the plane, we have three types of points in a�ne n-space:

(1) Closed points, which are of the form (x1 � a1, x2 � a2, . . . , xn � an),
(2) Non-closed points whose closures correspond to irreducible subvarieties of

classical a�ne n-space, and
(3) (0), the generic point of An

K .

4. Affine n-space Over Non-Algebraically Closed Fields

In the previous section, we noticed that a�ne space over algebraically closed
fields behaved very nicely, due to the fact that the maximal ideals of K[x1, x2, . . . , xn]
are in one-to-one correspondence with points in Kn. However, this is not the case
when working over non-algebraically closed fields.

We first give the example of the a�ne line over R, or A1
R = Spec R[x].

Example 4.1. We can figure out what the closed points of A1
R are by looking at

the map from A1
C to A1

R induced by the inclusion map from R[x] to C[x]. The points
of the form (x�a) in A1

C, where a is real, are simply sent to the same points in A1
R.

However, with points of the form (x� b) such that b 2 C� R, we have

(x� b) 7�! (x� b)(x� b) = x2 � (b + b)x + (bb) = x2 � 2Re(b)x + |b|2.

Since (0) is contained in all prime ideals, the only Zariski open set containing the
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ideal (0) is Spec(R), so the “generic point” of X cannon be separated from any other
point of Spec(R) by an open set.

This shows that the Zariski topology is in general highly non-Hausdorff.

Example 2.62. For a field K, Spec(K) = {0} consists of just one element so we can
think of it as a single point. The functions from a singleton set to K are in bijection
with K so this supports our intuition that the spectrum should be a for which K
represents the algebraic functions.

For R = K[x]/(x2), the spectrum also consists of a single point Spec(R) = {(x)}.
However notice that R 6∼= K so this point should be different than the one discussed
previously. Indeed if we take f ∈ K[x] then the image of f in R only remembers the
value of f(0), that is the constant term, and the value of the derivative ∂f/∂x at 0
(this is the coefficient of x in f). Therefore we thing of SpecR as a fat point, that is,
a point together with a tangent direction (corresponding to dx) so that the functions
on this fat point are of the form a + bx with the coefficient a indicating the value at
the point and one b indicating the magnitude of a tangent vector.

Next we make Spec into a functor. To do this, we have to apply it to ring homo-
morphisms.

Definition 2.63 (Induced map on Spec). Given a homomorphism of rings ϕ : R→ S,
there is an induced map on spectra ϕ∗ : Spec(S)→ Spec(R) given by ϕ∗(p) = ϕ−1(p).

The key point is that the preimage of a prime ideal is also prime. We will often
write p ∩R for ϕ−1(p), even if the map is not necessarily an inclusion.

Proposition 2.64. For a ring homomorphism ϕ : R→ S ϕ∗ : Spec(S)→ Spec(R) is
order preserving and continuous with respect to the Zariski topologies.

Proof. Exercise.

Continuity of the induced map makes Spec a functor Spec : 〈〈Rings〉〉 → 〈〈Top〉〉.

Theorem 2.65 (The spec functor). Spec is a contravariant functor between the cate-
gories of rings and topological spaces

〈〈Rings〉〉 Spec−−→ 〈〈Top〉〉 .

I will not prove this in detail, but let’s see some examples.

Example 2.66. Let π : R → R/I be the (surjective) quotient map. Then the map
π∗ : Spec(R/I) → Spec(R) corresponds to the inclusion of V (I) into Spec(R), since
primes of R/I correspond to primes of R containing I.
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Example 2.67. The ring K[x, y]/(xy) gives rise to the topological space

X = Spec(K[x, y]/(xy)) = {(x), (y), (x, f(y)), (g(x), y) | g ∈ K[x], f ∈ K[y] irreducible},

which is the union of the two coordinate axes in the plane together with all their points.
The canonical surjections

π1 : K[x, y]/(xy)→ K[x, y]/(y) = K[x].

π2 : K[x, y]/(xy)→ K[x, y]/(x) = K[y]

give rise to the continuous injective maps

ι1 = Spec(π1) : Spec(K[x])→ X, (g(x)) 7→ (g(x), y).

ι2 = Spec(π2) : Spec(K[y])→ X, (f(y)) 7→ (x, f(y)).

which are the inclusions of the two coordinate axes with their respective points in X.

Notice that the functor Spec of Theorem 2.65 is not an equivalence of categories
because example 2.62 illustrates that different rings can yield the same topological space
(a point). To remedy this, one must consider instead of topological spaces algebraic
schemes, a notion which you may learn about in a course on algebraic geometry. The
functor Spec yields a contravariant equivalence between the category of commutative
rings and the category of affine schemes.
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Chapter 3

Primary decomposition

March 1st, 2021
One reason to like noetherian rings is the existence of finite irreducible factoriza-

tions.
Recall that an element a of a domain is irreducible if whenever a = uv, u or v must

be a unit. In Math 818 we proved that in a noetherian ring (e.g. a PID) every element
factors as a finite product of irreducible elements. But irreducible factorizations are
not unique, famously because of examples like Z[

√
−5] where

2 · 3 = (1 +
√
−5)(1−

√
−5).

We shall look for an analogue of factorization at the level of ideals: say we are
working in Z and we have a prime factorization a = pe11 p

e2
2 . . . penn , with p1, . . . , pn

distinct (prime hence) irreducible elements. Since (peii ), (p
ej
j ) are comaximal for i 6= j,

we can write
(a) = (pe11 )(pe22 ) . . . (penn ) = (pe11 ) ∩ (pe22 ) ∩ · · · ∩ (penn )

The second equality holds by the Chinese Remainder Theorem. It turns out that
the idea of decomposing ideals by intersections is one that generalizes. We will look
for decompositions for ideals in the form of finite intersections of irreducible ideals.

Definition 3.1. Say an ideal I of a ring R is irreducible if whenever I = I1 ∩ I2 with
I1, I2 ideals of I, then I = I1 or I = I2.

An expression I = I1 ∩ · · · ∩ In is called an irreducible decomposition for an ideal I
if I1, . . . , In are irreducible ideals.

Example 3.2. Every prime ideal is irreducible. Indeed if I = I1∩I2 and a ∈ IrI1, b ∈
I r I2 then ab ∈ I, contradicting the primality of I.

Similarly to irreducible factorizations, every ideal in a noetherian ring has a finite
irreducible decomposition.

Theorem 3.3. Ler R be a noetherian ring and I and ideal of R. Then there exists a
positive integer n and irreducible ideals I1, . . . , In such that

I = I1 ∩ · · · ∩ In.
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Proof. If I is irreducible, set n = 1 and I1 = I.
Otherwise I = J1 ∩ J2 for some ideals J1, J2. If J1, J2 are irreducible then we have

found an irreducible decomposition. Otherwise continue with decomposing J1, J2 as
further intersections of ideals. The process of successive decomposition must stop after
a finite number of steps otherwise we would have an infinite ascending chain

I =( Ji ( · · ·

contradicting the noetherian property of R.

To summarize, our aim is to decompose ideals in a ring R. Further, decomposition
should mean that we present them as an intersection of other ideals. However, we still
need to answer the following questions:

Question 3.4. 1. What kind of ideals should be allowed in the intersection?

2. What restrictions should be put on the ring R?

3. Can we expect the decomposition to be unique?

3.1 Primary ideals and primary decompositions

We now look at what makes an ideal irreducible. 1 We’ll start with an a priori unrelated
notion, which generalizes the class of ideals (pn), where p is a prime element in a UFD.

Definition 3.5. Let R be a ring. An ideal Q ⊆ R is called primary if for all a, b ∈ R
with ab ∈ Q we have a ∈ Q or bn ∈ Q for some n ∈ N.

Lemma 3.6. The radical of a primary ideal is prime.

Proof. If p =
√
Q with Q primary and

√
Q = p then ab ∈ p implies anbn ∈ Q for some

n ∈ N and so some powers of a or b are in Q by the definition of primary. Thus a or b
are in p.

Definition 3.7. One says that Q is p-primary to indicate that Q is primary and√
Q = p.

Example 3.8. • Prime ideals are primary.

• In a PID, the primary ideals are the powers of prime ideals i.e. (0) and (p)n = (pn)
where p is a prime element. (exercise).

• In general, primary ideals need not be powers of prime ideals: Let Q = (x2, y)
and p = (x, y) in R = k[x, y]. Then Q is P -primary. However, p2 ( Q ( p.

1There is a more general theory of irreducible modules, irreducible decomposition for modules,
primary modules and primary decomposition for modules, which we skip for the sake of time and
because it arises less often in practice.
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• Powers of prime ideals need not be primary: Let R = k[x,y,z]
(xy−z2)

and p = (x, z).

Then p is prime but the power p2 = (x2, xz, z2) is not primary as xy = z2 ∈ p2,
but neither is x in p2 nor any power of y.

• However any power mn, n ∈ N of a maximal ideal m is m-primary (exercise).

March 3, 2021
Here are some an alternate interpretations for primary ideals.

Lemma 3.9. Let R be a ring and Q an ideal of R. The following are equivalent:

1. Q is primary

2. every element of R/Q is either a non-zerodivisor or it is nilpotent

Proof. (1)⇒ (2) Suppose a ∈ R/Q is a zerodivisor. Then ab ∈ Q for some b ∈ R such
that b 6∈ Q (that is, b 6= 0 in R/Q). Because I is assumed primary we obtain that
an ∈ I for some n ∈ N, so an = 0 in R/Q, making a nilpotent.

(2)⇒ (1) Suppose ab ∈ I. Then ab = 0 in R/Q and so either b is a non-zerodivisor
and thus a ∈ Q or b is nilpotent and then bn ∈ Q for some n ∈ N.

The following result clarifies the relationship between irreducible and primary ideals.

Proposition 3.10. If R is a noetherian ring and I is an irreducible ideal then I is
primary.

Proof. We show that irreducibility implies property (2) of the previous proposition.
Since I is irreducible in R, 0 is an irreducible ideal of R̄ = R/I. Let a ∈ R and

consider the map ϕ : R̄→ R̄ given by ϕ(m̄) = am̄.

Ker(ϕ) ⊂ Ker(ϕ2) ⊂ · · ·

forms an ascending chain of ideals of R̄. Since R is noetherian, R̄ is noetherian. Thus
the above chain of submodules stabilizes; that is, there is an integer n such that

Ker(ϕn) = Ker(ϕn+1) = Ker(ϕn+2) = · · · .

Set g = ϕn. Then Ker(g) = Ker(g2) from which it follows that

Im(g) ∩Ker(g) = (0).

Since (0) is irreducible, either Im(g) = (0) or Ker(g) = (0). If Im(g) = (0), then a is
nilpotent. If Ker(g) = (0), then Ker(ϕ) = (0) and a is a non-zerodivisor.

Remark 3.11. The converse is true in PIDs: every primary ideal of a principal ideal
domain is an irreducible ideal. (exercise)
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Definition 3.12. For a ring R and ideal I, a primary decomposition of I is an expres-
sion of the form

I = Q1 ∩ · · · ∩Qm

with each Qi a primary ideal.
Such a decomposition is irredundant if for each i, Qi does not contain

⋂
j 6=iQj.

Such a decomposition is minimal if I is not the intersection of j primary ideals for
any j < m. Note that a minimal primary decomposition is automatically irredundant
(but not conversely).

Example 3.13. The following are two primary decompositions for an ideal of K[x, y]:

(x2, y) ∩ (x, y2) = (x2, xy, y2)

The decomposition on the left is irredundant, but not minimal. The decomposition on
the right is irredundant and minimal.

We come to the existence of primary decompositions in noetherian rings.

Theorem 3.14 (Lasker-Noether primary decomposition theorem). Every ideal in a
noetherian ring has a primary decomposition.

Proof. Follows from Proposition 3.3 because irreducible decompositions are a special
case of primary decompositions by Proposition 3.10.

March 5, 2021
First let’s examine some examples of primary decompositions:

Example 3.15.
(x2, xy) = (x) ∩ (x2, xy, y2) = (x) ∩ (x2, y)

are two distinct minimal primary decompositions for the ideal (x2, xy) ⊆ K[x, y]. Set
Q1 = (x), Q2 = (x2, xy, y2) and Q′2 = (x2, y) and notice that

√
Q1 = p1 = (x) and√

Q2 =
√
Q′2 = p2 = (x, y).

Notice some similarities and some differences between the two decompositions

• the radicals of the primary components are the same in both decompositions

• the primary components corresponding the the minimal prime p1 are the same
in both decompositions (see below for the definition of minimal prime)

• the primary components corresponding the the embedded prime p2 are not the
same in both decompositions (see below for the definition of embedded prime)

Definition 3.16. A prime ideal p is a minimal prime of I (or of R/I) if it is a minimal
element of V(I) with respect to containment. The set of minimal primes of I is denoted
Min(I).
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Remark 3.17. One can prove, using Zorn’s lemma, that for each ideal I, Min(I) 6= ∅.
A similar argument shows that every element of V(I) contains an element of Min(I).

Example 3.18. For I = (x2, xy) and for any p ∈ V(I), x2 ∈ p it follows that (x) ⊆ p.
Thus (x) is the unique minimal element of V(I), that is Min(I) = {(x)}.

On HW 2, you have shown that V (I1 ∩ I2) = V (I1) ∪ V (I2). Let’s use this to give
a geometric interpretation of the decomposition above:

V (x2, xy) = V (x) ∪ V (x2, xy, y2) = V (x) ∩ V (x2, y)

shows the algebraic set V (x2, xy) as the union of the y-axis (V (x)) and the point
(0, 0) = V (x2, xy, y2) = V (x2, y) = V (x, y). Since the point (0, 0) is contained in the
y-axis we call it an embedded point and we call p2 = (x, y) an embedded prime.

←s minimal prime (x)

§ I as embedded prime ⇐ y ,
} associated primes

A picture of Vai, xy )

In general we have a correspondence

minimal primes = maximal irreducible algebraic subsets of V (I)
embeded primes = non-maximal irreducible algebraic subsets of V (I)

A fact about radicals:

Lemma 3.19. For any ideals I and J of the same ring we have
√
I ∩ J =

√
I ∩
√
J .

Corollary 3.20 (Prime decomposition). Every radical ideal I in a noetherian ring is
an intersection of finitely many prime ideals in Min(I).

Proof. From the Lasker-Noether theorem, we have a primary decomposition

I = Q1 ∩ · · · ∩Qn.

Taking radicals yields

I =
√
I =

√
Q1 ∩ · · · ∩Qn =

√
Q1 ∩ · · · ∩

√
Qn = p1 ∩ · · · ∩ pn,

where pi =
√
Qi are prime ideals. The conclusion about minimal ideals follows by

noticing that any non-minimal prime appearing in the decomposition above can be

45



replaced by a minimal prime that it contains without making the intersection any
smaller. To be precise, for each i pick p′i ∈ Min(I) such that p′i ⊆ pi. Then

I ⊆ p′1 ∩ · · · ∩ p′n ⊆ p1 ∩ · · · ∩ pn = I

yields
I = p′1 ∩ · · · ∩ p′n.

Remark 3.21. The corollary above implies that for a radical ideal in a noetherian ring
I = ∩p∈Min(I)p. On HW 3 you are asked for a different proof of this statement which
does not use the noetherian hypothesis.

Example 3.22. The radical ideal (xy) decomposes as (xy) = (x)∩(y). Notice that this
corresponds to the irreducible decomposition of the algebraic set V (xy) = V (x)∪V (y).

This leads to

A Geometric interpretation for prime decomposition.

Let’s apply the prime decomposition theorem to radical ideals in a polynomial ring
R = K[x1, . . . , xn]. Corollary 3.20 says that

Every radical ideal I ⊆ K[x1, . . . , xn] is the intersection of finitely many
prime ideals pi ∈ Min(I)

I = p1 ∩ · · · ∩ pm.

Let’s translate this into geometric language using the inclusion reversing correspon-
dence between ideals and algebraic sets. The translation gives a fact proven on HW2:

Every algebraic subsets X is a finite union of irreducible algebraic subsets
Xi:

X = X1 ∪ · · · ∪Xm

Moreover the following is true:

Given a decomposition as above that is iredundant (for all i 6= j,Xi 6⊆ Xj)
then the irreducible subvarieties X1, . . . , Xm are unique up to ordering.

This would translate algebraically into

Given a prime decomposition I = p1∩ · · · ∩ pm so that for all i 6= j we have
pi 6⊆ pj (i.e. the primes appearing in the decomposition are minimal) then
the prime ideals p1, . . . , pm are unique up to ordering.

Before we consider how this uniqueness aspect of the prime decompositions gener-
alizes, we embark into a study of the prime ideals arising as radicals of the primary
components in a primary decomposition.
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3.2 Associated primes

We next identify the radicals of primary ideals in a primary decomposition. Towards
this end, we first define a notion of “associated primes” which are determined by an
ideal I and later we show that the radicals of the primary components in an irredundant
primary decomposition of I are these associated primes, hence they depend only on I
and not on the decomposition.

Definition 3.23. Let R be a ring, and M a module. We say that p ∈ Spec(R) is an
associated prime of M if p = AnnR(m) = {r ∈ R | rm = 0} for some m ∈ M . We
write AssR(M) for the set of associated primes of M :

AssR(M) = {AnnR(m) | m ∈M} ∩ Spec(R).

If I is an ideal, by the associated primes of I we (almost always) mean the associated
primes of R/I; but we’ll try to write AssR(R/I). Since the annihilator of an element

r ∈ R/I is AnnR(r) = {b ∈ R | br ∈ I} def= I : r we have

AssR(R/I) = {I : r | r ∈ R} ∩ Spec(R).

Lemma 3.24. Let R be a ring, and M a module. The following are equivalent

1. p is associated to M

2. there is an injective R-module homomorphism R/p ↪→M .

Proof. For (1)⇒ (2)
p is associated to M ⇐⇒ p = AnnR(m) for some m ∈M

⇐⇒ p is the kernel of the homomorphism µm : R→M, r 7→ rm
⇐⇒ µm : R/p ↪→M is injective.

For (2)⇒ (1) notice that any homomorphism f : R/p ↪→M is of the form f = µm
for m = f(1) and apply the argument above in reverse.

Example 3.25. If p is a prime ideal then p ∈ AssR(R/p) by using the identity map
R/p ↪→ R/p.

Perhaps the most important fact is that associated primes always exist:

Theorem 3.26. Let R be a ring and M an R-module.

1. Every maximal (w.r.t. containment) member of the collection of ideals

S = {I | I = AnnR(m) for some 0 6= m ∈M}.

is a prime ideal.

If R is noetherian and M 6= 0 then
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2. AssR(M) 6= ∅

3. The set of zero-divisors of M is the union of the associated primes of M .

D(M) := {r ∈ R | rm = 0 for some 0 6= m ∈M} =
⋃

p∈AssR(M)

p.

This subset is not usually an ideal.

Proof. For (1), let p be a maximal member of S. Say p = AnnR(m), for some m 6= 0.
Note that p 6= R since 1 /∈ AnnR(m). Say rs ∈ p and s /∈ p. Then rsm = 0 and
sm 6= 0, and thus p ⊆ p + (r) ⊆ AnnR(sm) ∈ S. By the maximality of p, we have
p = (r, p) = AnnR(sm). It follows that r ∈ p.

For (2), since M 6= 0, S 6= ∅ and, since we assume R is noetherian, S has a least
one maximal member, which belongs to AssR(M) by (1).

For (3), if rm = 0 for some 0 6= m ∈ M , then AnnR(m) ∈ S and hence it must be
contained in a maximal member of S, which belongs to AssR(M) by (1). So ⊇ holds.
The other containment is clear from the definitions. (If r ∈ p for p ∈ AssR(M), then
p = AnnR(m) for some m 6= 0, and so rm = 0.)

The converse of part 1 of the above theorem is not true.

Example 3.27. Consider R = K[x, y], I = (x2y, xy2) and M = R/I. Then the
following three ideals are all prime ideals and members of S

(x) = Ann(y2)

(y) = Ann(x2)

(x, y) = Ann(xy).

However, (x) and (y) are not maximal in S w.r.t containment, as they are properly
contained in (x, y).

Using the theorem we can give a third equivalent definition for primary ideals

Corollary 3.28. Q is a p-primary ideal of a noetherian ring R iff AssR(R/Q) = {p}.

Proof. Let p =
√
Q and q ∈ AssR(R/Q). Then q = AnnR(m) for some m ∈ R/Q

implies Q ⊆ q and taking radicals gives p ⊆ q.
We have
Q is p-primary ⇐⇒ D(R/Q) =

√
Q = p ( Lemma 3.9)

⇐⇒ p =
⋃

q∈AssR(R/Q) q (Theorem 3.26 part 3.)

⇐⇒ AssR(R/Q) = {p}.
The converse statement follows by reversing the arrows above.
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March 10, 2021
This achieves the goal of showing that the associated primes are exactly the radicals

of primary components in the case where the primary decomposition has exactly one
component. To extend this to several components we shall study intersections of ideals
using short exact sequences. We shall also “zoom in” on one primary component at
a time using localization. Thus we need to see how associated primes behave in short
exact sequences and under localization

Proposition 3.29 (Associated primes in short exact sequences). If R is a ring and
0→M ′ →M →M ′′ → 0 is a short exact sequence of R-modules, then

AssR(M ′) ⊆ AssR(M) ⊆ AssR(M ′) ∪ AssR(M ′′)

If the sequences is split exact, then AssR(M) = AssR(M ′) ∪ AssR(M ′′). In particular,

AssR(M ′ ⊕M ′′) = AssR(M ′) ∪ AssR(M ′′).

Proof. For notational simplicity, assume M ′ ⊆ M and M ′′ = M/M ′. For the first
containment, recall p ∈ AssR(M ′) iff there is an R-module injection R/p ↪→ M ′. In
this case, since M ′ ⊆M , p ∈ AssR(M) too.

To prove the second one, say p ∈ AssR(M) so that there is an R-module injection j :

R/p ↪→M . If the composition R/p
j−→M �M ′′ is also injective, then p ∈ AssR(M ′′).

Otherwise, there is a 0 6= r ∈ R/p such that j(r) ∈M ′. Consider the composition

R/p
r−→ R/p

j
↪→M.

Since R/p is a domain, the first map is also injective, and hence so is the composition,
and its image is contained in R · j(r) ⊆M ′. This proves p ∈ AssR(M ′).

The final assertion holds since if the sequence is split, then we also have a s.e.s.
0→M ′′ →M →M ′ → 0 so that AssR(M ′′) ⊆ AssR(M) too.

Corollary 3.30. If Q1, Q2 are p-primary ideals of a noetherian ring R, then Q1 ∩Q2

is also p-primary.

Proof. We have the short exact sequence

0→ R/Q1 ∩Q2 → R/Q1 ⊕R/Q2 → R/(Q1 +Q2)→ 0.

Therefore

AssR(R/Q1 ∩Q2) ⊆ AssR(R/Q1 ⊕R/Q2) = AssR(R/Q1) ∪ AssR(R/Q2) = {p}
shows that Q1 ∩Q2 is p-primary by the previous Corollary.

The previous corollary says that one can consolidate the primary components with
the same radical in an irredundant decomposition into one primary ideal.

Remark 3.31. A consequence of the above corollary is that if I = Q1 ∩ · · · ∩ Qn, is a
minimal primary decomposition, then

√
Qi 6=

√
Qj for i 6= j. We will see later that

this condition is equivalent to having a minimal primary decomposition.
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3.3 Interlude on localization

Recall that if R is a commutative ring and S is a multiplicatively closed subset of R,
then one constructs a new ring called the localization of R at S as follows

S−1R =
{r
s
| r ∈ R, s ∈ S

}
/ ∼,

where ∼ is the equivalence relation r
s
∼ r′

s′
⇐⇒ ∃s′′ ∈ S such that s′′(rs′ − r′s) = 0.

Moreover, localization at S is a functor

S−1(−) : 〈〈R-modules〉〉 →
〈〈
S−1R-modules

〉〉
defined on objects by

M 7→ S−1M =
{m
s
| m ∈M, s ∈ S

}
/ ∼

and on morphisms by

(f : M → N) 7→
(
S−1f : S−1M → S−1N, m/s 7→ f(m)/s

)
.

Example 3.32 (Most important localizations). Let R be a ring.

1. For f ∈ R and S = {1, f, f 2, f 3, . . .}, we usually write Rf or R[ 1
f
] for S−1R.

2. For p ⊂ R prime, we generally write Rp for (R \ p)−1R.

3. When W is the set of nonzerodivisors on R, we call W−1R the total ring of
fractions of R. When R is a domain, this is just the fraction field of R.

Remark 3.33. In Math 901 we proved:

• The extension of scalars functor S−1R ⊗R − along the canonical map φ : R →
S−1R, φ(r) = r

1
is isomorphic to the localization functor S−1(−) by means of the

family of isomorphisms of S−1R-modules

ηM : S−1R⊗RM
∼=−→ S−1M,

r

s
⊗m 7→ rm

s
.

• Localization is an exact functor and S−1R is a flat R-module.

We will be interested on the correspondence between ideals of R and S−1R under
the localization map φ : R → S−1R, r 7→ r

1
. Note that φ is injective if and only if S

contains no zero divisors.
First, a more general setup:
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Definition 3.34. If φ : A→ B is a ring homomorphism, then for any ideal I of B,

φ−1(I) = {a ∈ A | φ(a) ∈ I}.

is an ideal of A. This is called the contraction of I along φ. If φ : R → S−1R maps
r 7→ r

1
from some multiplicatively closed set S, then for an ideal I of S−1R we write

I ∩R for the contraction φ−1(I).

Definition 3.35. If φ : A→ B is a ring homomorphism, then for an ideal J of A, we
write

JB =

{
n∑
i=1

φ(ai)bi | ai ∈ J, bi ∈ B
}
.

Then JB is an ideal of B (it’s the smallest ideal of B containing the image of J under
φ in fact.) The ideal JB is called the extension of J along φ.

Remark 3.36. If R is a ring, J and ideal of R, and S a multiplicatively closed set then

JS−1R =

{
n∑
i=1

ji
si
| ji ∈ J, si ∈ S

}
=

{
j

s
| j ∈ J, s ∈ S

}
= S−1J.

March 12, 2020

Proposition 3.37. Let R be a commutative ring and S ⊆ R a mcs. Let φ : R→ S−1R
denote the canonical ring map (sending r to r

1
).

1. For any ideal I of S−1R, we have (I ∩R)S−1R = I (i.e, extension ◦ contraction
along φ is the identity mapping on the set of ideals of S−1R).

2. The contraction function

φ∗ : {ideals of S−1R} → {ideals of R}, I 7→ φ−1(I) = I ∩R

is injective and it preserves inclusions and intersections of ideals.

3. An ideal J belongs to the image of φ∗ if and only if the following property holds:
whenever s ∈ S and r ∈ R are such that sr ∈ J , then r ∈ J .

4. In particular, φ∗ induces an isomorphism of posets

Spec(S−1R)
bijection←→ {q ∈ Spec(R) | q ∩ S = ∅}.

Proof. For (1), suppose a ∈ I ∩ R, r ∈ R, s ∈ S. Then a
1
r
s
∈ I and so ⊆ holds. If

r
s
∈ I, then r

1
∈ I and hence r ∈ I ∩ R. Thus r

s
= r

1
· 1
s
∈ (I ∩ R)S−1R, so that ⊇ also

holds.
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The first part of (2) is an immediate consequence of (1), since (1) shows that
extension is the left inverse of contraction. The remaining claims of (2) are clear from
the definitions.

For (3), if J = I ∩R, then JS−1R = I by (1). If rs ∈ J , then rs
1
∈ JS−1R = I and

hence rs
1
· 1
s

= r
1
∈ I so that r ∈ J .

Conversely, if J satisfies the given property we set I = JS−1R and we show I∩R =
J . The containment JS−1R ∩R ⊇ J is clear. If a ∈ I ∩R, then a

1
= b

s
for some b ∈ J

and s ∈ S. Thus s′(as − b) = 0 for some s ∈ S and hence (s′s)a = s′b =∈ J . By
assumption a ∈ J and so a ∈ J .

For (4), if p ∈ Spec(R), then the condition that sr ∈ p implies r ∈ p is equivalent
to S ∩ p = ∅. So (4) follows from (3).

Corollary 3.38. For any commutative ring R and p ∈ Spec(R), there is an isomor-
phism of posets

Spec(Rp)
bijection←→ {q ∈ SpecR | q ⊆ p} = Spec(R) \ V(p).

In particular, Rp is a local ring; i.e., it has a unique maximal ideal

pRp = {a
s
| a ∈ p, s /∈ p}.

Example 3.39. For any prime integer p, the ring Z(p) has just two prime ideals: the
0 ideal and the ideal {np

m
| p - m}, which is generated by p

1
.

Example 3.40. Spec(R[1/f ]) is in bijective correspondence with the collection of
prime ideals of R that do not contain f . This is what’s called a principal open set of
the Zariski topology on Spec(R).

Remark 3.41. Proposition 3.37 does not state that contraction and extension are inverse
to each other when applied to all ideals of R. In particular extension followed by
contraction may not be identity as shown by the following example.

Example 3.42. Consider R = Z and its localization at S = Z\{0}, namely S−1R = Q.
Now an ideal (n) of Z extends to

(n)Q =

{
(0) if n = 0

Q if n 6= 0
hence (n)Q ∩ Z =

{
(0) if n = 0

Z if n 6= 0.

We see that (n)Q ∩ Z 6= (n) if n 6= (0).

March 15, 2021
However extension followed by contraction is identity when applied to primary

ideals.

Lemma 3.43. An ideal Q is p-primary if and only if
√
Q = p and QRp ∩R = Q.
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Proof. For the forward direction:

r ∈ QRp ∩R ⇐⇒
r

1
=
q

s
for some q ∈ Q, s, s ∈ R \ p

⇐⇒ rs′′ ∈ Q for some s′′ ∈ R \ p⇒ r ∈ Q.

For the last implication we have use the definition of p-primary and the fact that
s′′ ∈ R \ p implies that all the powers of s′′ are also in R \ p.

Next we look at how associated primes behave under localization.

Theorem 3.44 (Associated primes localize). Let R be a noetherian ring, S a mul-
tiplicatively closed subset of R and M an R-module. Then the associated primes of
S−1M are

AssS−1R(S−1M) = {S−1q ∈ AssR(M) | q ∩ S = ∅}.

Proof. Recall from Proposition 3.37 (4) that the map p 7→ ϕ−1(p) induces a bijection

Spec(S−1R)
bijective←→ {q ∈ Spec(R) | q ∩ S = ∅}

with inverse given by q 7→ S−1q. To prove the Theorem, we just need to show each of
these functions restrict to maps between the indicated subsets.

If q ∈ AssR(M) and q ∩ S = ∅, then there is an injective R-module map

i : R/q ↪→M.

Since localization is exact, this gives an injection

S−1R/S−1q ∼= S−1(R/q) ↪→ S−1M

of S−1R-modules, and so S−1q ∈ AssS−1R(S−1M).
If p ∈ AssS−1R(S−1M), then there is an injective S−1R-module map

j : S−1R/p ↪→ S−1M

Set q = φ−1(p) ∈ Spec(R) so that p = S−1q.
Since R is noetherian, R/q is finitely presented as an R-module and thus we have

S−1 HomR(R/q,M) ∼= HomS−1R(S−1R/p, S−1M).

(We have also used the canonical isomorphism S−1(R/q) ∼= S−1R/S−1q here.)
In particular, this gives us that the map j has the form g

s
for some R-module map

g : R/q → M and s ∈ S. I claim g is an injection: If g(r) = 0, then since g
s

is
injective we must have r

1
= 0 in S−1(R/q). But then r = 0 since every element of S is

a non-zero-divisor on R/q. This proves q ∈ AssR(M).
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Corollary 3.45. Taking S = R \ p gives a bijective correspondence

AssRp(Mp) = {qRp | q ∈ AssR(M), q ⊆ p}.

Corollary 3.46 (Primary decompositions localize). Suppose R is a noetherian ring, I
is an ideal, I = Q1∩· · ·∩Qm is a primary decomposition of I, and S is a multiplicatively
closed subset of R. Set pi =

√
Qi and assume further that the list Q1, . . . , Qm is ordered

so that p1, . . . , pt are all the primes such that pi∩S = ∅ if and only if 1 ≤ t ≤ m. Then

S−1I = S−1Q1 ∩ · · · ∩ S−1Qt

is a primary decomposition of the ideal S−1I in S−1R.

Proof. For ideals J1 and J2 in R we have

S−1(J1 ∩ J2) = S−1J1 ∩ S−1J2.

For each i > t, pi ∩ S 6= ∅ and since
√
Qi = pi, it follows that S ∩ Qi 6= ∅ and hence

S−1Qi = S−1R. From these facts, we get that

S−1I = S−1Q1 ∩ · · · ∩ S−1Qt (3.1)

For 1 ≤ i ≤ t, by Theorem 3.44 (associated primes localize) we have

AssS−1R(S−1R/S−1Qi) = {S−1pi}

and thus S−1Qi is a S−1pi-primary ideal in the ring S−1R. Thus (3.1) is indeed a
primary decomposition.

Remark 3.47. The proof of the previous statement establishes the following claim about
localizations of primary ideals: for a p-primary ideal Q

S−1Q =

{
S−1R if p ∩ S 6= ∅
S−1p− primary if p ∩ S = ∅.

Example 3.48. For the ideal I = (x2y, xy2) of R = K[x, y] with primary decomposi-
tion

(x2y, xy2) = (x) ∩ (y) ∩ (x2, y2)

we have the following localized primary decompositions

I(x) = (x)R(x)

I(y) = (y)R(y)

I(x,y) = (x)R(x,y) ∩ (y)R(x,y) ∩ (x, y)R(x,y).
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3.4 Uniqueness aspects of primary decomposition

We first show that the radicals of the primary components in all irredundant decom-
positions of a fixed ideal I are the same and are uniquely determined by I. You may
want to review Definition 3.12 for the meaning of irredundant and minimal primary
decomposition.

Theorem 3.49 (First uniqueness theorem for primary decomposition). Let R be a
noetherian ring and I an ideal. Suppose

I = Q1 ∩ · · · ∩Qm

is a primary decomposition of I and set pi =
√
Qi so that Qi is pi-primary for each i.

Then:

1. AssR(R/I) ⊆ {p1, . . . , pm}.

2. If the intersection is irredundant, then AssR(R/I) = {p1, . . . , pm} (there might
be repetitions in the list p1, . . . , pm).

3. If the intersection is minimal, then AssR(R/I) = {p1, . . . , pm} and there are no
repetitions in the list p1, . . . , pm. In particular, |AssR(R/I)| is the number of
primary ideals in any minimal primary decomposition of I.

Proof. For (1) the canonical map

R/I → R/Q1 ⊕ · · · ⊕R/Qm,

given by x+ I 7→ (x+Q1, . . . , x+Qm) is injective. So

AssR(R/I) ⊆ AssR(R/Q1 ⊕ · · · ⊕R/Qm) =
⋃
i

AssR(R/Qi) = {p1, . . . , pm}.

For (2), for each i the canonical map

L :=

(⋂
j 6=i

Qj

)
/I ↪→ R/Qi, x+ I 7→ x+Qi

is injective and (since the intersection is non-redundant) L 6= 0. So we have

∅ 6= AssR(L) ⊆ AssR(R/Qi) = {pi}

and hence AssR(L) = {pi}. On the other hand, L is clearly a submodule of R/I too,
and hence AssR(R/I) ⊇ AssR(L).

For (3), note that if the intersection is minimal, it’s certainly irredundant. The
conclusion follows from (2) and Remark 3.31.
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Corollary 3.50. Given a primary decomposition I = Q1 ∩ · · · ∩Qm, the following are
equivalent

1. the decomposition is minimal

2. |AssR(R/I)| = m

3. the decomposition is irredundant and
√
Qi 6=

√
Qj for i 6= j.

Proof. (1)⇔ (2) follows from part (3) of Theorem 3.49.
(1)⇒ (3) follows from the definition of minimal primary decomposition and Remark

3.31.
For (3) ⇒ (1) we see from (2) of tof Theorem 3.49 that AssR(R/I) = {p1, . . . pm},

where pi =
√
Qi. Since the pi’s are distinct, |AssR(R/I)| = m, hence the decomposition

is minimal because (2)⇒ (1).

Recall that the minimal primes of I coincide the minimal members of the set of
primes that contain I. The minimal primary components of an I are unique:

Theorem 3.51 (Second uniqueness theorem for primary decompositions). The pri-
mary ideals in a minimal primary decomposition that correspond to minimal primes
are unique. That is, if I = Q1 ∩ · · · ∩ Qm and I = Q′1 ∩ · · · ∩ Q′m are two minimal
primary decompositions of the same ideal I, ordered so that

√
Qi =

√
Q′i = pi for all i

and p1, . . . , pt are the minimal primes of I, then Qi = Q′i for 1 ≤ i ≤ t.

Proof. Fix 1 ≤ i ≤ t. For all j 6= i, we have pj ∩ (R \ pi) 6= ∅ since pi is minimal and
hence pj 6⊆ pi. Corollary 3.46 and the remark following it thus give

IRpi = QiRpi and IRpi = Q′iRpi .

Taking contractions through the localization map φ : R→ Rpi and using Lemma 3.43
we see that Qi = QiRpi ∩R = Q′iRpi ∩R = Q′i.

Look back at Example 3.15 for an illustration of this theorem.

Remark 3.52. In the setting of Corollary 3.46, a minimal primary decomposition local-
izes to a minimal primary decomposition and an irredundant primary decomposition
localizes to an irredundant primary decomposition.

Specifically, suppose R is a noetherian ring, I is an ideal,

I = Q1 ∩ · · · ∩Qm (3.2)

is a primary decomposition of I, and S is a multiplicatively closed subset of R. Set
pi =

√
Qi and assume further that the list Q1, . . . , Qm is ordered so that p1, . . . , pt are

all the primes such that pi ∩ S = ∅ if and only if 1 ≤ t ≤ m. Then we know

S−1I = S−1Q1 ∩ · · · ∩ S−1Qt (3.3)
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is a primary decomposition of the ideal S−1I in S−1R. Moreover, if (3.2) is minimal
then (3.3) is minimal and if (3.2) is irredundant then (3.3) is irredundant.

Indeed if (3.2) is minimal then AssR(R/I) = {p1, . . . , pm} and by Theorem 3.44
AssR(S−1R/S−1I) = {S−1p1, . . . , S

−1pt} and there are no repetitions in the latter list.
Thus (3.3) is minimal.

If (3.2) is irredundant, let 1 ≤ i ≤ t and take a ∈ ⋂j 6=iQj\Qi. Then a
1
∈ ⋂j 6=i S

−1Qj

but a
1
6∈ S−1Qi since a

1
∈ S−1Qi would mean a ∈ S−1Qi ∩ R = Qi (this equality is

similar to Lemma 3.43 and uses that S ⊆ R \ pi.)
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Chapter 4

Dimension theory I

In linear algebra it is common to talk about the dimension of a vector space. This
corresponds to our geometric intuition that if V is an n-dimensional K-vector space
then V ∼= An

K is geometrically the n-dimensional space.

Question 4.1. What should the dimension of a ring be?

We want to create a notion of dimension for rings which matches our geometric in-
tuition in the sense that, for example, the coordinate ring of An

K , which is K[x1, . . . , xn]
should have dimension n.

However there are spaces which are much more complicated than An
K . Let’s take

for example a copy of A2
K union a copy of A1

K . The coordinate ring for an algebraic
set of this form is, for example, R = K[x, y, z]/(z)∩ (x, y) = K[x, y, z]/(xz, yz). What
should be the dimension of this ring? There are two competing answers: 1 or 2. Shortly
we will describe this situation by saying that R is not equidimensional. Globally, the
dimension of R should be 2 because the 2-dimensional component cannot be ignored.
However, we get a better understanding of the geometric features if we study the
dimension of R locally, at each of its points.

This leads to considering local rings of the form Rm, where m is a maximal ideal.
There are three plausible ways to define the dimension of such a local ring:

1. Dimension is the measured by length of chains of primes (irreducible varieties).

Specifically, say that {a} = X0 ( X1 ( X2 · · · ( Xd is a chain of varieties
containing a. Then our intuition says that the dimension of these varieties has
to increase as we go along the chain, i.e. dim(X0) < dim(X1) < · · · < dim(Xd).
If we want to make this chain as long as possible, then it is intuitive that the
dimension of the varieties involved should only increase by 1 at each step and so
dim(Xi) = i for 0 ≤ i ≤ d. We need to stop when we have reached the dimension
of the ambient space, and so we declare dimRm = d where d is the maximum
integer such that we can find a chain of varieties as above, or equivalently a chain
of primes pd ( · · · ( p0 = m.
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2. Dimension is measured by the number of equations it takes to define a point.

Recall that a point in An
K corresponds to a maximal ideal m = (x1− a1, . . . , xn−

an) and notice that the number of generators of m is n = dim(K[x1, . . . , xn]).

To generalize this notion of dimension to arbitrary rings, simply set dimRm to
be the cardinality of a minimal generating set of m. Already, the well definedness
of this approach poses problems, but we will prove Nakayama’s Lemma which
says that all minimal generating sets have the same cardinality, making this well
defined. If a = Z(m) is a smooth point then this definition works beautifully,
but we run into problems with singular points.

For example consider R = K[x, y]/(xy) and m = (x, y). Then R is the coordinate
ring of the union of the x and y axes so our geometric intuition says that R should
have dimension 1, but m is not principal. However there is a principal ideal (x−y)
of R with the same radical as m, so Z(x− y) = Z(m). In fact it can be observed
that (x− y) is m-primary and we revise our definition to say that the dimension
is the minimum number of generators of an m-primary ideal.

3. Dimension is the measured by the polynomial order of growth of a neighborhood
of a point.

Say R is the coordinate ring of a variety X and look at measuring the size of a ball
centered at a ∈ X. If X consists of a discrete set of points then the only “small”
ball around a is a and its size is constant. If a“small” ball centered at a looks like
an interval (1-dimensional) then its length (2r) grows linearly with the radius of
the ball, r. If a“small” ball centered at a looks like a disc (2-dimensional), then
its area πr2 grows quadratically with the radius of the sphere. If a“small” ball
centered at a looks like a sphere (3-dimensional), then its volume 4

3
πr3 grows as

a polynomial of degree 3 in the radius of the sphere.

So we will say that Rm has dimension d if size of a small neighborhood of m is
a polynomial of order d. We will model these neighborhoods as vector spaces
mr/mr+1 over the field R/m and we will measure their size as the vector space
dimension dimR/m (mr/mr+1).

We will spend a good amount of time understanding how to make these definitions
rigorous algebraically. The main theorem of dimension theory will be that these three
competing definitions for dimension actually agree!

March 19, 2020

4.1 Krull dimension

Definition 4.2. The Krull dimension (often just called dimension) of a commutative
ring R, written dim(R), is defined to be

dim(R) = sup{d | ∃ a strictly increasing chain of prime ideals p0 ( · · · ( pd}.
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We will agree that the dimension of the zero ring is −1, by convention.

Definition 4.3. A chain of primes as above is saturated if for each i, there is no
q ∈ Spec(R) with pi ( q ( pi+1. One can equivalently define dim(R) as the supremum
of the lengths of saturated chains of primes of R.

Example 4.4. 1. The dimension of a field is zero.

2. A ring is zero-dimensional if and only if every minimal prime of (0) is maximal.

3. A domain has Krull dimension 1 if and only if every nonzero prime ideal is
maximal. Applying, (2), the ring of integers Z has dimension one, since there
is one minimal prime (0) and every other prime is maximal. Likewise, any PID
that is not a field has dimension one.

4. It follows from the definition that if K is a field, then

dim(K[x1, . . . , xd]) ≥ d,

since there is a saturated chain of primes

(0) ( (x1) ( (x1, x2) ( · · · ( (x1, . . . , xd).

We will show eventually that dim(K[x1, . . . , xd]) = d. We accept this fact for
now as being true for the purpose of computing examples. One can easily deduce
the case d = 1, i.e. dim(K[x]) = 1 form (3) above, since this ring is a PID.

Remark 4.5. The definition for the dimension of K[x1, . . . , xd] can be equivalently
stated as the supremum of the lengths of strictly increasing chains of irreducible alge-
braic subsets of the form

X0 ( · · · ( Xd ⊆ An
k .

Clearly, we may assume take X0 to be a single point and Xd = An
k in finding this

supremum.

Remark 4.6. The notion of dimension is most meaningful for noetherian rings, although

• there are non-noetherian rings of finite Krull dimension. I leave it as an exercise
to find an example.

• there are noetherian rings of infinite Krull dimension. This was shown
in a famous example due to Nagata presented below.

Example 4.7 (Nagata). Let R = K[x1, x2, . . . ]. R is clearly infinite-dimensional, but
is noetherian. Let

W = Rr ((x1) ∪ (x2, x3) ∪ (x4, x5, x6) · · · )
and S = W−1R. This ring has primes of arbitrarily large height, given by the images
of those primes we cut out from W . Thus, it has infinite dimension by Proposition 4.9
part 4. The work is to show that this ring is noetherian. We omit this argument here.
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To aid in computing dimension we make the following related definition

Definition 4.8. The height of a prime ideal p of a ring R is the supremum of the
lengths of (saturated) chains of primes in R that end in p, in symbols

height(p) = sup{h | ∃ a strictly increasing chain of prime ideals p0 ( · · · ( ph = p}.

The height of an ideal I is the infimum of the heights of the primes containing I

height(I) = inf{height(p) | p ∈ V (I)} = inf{height(p) | p ∈ Min(I)}.

To get a feel for these definitions, we make a sequence of easy observations.

Proposition 4.9 (Properties of dimension and height). 1. Dimension and height are
isomorphism invariants.

2. A prime has height zero if and only if it is a minimal prime of the 0 ideal.

3. dim(R) = sup{dim(R/p) | p ∈ Spec(R)} = sup{dim(R/p) | p ∈ Min(0)}.

4. dim(R) = sup{height(p) | p ∈ Spec(R)} = sup{height(m) | m ∈ mSpec(R)}.

5. If I is an ideal, then dim(R/I) is the supremum of the lengths of (saturated)
chains of primes of R, p0 ( p1 ( · · · ( pn, with each pi ∈ V (I).

6. If I is an ideal, dim(R/I) + height(I) ≤ dim(R).

7. If S is a multiplicative set, then dim(S−1R) ≤ dim(R).

8. If p is prime, then height(p) = dim(Rp).

Proof. Exercise.

Let’s analyze our example of a copy of A2
K union a copy of A1

K algebraically.

Example 4.10. The ring R = k[x,y,z]
(xz,yz)

has dimension 2.
We will show this using the machinery developed above. First notice that in

k[x, y, z] we have the primary decomposition (xz, yz) = (x, y) ∩ (z). This leads in
R to the primary decomposition (0̄) = (x̄, ȳ) ∩ (z̄). Thus Min(0) = {(x, y), (z)}. Ac-
cording to Proposition 4.9 (3), we have

dim(R) = max

{
dim

R

(x̄, ȳ)
, dim

R

(z̄)

}
= max {dimK[z], dimK[x, y]}
= max{1, 2} = 2.

We can write down an explicit chain of primes of R of length 2:

(z̄) ( (z̄, x̄) ( (z̄, x̄, ȳ).
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Remark 4.11. The previous example illustrates the principle that the dimension of an
algebraic set is the maximum of the dimensions of its irreducible components. Indeed,
Proposition 4.9 (3) applied to an affine ring R = K[x1, . . . , xn]/I gives that

dim(R) = max{dim(R/pi) | pi ∈ Min(I)}.

March 22, 2021
I want to discuss property (6) of Proposition 4.9 in more detail. It says:

Proposition 4.9 (6) If I is an ideal, dim(R/I) + height(I) ≤ dim(R).

Proof. The case when I = P is a prime ideal:
By definition of height, we can find a chain of primes of length height(P ) that are

all contained in P . We can also find a chain of primes of length dim(R/P ) in R/P .
By the lattice isomorphism theorem, this corresponds to a chain of primes in V(P ) of
length dim(R/P ) in R/P . Putting the two chains together (largest ideal of the first
chain will coincide with the smallest ideal of the second chain), we have a chain of
primes of R of length dim(R/I) + height(I) and the conclusion follows by definition of
dim(R).

The case when I is an arbitrary ideal:
If dim(R/I) = ∞ then there are chains of primes in Spec(R) of arbitrary lengths

by the lattice isomorphism theorem and then also dim(R) =∞.
Assume now that dim(R/I) <∞. Let dim(R/I) = ` and takea chain of primes of

maximum length in Spec(R/I) corresponds by the lattice isomorphism theorem to the
chain of primes P0 ( P1 ( P2 ( · · · ( P` with Pi ∈ V(I). I claim that dim(R/P0) = `.
To establish this claim, note that the chain we wrote guarantees dim(R/P0) ≥ `. If
dim(R/P0) > ` then we could find a longer chain of primes in Spec(R/P0) which would
yield a longer chain of primes in V(I), contradicting that dim(R/I) = ` .

To finish, observe that height(I) ≤ height(P0) by definition of height. Now we can
conclude using the former case that

dim(R/I) + height(I) ≤ dim(R/P0) + height(P0) ≤ dim(R).

Here is an example which shows that the inequality dim(R/I) + height(I) ≤
dim(R) can fail to be an equality.

Example 4.12. Let R = Z(2)[x] and consider p = (2x − 1). I claim p is a prime of
height 1. To see this, recall that height(p) = dimRp and notice that since 2 ∈ R \ p we
have

dimRp = (Z(2)[x])(2x−1) = Q[x](2x−1)

so height(p) = dimRp = dimQ[x](2x−1) = height((2x− 1)Q[x]) = 1.
Moreover, R/p ∼= Q, so dim(R/p) = 0, and therefore dim(R/p) + height(p) = 1

whereas dimR ≥ 2 as attested by the chain (0) ( (2) ( (2, x). In fact, dimR = 2, but
I won’t justify this.
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Definition 4.13. A ring is catenary if for every pair of primes q ⊇ p in R, every
saturated chain of primes p = p0 ( p1 ( · · · $ pn = q has the same length.

The poset of ideals of an catenary ring is a ranked poset in the sense one would
encounter in combinatorics, where the rank function is the height of an ideal.

It is difficult to come up with examples of rings that are not catenary, but they do
exist. Nagata (1956) gave the first example of a noetherian non-catenary ring in the
paper On the chain problem on prime ideals.

4.2 Chains of primes in integral extensions

Recall that a ring map i : A ↪→ B of commutative rings is called module-finite if B is
finitely generated as an A-module.

Recall that a ring map i : A ↪→ B of commutative rings is called integral if for all
b ∈ B, b is a root of some monic polynomial equation with coefficients in i(A).

Recall that if i is module-finite, then i is integral. The converse holds if i is algebra-
finite (Theorem 1.44).

Example 4.14. Think about two typical example of integral injection that we have
encountered:

• K[t2, t3] ↪→ K[t]. This corresponds at the level of algebraic sets to A1
K � C,

where C is the cuspidal curve C = V (x3 − y2) ⊆ A2
K of Example 2.40.

• K[t2−1, t3−t] ↪→ K[t]. This corresponds at the level of algebraic sets to A1
K � N ,

where N is the nodal cubic of Example 2.41.

Notice some common properties of these morphisms of algebraic sets:
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• they are surjective,

• the preimage of each point of the codomain, called the fiber, is a finite set of
points in the domain. The fibers are not necessarily all of the same cardinality.

• the geometric objects involved all have the same dimension (intuitively, curves
have dimension 1).

We will see that the above properties are satisfied by the map on spectra induced
by an integral injection.

Before we talk about primes, let’s discuss some properties of integral extensions.

March 24, 2021

Lemma 4.15. Suppose i : A ↪→ B is an integral injection.

1. If J is an ideal of B and I = i−1(J) then A/I ↪→ B/J is an integral injection.

2. Is S is a multiplicatively closed subset of A then S−1A ↪→ S−1B is an integral
injection.

3. If B, and hence A, are domains, then A is a field ⇐⇒ B is a field.

Proof. I will only record the proof of (3).
“⇒ ” If 0 6= b ∈ B, then consider the equation of smallest positive degree it satisfies

bn + a1b
n−1 + · · ·+ an = 0, ai ∈ A.

We have an 6= 0 since otherwise the equation above would factor yielding an integral
dependence relation of smaller degree since B is a domain. Since an 6= 0, an is a unit
in A, hence also in B. Then we rewrite the equation above as

b(bn−1 + a1b
n−1 + · · ·+ an−1)(−a−1

n ) = 1

to see that b is invertible in B.
“ ⇐ ” If 0 6= a ∈ A, then it has an inverse a−1 ∈ B. We have to show a−1 ∈ A.

Now a−1 stisfies an equation of integral dependence

a−n + a1a
−n+1 + · · ·+ an = 0, ai ∈ A.

Multiply by an−1 to see a−1 = −(a1 + · · ·+ ana
n−1) ∈ A.

We now study correspondences between primes in an injective integral extensions
which will help explain the properties we have listed above.

Theorem 4.16 (Cohen-Seidenberg). Suppose i : A ↪→ B is an integral injection.
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1. (Lying Over Theorem) Given a prime ideal p of A, there is a prime ideal q of B
such that i−1(q) = p.

In other words, the induced map i∗ : Spec(B)→ Spec(A) is a surjection.

2. (Going Up Theorem) Given an inclusion p1 ⊆ p2 of primes ideals of A and a
prime ideal q1 of B such that i−1(q1) = p1, there exists a prime ideal q2 of B
such that q1 ⊆ q2 and i−1(q2) = p2. In a picture:

q1

��

⊆ ∃ q2

��
p1 ⊆ p2

3. (Incomparability) There are no inclusions among the prime ideals of B that lie
over a given prime of A: if i−1(q1) = i−1(q2) and q1 ⊆ q2, then q1 = q2.

In other words, each fiber of the map i∗ : Spec(B)→ Spec(A) is a discrete poset.

Proof. (Very technical point: We may assume A, and hence B, is not the zero ring,
since if A = 0, all the assertions are vacuously true.)

For Lying Over, we first reduce to the case when A is local and p is its unique
maximal ideal. Let S = A \ p. Since localization is exact, by Lemma 4.15 the induced
map Ap = S−1A → S−1B is also an integral injection. Now we have a commutative
diagram

A i //

α
��

B

β
��

S−1A = Ap
// S−1B

Let m be a maximal ideal of S−1B. Then m ∩ Ap is a maximal ideal of Ap by Lemma
4.15 (1) and (3) since there is an induced integral injection Ap/m∩Ap ↪→ S−1B/m and
the right hand side is a field, so the left hand side must be a field as well. But since
pAp is the unique maximal ideal of Ap we have m ∩ Ap = pAp.

Set q = β−1(m). Commutativity of the diagram above yields

i−1(q) = i−1(β−1(m)) = α−1(m ∩ Ap) = α−1(pAp) = p,

so q ∈ Spec(B) is a prime ideal lying over p.
For Going Up, note that the induced map i : A/p1 → B/q1 is also an integral

injection by Lemma 4.15. Appyling Lying Over to p2/p1 gives the existence of a prime
ideal of the form q2/q1 such that i−1(q2) = p2.

Now for Incomparability. Set S = A \ p. By Lemma 4.15 j : S−1A ↪→ S−1B
is integral and j−1(q1S

−1B) = j−1(q2S
−1B) = pS−1A = pAp. As in Lying over we

consider the induced integral injection j : Ap/pAp ↪→ S−1B/qiS
−1B = S−1(B/qi).

Since the domain of j is a field and its target is a domain, we see that by Lemma 4.15
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(3) that the codomain is a field as well, thus qiS
−1B are two maximal ideals satisfying

the containment q1S
−1B ⊆ q2S

−1B. This shows that q1S
−1B = q2S

−1B and since
qi ∩ S = ∅ and qi are prime we deduce that q1 = q2.

One far-reaching application of this theorem is that one can relate the dimensions
of the rings involved in an injective integral extension.

Corollary 4.17. If A ↪→ B is an integral injection, then dim(A) = dim(B).

Proof. Let p0 ⊂ · · · ⊂ pd be any strictly ascending chain in Spec(A). By the Lying
Over/Going Up Theorem, there is a chain q0 ⊂ · · · ⊂ qd in Spec(B) with i−1(qi) = pi
for all i. This proves dim(A) ≤ dim(B).

Now let q0 ⊂ · · · ⊂ qd be any strictly ascending chain in Spec(B). By incompa-
rability, i−1(q0) ⊂ · · · ⊂ i−1(qd) is a strictly ascending chain in Spec(A), and thus
dim(B) ≤ dim(A).

March 26, 2021

Example 4.18. Consider R = K[x, y]/(y2 − x(x − 1)(x + 1)). The inclusion map
K[x] ↪→ R is integral and so dim(R) = dim(K[x]) = 1.

We now prepare to prove a theorem that goes the opposite way from Going Up and
thus bears the name of Going Down, which corresponds to a picture of this form:

∃q1

��

⊆ q2

��
p1 ⊆ p2

Example 4.19. We show that we cannot expect Going Down to hold for arbitrary
integral extensions.

Indeed, let i : A = K[x, y]/(xy) ↪→ B = K[x] × K[y] be the ring homomorphism
that takes f(x, y) 7→ (f(x, 0), f(0, y)). Then this is integral since we can show each
of the K-algebra generators of B are integral over A: both (1, 0) and (0, 1) satisfy
t2 − (1, 1)t = 0, with (1, 1) ∈ i(A).

Now choose p1 = (x) ⊆ p2 = (x, y) and q2 = (x) × K[y]. The only prime lying
over p1 = (x) is q1 = K[x] × (0), but q1 6⊆ q2. This is because the algebraic set with
coordinate ring B consists of two components, V (q2) lies in one of them whereas V (q1)
lies in the other component of B; see the figure below.

We see from the example above that we need additional hypotheses for Going Down
to hold. In particular, we will want B (hence also A) to be a domain, so that it does
not break up into irreducible components. Even for an integral injection of integral
domains Going Down may fails, so we need to add additional conditions based on
integral closure.
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Definition 4.20. A domain is normal if it is integrally closed in its field of fractions.

Example 4.21. • All fields are normal domains.

• Any UFD is normal (same proof as in Example 1.39).

• In particular, K[x1, . . . , xn] is a normal domain if K is a field.

Theorem 4.22 (Going down). Suppose that A is a normal domain, B is a domain,
and i : A ↪→ B is an integral injection. Then, for every p1 ⊆ p2 in Spec(A) and q2 in
Spec(B) with i−1(q2) = p2, there is some q1 ∈ Spec(B) with q1 ⊆ q2 and i−1(q1) = p1.
In a picture:

∃q1

��

⊆ q2

��
p1 ⊆ p2

Proof. Omitted in the interest of time.

Corollary 4.23. If A is a normal domain, B is a domain, and A ↪→ B is an integral
injection, then height(q) = height(q ∩ A) for any q ∈ Spec(B).

Proof. Set p = q ∩ A.
We see that height(q) ≤ height(p) by taking a chain of primes in Spec(B) ending

with q, intersecting each with A and using Incomparability to see that the length of
the chain remains the same.

67



To see that that height(q) ≥ height(p) take a chain of length height(p) of ideals
in Spec(A) ending with p, and apply Going Down to get a chain just as long that
goes up to q. (Note that the the ideals in the latter chain must be distinct since their
contractions in the first chain are distinct.)

4.3 Noether normalization and the dimension of

affine domains

Recall our toy application of Corollary 4.17 for computing dimension using

K[x] ↪→ R = K[x, y]/(y2 − x(x− 1)(x+ 1)).

The integral nature of the extension above is granted by the fact that we quotiented
by a monic polynomial in y. We show that we can in fact one can rewrite any set of
polynomials in this form.

Example 4.24. (Idea behind Noether normalization) Let R = K[x1, x2]/(x1x2 − 1)
be the coordinate ring of the algebraic set X = V (x1x2 − 1) ⊂ A2

K . We can see from
the figure below on the left that R is not integral (and hence not module-finite) over
A = K[x1]; this is easily seen geometrically since this map does not satisfy the Lying
Over property for the origin.

It is easy to change the situation however by a linear coordinate transformation:
if we set e. g. x1 = y2 + y1 and x2 = y2 − y1 then we can write R also as R =
K[y1, y2]/(y2−y2−1), and now R is integral, hence module-finite, over A′ = C[y1] since
the polynomial y2−y2−1 is monic in y2. Geometrically, the coordinate transformation
has tilted the algebraic set X as in the picture above on the right so that e. g. the
Lying Over property now obviously holds. Note that this is not special to the particular
transformation that we have chosen; in fact, almost any linear coordinate change would
have worked to achieve this goal.
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10. Noether Normalization and Hilbert’s Nullstellensatz

In the last chapter we have gained much understanding for integral and finite ring extensions. We
now want to prove an elementary but powerful theorem stating that every finitely generated algebra R
over a field K (so in particular every coordinate ring of a variety by Remark 1.31) is a finite extension
ring of a polynomial ring K[z1, . . . ,zr] — and hence of a very simple K-algebra that is easy to deal
with. Let us start by giving the geometric idea behind this so-called Noether Normalization theorem,
which is in fact very simple.

Example 10.1 (Idea of Noether Normalization). Let R = C[x1,x2]/(x1x2�1) be the coordinate ring
of the variety X = V (x1x2�1)⇢ A2

C as in Example 9.4 (b). We know already that R is not integral
(and hence not finite) over C[x1]; this is easily seen geometrically in the picture below on the left
since this map does not satisfy the Lying Over property for the origin as in Example 9.19.

R

C[y1]

finite
y2

2� y2
1�1 = 0

R

C[x1]

not finite
x1x2�1 = 0

coordinate
change

x1 = y2 + y1

x2 = y2� y1

It is easy to change this however by a linear coordinate transformation: if we set e. g. x1 = y2 +y1 and
x2 = y2�y1 then we can write R also as R = C[y1,y2]/(y2

2�y2
1�1), and this is now finite over C[y1]

by Proposition 9.5 since the polynomial y2
2� y2

1� 1 is monic in y2. Geometrically, the coordinate
transformation has tilted the space X as in the picture above on the right so that e. g. the Lying Over
property now obviously holds. Note that this is not special to the particular transformation that we
have chosen; in fact, “almost any” linear coordinate change would have worked to achieve this goal.

In terms of geometry, we are therefore looking for a change of coordinates so that a suitable coordi-
nate projection to some affine space Ar

K then corresponds to a finite ring extension of a polynomial
ring over K in r variables. Note that this number r can already be thought of as the “dimension” of
X (a concept that we will introduce in Chapter 11) as finite ring extensions correspond to surjective
geometric maps with finite fibers by Example 9.19, and thus should not change the dimension (we
will prove this in Lemma 11.8).

As we have seen above already, the strategy to achieve our goal is to find a suitable change of
coordinates so that the given relations among the variables become monic. The first thing we have
to do is therefore to prove that such a change of coordinates is always possible. It turns out that a
linear change of coordinates works in general only for infinite fields, whereas for arbitrary fields one
has to allow more general coordinate transformations.

18

Lemma 10.2. Let f 2 K[x1, . . . ,xn] be a non-zero polynomial over an infinite field K. Assume that
f is homogeneous, i. e. every monomial of f has the same degree (in the sense of Exercise 0.16).

Then there are a1, . . . ,an�1 2 K such that f (a1, . . . ,an�1,1) 6= 0.

Proof. We will prove the lemma by induction on n. The case n = 1 is trivial, since a homogeneous
polynomial in one variable is just a constant multiple of a monomial.

We could have also worked with the coordinate transformation x1 = y1 +y2
1, x2 = y2

to get that R ∼= K[y1, y2]/(y3
2 + y1y2 − 1) is integral over A = K[y1]. This type of

transformation is explained below.
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Lemma 4.25 (Making a pure-power leading term). Let K be a field, and f ∈ R =
K[x1, . . . , xn] be a polynomial of degree less than N . The A-algebra automorphism of
R given by φ(xi) = xi + xN

n−i

n for i < n and φ(xn) = xn maps f to a polynomial that,
viewed as a polynomial in xn with coefficients in K[x1, . . . , xn−1], has leading term cxan
for some c ∈ K×, a ∈ N.

Proof. The map φ sends a monomial dxa11 · · ·xann to a polynomial with unique high-
est degree term dxa1N

n−1+a2Nn−2+···+an−1N+an
n . Since each ai is less than N in each

monomial, the map

(a1, . . . , an) 7→ a1N
n−1 + a2N

n−2 + · · ·+ an−1N + an

is injective when restricted to the set of exponent tuples; thus, none of the terms can
cancel. We find that the leading term is of the promised form.

Theorem 4.26 (Noether Normalization). Let K be a field, and R be a finitely generated
K-algebra. Then, there are x1, . . . , xd ∈ R algebraically independent over K such that
K[x1, . . . , xd] ↪→ R is module-finite.

Proof. We proceed by induction on the number of generators n of R over K, with the
case n = 0 being trivial (in that case R = K and K ↪→ R is module-finite).

Now, suppose that we know the result for K-algebras generated by at most n − 1
elements. If R = K[r1, . . . , rn], with r1, . . . , rn algebraically independent over A, we
are done by setting d = n and xi = ri.

Assume now that there is some relation on the r’s: there is some f(x1, . . . , xn) ∈
K[x1, . . . , xn] \ {0} such that f(r1, . . . , rn) = 0. By taking an A-algebra automorphism
(changing the generators of R as in Lemma 4.25), we can assume that f has leading
term cxNn (in terms of xn) for some c ∈ K×. Then, c−1f is monic in xn and c−1f is an
equation of integral dependence for r′n over K[r′1, . . . , r

′
n−1].

Thus R′ = K[r′1, . . . , r
′
n−1] ↪→ R = K[r1, . . . , rn] is integral. By the inductive

hypothesis there exist x1, . . . , xd ∈ R′ that are algebraically independent over K so
that K[x1, . . . , xd] ↪→ R′ is module-finite. Thus we have two module-finite injections

K[x1, . . . , xd] ↪→ R′ ↪→ R.

Transitivity of module-finite gives that K[x1, . . . , xd] ↪→ R is module-finite.

In view of the above theorem we define a Noether normalization as follows:

Definition 4.27. Let R be a finitely generated K-algebra for some field K. Then
a Noether normalization of R is a polynomial ring A = K[x1, . . . , xt] ⊆ R such that
x1, . . . , xt are algebraically independent over K and R is module-finite over A.

We can now relate the notion of Noether normalization to that of Krull dimension.
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Theorem 4.28. Let R be a finitely generated domain over a field K and let A =
K[z1, . . . , zd] be a Noether normalization for R. Then the length of any saturated chain
of primes from 0 to any maximal ideal m of R is d.

In particular, dim(R) = d is the number of algebraically independent elements in
any Noether normalization for R.

Moreover, dim(R) = trdegK(Frac(R)).
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Proof. The proof is by induction on d.
When d = 0, R is a domain that is integral over a field, hence R is a field by Lemma

4.15 (3). Since all fields have Krull dimension 0, the claim holds.
For d > 0, pick a saturated chain

0 ( q1 ( · · · ( qk = m

and consider the contractions to A = K[z1, . . . , zd]:

0 ( p1 = q1 ∩ A ( · · · ( pk = qk ∩ A.

By the saturated condition, height(q1) = 1, and therefore height(p1) = 1, by Corollary
4.23. Since A is a UFD, p1 = (f) for some prime element f . To see this, note that
since p1 6= 0 there is some 0 6= g ∈ p1, and primeness implies one of the irreducible
factors of g, call it f , is contained in p1. Since f is irreducible, hence prime, there is a
chain of prime ideals 0 ( (f) ⊆ p1 and since height(p1) = 1 we must have p1 = (f).

After a change of variables, we can assume that f is monic in zd over K[z1, . . . , zd−1],
so that K[z1, . . . , zd−1] ⊆ A is module-finite. Then Now, K[z1, . . . , zd−1] ⊆ A/(f) ⊆
R/q1 are module-finite, in other words K[z1, . . . , zd−1] is a Noether normalization for
the domain R/q1. Since

0 = q1/q1 ( q2/q1 ( · · · ( qk/q1 = m/q1

is a saturated chain in the affine domain R/q1 to the maximal ideal m/q1, we can
apply the induction hypothesis to say that the chain above in R/q1 has length d − 1,
so k − 1 = d− 1, and k = d.

This finishes the proof about length of saturated chains in R. The statement that
dim(R) = d follows from what was established regarding length of chains from 0 to
m ∈ mSpec(R), since any chain of primes in R of longest possible length must start
with 0 and end with a maximal ideal.

Finally, if A = K[z1, . . . , zd] is a Noether normalization for R, then notice that the
inclusion K ↪→ Frac(R) factors into a purely transcendental extension K ↪→ Frac(A) =
K(z1, . . . , zd), and an algebraic extension Frac(A) ↪→ Frac(R), whence by Remark
2.5 (3) we have

trdegK(Frac(R)) = trdegK(Frac(A)) = trdegK(K(z1, . . . , zd)) = d = dim(A) = dim(R).
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We finally come to the promised formula for the dimension of a polynomial ring.

Corollary 4.29. The dimension of the polynomial ring K[x1, . . . , xd] is d.

Proof. A = R = K[x1, . . . , xd] ↪→ R is a Noether normalization.

Here are some more nice properties for the dimension of a finitely generated K-
algebra:

Corollary 4.30. If R is a finitely generated K-algebra then dim(R) is finite.

Proof. This follows from the theorem regarding the existence of Noether normalizations
4.26 since if K[x1, . . . , xd] ↪→ R is a Noether normalization then dim(R) = d < ∞.
Moreover, proof of the Noether normalization theorem yields that dim(R) is at most
the number of K-algebra generators of R.

Corollary 4.31. If R is a finitely generated K-algebra domain then height(m) = dimR
for every maximal ideal m of R.

Remark 4.32. For arbitrary rings R the above corollary does nor hold: the ideal p in
Example 4.12 is maximal with height(p) = 1 < dim(R) = 2.
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Chapter 5

Dimension theory II

March 30, 2020

5.1 Local rings and Nakayama’s Lemma

Before getting more into dimension theory, we need to discuss local rings and an im-
portant and famous theorem applicable to them.

Definition 5.1. A local ring is a ring that has a unique maximal ideal. We write
(R,m, k) to denote that R is a local ring, m is the unique maximal ideal of R and
R/m = k is the residue field of R

An equivalent characterization for local rings is the following:

Lemma 5.2. R is local if and only if the set of non units of R forms an ideal (this
ideal must then be the unique maximal ideal).

Remark 5.3. The zero ring is not local because it has no maximal ideal.

Example 5.4. Examples of local rings include:

• All fields are local with (0) as the maximal ideal.

• The ring Z/(pn) is local with maximal ideal (p).

• The power series ring with coefficients in a field K, K[[x1, . . . , xn]], whose el-
ements are (possible infinite) sums of monomials in the variables x1, . . . , xn is
local. Indeed, a power series has an inverse if and only if its constant term is
nonzero. The complement of this set of units is the maximal ideal (x1, . . . , xn).

• Any localization Rp, of a ring R at a prime ideal p ∈ Spec(R) is a local ring with
maximal ideal pRp.
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• A local ring we will often encounter is K[x1, . . . , xd](x1,...,xd). We can consider this
as the ring of rational functions that in lowest terms have a denominator with
nonzero constant term. (We can talk about lowest terms since the polynomial
ring is a UFD.)

• Extending the following example, for any any ideal I ⊆ K[x1, . . . , xn] and any
point a ∈ Z(I) with maximal ideal ma we have a local ring of the form

(K[x1, . . . , xd]/I)ma .

If K is algebraically closed and I is a radical ideal, then K[x1, . . . , xd]/I = K[X]
is the coordinate ring of the affine variety X = Z(I), and we call

OX,a = K[X]ma = (K[x1, . . . , xd]/I)ma

the local ring of the point a ∈ X. The elements of this ring can be interpreted
as those rational functions (fractions with polynomial numerator and denomi-
nator) which are well defined as set theoretic functions {a} → K, that is the
denominator is nonzero when evaluated at a.

April 2, 2021
We now proceed to Nakayama’s Lemma (a.k.a. NAK). There are a number of

statements that go under this name, including and most importantly Theorem 5.5 and
Corollary 5.7 below.

Theorem 5.5 (Nakayama’s Lemma). Let R be a commutative ring and J an ideal that
is contained in all the maximal ideals of R. Let M be a finitely generated R-module.
Let JM denote the submodule of M generated by {jm | j ∈ J,m ∈ m}. If JM = M ,
then M = 0.

In particular, if (R,m) is local and M is a finitely generated module with M = JM
for some ideal J of R, then M = 0.

Proof. Assume JM = M .
Let M be generated by y1, . . . , yk as an R-module. It follows that JM is generated

by {ayi | a ∈ J, 1 ≤ i ≤ k} and so, since yi ∈M = JM for all i, we have

y1 = a1,1y1 + · · ·+ ak,1yk

y2 = a1,2y1 + · · ·+ ak,2yk
...

...

yk = a1,ky1 + · · ·+ ak,kyk

for some ai,j ∈ J . Let T = (ai,j)1≤i,j≤k and let v ∈ M⊕k be the column vector[
y1, . . . , yk

]T
. The equations above give Tv = v or equivalently (Ik − T )v = 0. Now,

since all the entries of T are in J , we have

det(Ik − T ) = 1 + element of J.
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For any maximal ideal m, we have J ⊆ m and hence det(Ik − T ) /∈ m. It follows that
det(Ik − T ) is a unit in R. By the determinant trick in Lemma 1.42, we have

det(Ik − T )v = adj(Ik − T)(Ik − T )v = adj(Ik − T)0 = 0

and since det(Ik − T ) is a unit it follows that v = 0. That means yi = 0 for all i and
hence M = 0.

Before stating a corollary of NAK that also goes by the name of Nakayama’s Lemma,
I wish to make a remark about how we can obtain vector spaces from modules over
local rings.

Remark 5.6. Let (R,m, k) be a local ring, and let M be an R-module. Then M/mM
is an R/m = k vector space.

Indeed tensoring the following short exact sequence by M

0→ m→ R→ k → 0

yields a right exact sequence

m⊗RM → R⊗RM → k ⊗RM → 0.

Now we know that R⊗RM ∼= M . Substituting this into the sequence above gives

m⊗RM →M → k ⊗RM → 0.

where the first map sends t⊗m 7→ tm, thus the image of this map is mM . Therefore
we obtain an exact sequence

0→ mM →M → k ⊗RM → 0

and the isomorphism k ⊗RM ∼= M/mM follows. Because k is a k-module, k ⊗RM is
a k vector space and thus so is M/mM .

Corollary 5.7. Let (R,m, k) be a local ring, and let M be a finitely generated R-
module. For m1, . . . ,ms ∈M with images m1, . . . ,ms ∈M/mM

m1, . . . ,ms generate M ⇐⇒ m1, . . . ,ms generate M/mM.

Thus, any generating set for M consists of at least dimk(M/mM) elements.

Proof. Consider the submodule N = m1R + · · ·+msR ⊆M . We have by NAK that

M/N = 0 ⇐⇒ M/N = m(M/N) ⇐⇒ M/N = (mM +N)/N ⇐⇒ M = mM +N

⇐⇒ M/mM = (mM +N)/mM

⇐⇒ M/mM is generated by the image of N, that is by m1, . . . ,ms.
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Definition 5.8. Let (R,m) be a local ring, and M a finitely generated module. A set
of elements {m1, . . . ,mt} is a minimal generating set of M if the images m1, . . . ,ms of
m1, . . . ,mt form a basis for the R/m = k vector space M/mM .

It is a consequence of the above definition that all minimal generating sets of M
have the same cardinality. We denote this by µ(M) and refer to it as the number of
minimal generators of M .

In fact there are two other equivalent definitions for a minimal generating set:

Lemma 5.9. Let (R,m) be a local ring, and M a finitely generated module with ele-
ments m1, . . . ,ms ∈M . The following are equivalent:

1. the images of m1, . . . ,mt form a basis for the R/m = k vector space M/mM .

2. the set {m1, . . . ,ms} generates M and is minimal with respect to containment
among all sets of generators for M

3. the set {m1, . . . ,ms} generates M and has minimal cardinality among all sets of
generators of M .

Proof. Homework.

April 5, 2021

5.2 Artinian rings and finite length modules

To prepare for our next big theorems in dimension theory, we need to understand the
structure of zero-dimensional noetherian rings. To spoil the punchline a bit, these will
turn out to be the same as the artinian rings defined below.

Definition 5.10. A ring is artinian if every descending chain of ideals eventually
stabilizes. A module is artinian if every descending chain of submodules eventually
stabilizes.

Example 5.11. Examples of artinian rings include:

• Any field or finite product of fields. For K a field, there is only one ideal, (0).
There are 2n − 1 ideals of K × · · · ×K︸ ︷︷ ︸

n

, given by all the possible products of i

factors equal to (0) and n− i factors equal to K, with i ≥ 1.

• R = K[x]/(xn) is an artinian local ring since there are only finitely many ideals
for this ring, namely (xi), where x is the coset of x in R and 1 ≤ i ≤ n.

• K[x, y]/(x2, y2), K[x, y]/(x2, xy, y2), and Z/(pn) are artinian local rings.
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• A finitely generated K-algebra A is artinian iff dimK(A) <∞. (proven later)

Examples of artinian modules include:

• any finite dimensional K-vector space is an artinian K-module.

The following considerations allow to construct many more artinian rings and mod-
ules. Recall the same properties are true for noetherian modules; see Lemma 1.56 and
related results.

Lemma 5.12. 1. If R is an artinian ring, then R/I is an artinian ring for any
ideal I of R.

2. If 0→ N → M → L→ 0 is an exact sequence of R-modules then M is artinian
if and only if N and L = M/N are artinian

3. If R is an artinian ring then Rn is an artinian module for all n ≥ 1.

4. if R is an artinian ring and M is a finitely generated R-module then M is an
artinian module.

Exercise 5.13. Prove the above Lemma.

Example 5.14. Looking at our example R = K[x]/(xn) from above more closely, and
in particular at its longest descending chain of ideals

(0 = xn) ⊆ (xn−1) ⊆ · · · ⊆ (x)

notice that the successive quotients are fields: (xi−1)/(xi) = xi−1R/(x) ∼= R/(x) ∼= K.

We now define a class of modules that satisfies a similar property.

Definition 5.15. A nonzero R-module is simple if it has no nonzero proper submod-
ules.

There is a useful alternate characterization:

Lemma 5.16. M is simple if and only if M ∼= R/m for some maximal ideal m.

Proof. The nontrivial implication comes from the fact that any nonzero module con-
tains a cyclic module, and if M ∼= R/I with I not maximal, we can surject to R/m for
a maximal ideal containing I, which has a proper kernel.

Definition 5.17. A module M has finite length if it has a filtration of the form

0 = M0 (M1 (M2 ( · · · (Mn = M

with Mi+1/Mi simple for each i; such a filtration is called a composition series of
length n. Two composition series are equivalent if the collections of composition factors
Mi+1/Mi are the same up to reordering.

The length of a finite length module M , denoted `(M), is the minimum of the
lengths of a composition series of M .
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Example 5.18. Any finite dimensional K-vector space V is a finite length module
of length `(V ) = dimK(V ). So from this perspective one can think of length as a
generalization of the notion of vector space dimension.

More generally, we have:

Corollary 5.19. If (R,m, k) is local, M is a finite length R-module if and only if M
is a finite dimensional k-vector space and `(M) = dimk(M).

Proof. By the Lemma 5.16 any simple module is isomorphic to the residue field k and
thus any composition series has quotients Mi+1/Mi

∼= k. By the additivity of vector
space dimension along short exact sequences we see that the length of any composition
series is equal to dimk(M).

At this point, we would like to know if we can use any composition series to compute
the length of a module. The answer is yes! This is the contents of the Jordan-Hölder
theorem, which was originally developed in group theory.

Theorem 5.20 (Jordan-Hölder theorem). For a module M of finite length

1. any filtration can be refined to a composition series,

2. any two composition series have the same length,

3. any two composition series are equivalent.

Proof. We prove assertion (2) by first showing
Claim: If N ⊆M , then `(N) ≤ `(M), with equality only if M = N .
Indeed consider a composition series for M

0 = M0 (M1 (M2 ( · · · (Mn = M

and set Ni = N ∩Mi. Then we have a filtration for N

0 = N0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn = M

and Ni−1/Ni is a submodule of the simple module Mi−1/Mi, so either Ni−1/Ni = 0 or
Ni−1/Ni = Mi−1/Mi. Removing Ni from the filtration whenever the former case occurs
gives a composition series for N , hence `(N) ≤ `(M) and equality occurs iff Mi = Ni

for all i, in particular M = N .
Applying the Claim to any composition series of M as above gives

`(M) > `(Mn−1) > · · · > `(M2) > `(M1) > `(M0) = 0,

thus `(M) ≥ n. But `(M) is defined as the smallest length of a composition series, so
we must have `(M) = n.
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Example 5.21. We have seen in Example 5.18 that every finite dimensional vector
space is a finite length module. However there are many more finite length modules.

Consider the local ring (R = K[x, y](x,y),m = (x, y)). Then M = R/m2 has length
3, since we have a composition series 0 ⊆ xM ⊆ (x, y)M ⊆ M ; note that each factor
is a copy of R/m. However, M is not an R/m-vector space since M is not annihilated
by m.

April 7, 2021

Corollary 5.22. A finite length module M is both an artinian and a noetherian module.

Proof. This is because a descenending chain of submodules

M0 ⊇M1 ⊇M2 ⊇ · · ·

gives rise to inequalities between lengths `(M0) ≥ `(M1) ≥ `(M2) ≥ · · · ≥ 0 by the
Claim in the previous theorem. Because all these lengths are bounded above by `(M)
only finitely many of these inequalities can be strict and hence by the Claim in the
previous theorem only finitely many of the containments Mi ⊇ Mi+1 can be strict. If
follows that the chain stabilizes.

A similar proofs works for descending chains.

Even though we will see in Theorem 5.26 that every artinian ring is noetherian and
finite length, it is not true that artinian modules are always noetherian or
finite length.

Exercise 5.23. Fix a prime integer p and let M = Z[1/p]/Z viewed as a Z-module.
Prove that M is an artinian module, but not a noetherian module and not a finite
length module.

Hint: Show that any submodule N of M either contains 1/pn for all n, or else there
is a largest n for which 1/pn ∈ N , N = (Z · 1/pn)/Z, and this module has finite length.

We next give a characterization of artinian rings as modules of finite length over
themselves. We will also see that artinian rings have a finite and discrete spectrum.

To get started on that, we will give a result on primary decomposition for certain
ideals in not necessarily noetherian rings.

Proposition 5.24. Let R be a ring, not necessarily noetherian. Let I be an ideal
such that V (I) is a finite set of maximal ideals m1, . . . ,mt. Then, there is a primary
decomposition I = q1 ∩ · · · ∩ qt = q1 · · · qt and R/I ∼= R/q1 × · · · ×R/qt.
Proof. First, we claim that IRmi

is miRmi
-primary. Indeed, note that V (IRmi

) =
{miRmi

} and thus by a homework problem we have
√
IRmi

= ∩p∈V (IRmi )
p = miRmi

.
Thus, if x, y ∈ Rmi

are such that xy ∈ IRmi
, then either yn ∈ IRmi

for some n ∈ N
or and y /∈

√
IRmi

= miRmi
. In the latter case, y is a unit in the local ring Rmi

, so
x = xyy−1 ∈ IRmi

. This establishes the claim.

78



For each i set qi = IRmi
∩ R. We know that the contraction of a primary ideal is

primary so qi is mi-primary, and we also know that I ⊆ qi for each i, so I ⊆ q1∩· · ·∩qt.
We want to show the equality I = q1 ∩ · · · ∩ qt holds. For this, it suffices to check the
equality locally at every maximal ideal of R, i.e. we use that for ideals I ⊆ J we have
I = J if and only if IRm = JRm for each m ∈ mSpec(R).

If m ∈ mSpec(R) \ V (I), then IRm = (q1 ∩ · · · ∩ qt)Rm = Rm, otherwise,

(q1 ∩ · · · ∩ qt)Rmi
= qiRmi

= (IRmi
∩R)Rmi

= IRmi

since qj 6⊆ mi for j 6= i. Thus, we have the desired primary decomposition.
The fact that this intersection is a product and the quotient ring is a direct product

follows from the Chinese remainder theorem as soon as we establish that qi + qj = R,
i.e. each pair of ideals is comaximal. Suppose not, then there is some maximal ideal m
such that qi+qj ⊆ m. But this implies qi ⊆ m and qj ⊆ m and by taking radicals qi ⊆ m
and mj ⊆ m. By maximality of mi,mj we now have mi = m = mj, a contradiction.

April 9, 2021
We will also need the following lemma:

Lemma 5.25. If a finitely generated ideal I is generated by nilpotent elements, then
there exists n ≥ 1 so that In = (0).

Proof. Suppose I = (f1, . . . , fs) and fni
i = 0 for some ni ∈ N. Then, using the definition

of the powers of I and the pigeonhole principle one sees that

I
∑s

i=1(ni−1)+1 = (0).

We now come to the promised statement about artinian rings.

Theorem 5.26. The following are equivalent:

1. R is noetherian of dimension zero.

2. R is a finite product of local noetherian rings of dimension zero.

3. R has finite length as an R-module.

4. R is artinian.

When these hold, Spec(R) is a finite set and the Zariski topology on this set is the
discrete topology.
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Proof. (1)⇒(2): Since R is noetherian of dimension zero, every prime is both maximal
and minimal in the poset Spec(R). Write a minimal primary decomposition for the 0
ideal as

0 = q1 ∩ · · · ∩ qt

with qi being mi-primary for some (necessarily maximal) ideals mi such that mi 6= mj

for i 6= j. As in the proof of Proposition 5.24 qi + qj = R whenever i 6= j. By the
Chinese remainder theorem we now have

R = R/(0) = R/q1 × · · · ×R/qt.
Each factor in this product is a noetherian local ring (with maximal ideal mi/qi) of
dimension zero.

(2)⇒(3): It suffices to deal with the case (R,m) is local and of dimension zero. In
this case, the maximal ideal is the unique element of V ((0)), so we have

√
(0) = m.

Since R is noetherian, m is finitely generated, so Lemma 5.25 yields mn = 0 for some
n. If m = (f1, . . . , ft), with t finite since R is noetherian, each mi/mi+1 is generated by
{fa11 · · · fatt | a1 + · · ·+ at = i} as a (R/m)-vector space, hence has finite length, so the
total length of R is finite.

(3)⇒(4): We have obsered this above in Lemma 5.22.
(4)⇒(1): First we show that R has dimension zero. If p is any prime, then A = R/p

is artinian since the ideals of R/p are in bijection with a subset of the ideals of R. Pick
a ∈ A some nonzero element. The ideals

(a) ⊇ (a2) ⊇ (a3) ⊇ · · ·
stabilize, so an = an+1b for some b. Since A is a domain, ab = 1 in A, so a is a unit.
Thus, R/p is a field, so every prime is maximal.

Second, note that there are only finitely many maximal ideals. Otherwise, consider
the chain

m1 ⊇ m1 ∩m2 ⊇ m1 ∩m2 ∩m3 ⊇ · · · .
This stabilizes, so mn+1 ⊇ m1 ∩ · · · ∩ mn ⊇ m1 · · ·mn. By distinctness, we can pick
fi ∈ mi rmn+1, but then f1 · · · fn ∈ m1 · · ·mn rmn+1, which is a contradiction. Now,
we apply Proposition 5.24 to conclude that R is a finite direct product of local rings of
dimension zero. Since each of the factors is a quotient ring, each is artinian. It suffices
to show that each factor is noetherian, so WLOG assume that (R,m) is local.

Now, to see R is noetherian, m ⊇ m2 ⊇ m3 ⊇ · · · stabilizes again, so that mn =
mn+1; we can’t apply NAK yet since we don’t know mn is finitely generated. If mn 6= 0,
consider the family S of ideals I ⊆ m such that Imn 6= 0; this contains m. Just as the
noetherian property guarantees maximal elements of nonempty families, the artinian
property guarantees minimal elements; take J minimal in S. For some x ∈ J , xmn 6= 0,
and (x) ⊆ J ⊆ m, so J = (x) is principal by minimality. Now, xm(mn) = xmn+1 =
xmn 6= 0, so xm ⊆ (x) is in the family S of ideals, and by minimality, (x) = m(x).
NAK applies to this, so (x) = (0), contradicting that mn 6= 0. Then, we have

0 = mn ⊆ mn−1 ⊆ · · · ⊆ m ⊆ R,

80



and since the artinian property descends to submodules and quotients, each factor has
finite length. Thus, R has finite length, R is noetherian by Lemma 5.22, as desired.

The fact that the spectrum is finite has been proven in (4). The fact that the Zariski
topology on Spec(R) is the discrete topology follows because in a zero dimensional ring
all prime ideals are maximal, thus each of the singleton subsets of Spec(R) is closed.

Another useful characterization of artinian local rings is given below:

Proposition 5.27. For a noetherian local ring (R,m) the following are equivalent:

1. (R,m) is a local artinian ring

2. mN = 0 for some N ≥ 1, i.e. the ideal m is nilpotent.

Proof. (1)⇒ (2) The powers of m form a descending chain, so they stabilize, i.e. mN =
mN+1 for some N ∈ N. Since R is artinian it is noetherian too by Theorem 5.26, so
NAK implies that mN = 0.

(2)⇒ (1) The ideals 0 = mN ⊆ mN−1 ⊆ · · · ⊆ m2 ⊆ m ⊆ R form a filtration of R,
with finite length quotients as in the proof of (2) ⇒ (3) of Theorem 5.26, hence R is
finite length as a module over itself by Lemma 5.22 (2) and consequently an artinian
ring by Theorem 5.26.

April 13, 2020

5.3 The Hilbert function of a graded algebra

A useful bit of extra structure that one commonly encounters, and that we have already
used even, is that of a grading on a ring.

Definition 5.28. Let R be a ring, and T be a monoid. The ring R is T -graded if there
exists a direct sum decomposition of R as an abelian group indexed by T : R =

⊕
a∈T Ra

such that, for any a, b ∈ T , and any r ∈ Ra, s ∈ Rb, one has rs ∈ Ra+b. An element
that lies in one of the summands Ra is said to be homogeneous of degree a.; we often
use |r| to denote the degree of a homogeneous element r.

We can also talk about graded modules.

Definition 5.29. Let R be a ring, M an R-module and (T,+) a monoid. M is T -
graded if there exists a direct sum decomposition of M as an abelian group indexed
by T : M =

⊕
a∈T Ma such that, for any a, b ∈ T , and any r ∈ Ra, s ∈ Mb, one has

rs ∈Ma+b. An element that lies in one of the summands Ma is said to be homogeneous
of degree a.

Example 5.30. The most common instances of graded rings are N-graded R =⊕
d≥0Rd or Z-graded R =

⊕
d∈ZRd.
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Remark 5.31. By definition, an element in a graded ring or module is, in a unique way,
a sum of homogeneous elements, which we call its homogeneous components or graded
components. In other words,

∑
t∈T ft =

∑
t∈T gt where ft, gt ∈ Rt if and only if ft = gt

for each t ∈ T . This is often used in practice to reduce to proving statements about
homogeneous polynomials.

Remark 5.32. Let 0 be the identity element of the monoid T . If R is a T -graded ring
then for any t ∈ T , r ∈ R0, s ∈ Rt, one has rs ∈ Rt so Rt is a R0-module and R0 is a
subring of R.

If M is a T -graded R-module then similarly for all t ∈ T Mt is an R0-module.

Definition 5.33. An N-graded ring R is standard graded if R is generated as an R0-
algebra by R1.

Example 5.34. 1. If K is a field, and R = K[x1, . . . , xn] is a polynomial ring, then
there is an N-grading on R where Rd is the K-vector space with basis given by
monomials xα1

1 · · ·xαn
n with

∑n
i=1 αi = d. Of course, this is the notion of degree

familiar from Math 818 and before. This is called the standard grading .

2. With K is a field, and R = K[x1, . . . , xn] as above, for any (β1, . . . , βn) ∈ Nn, one
can give a different N-grading on R by letting xi have degree βi for some integers
βi; we call this a grading with weights (β1, . . . , βn).

For example, in K[x1, x2], x2
1 + x3

2 is not homogeneous in the standard grading,
but is homogeneous of degree 6 under the N-grading with weights (3, 2).

3. Again with K and R as above, R admits an Nn-grading, with R(d1,...,dn) = K ·
xd11 · · ·xdnn . This is called the fine grading .

Definition 5.35. An ideal I in a graded ring R is called homogeneous if it can be
generated by homogeneous elements.

We now observe the following:

Lemma 5.36. Let R be an T -graded ring, and I be a homogeneous ideal. Then R/I =⊕
t∈T Rt/It is also T -graded.

Exercise 5.37. Prove the above Lemma.

Definition 5.38. Let R and S be T -graded rings (same grading monoid). A ring
homomorphism ϕ : R→ S is degree-preserving if ϕ(Ra) ⊆ Sa for all a ∈ T .

Remark 5.39. The class of graded rings and degree-preserving functions forms a cate-
gory 〈〈Gr. Rings〉〉. In the same way as the category of reducedK-algebras is equivalent
to that of affine algebraic sets, the category of reduced standard graded K-algebras
is equivalent to that of projective algebraic sets, which are algebraic subsets of the
projective space PnK .
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We now introduce a generating function (a useful combinatorial book keeping tool)
for the vector space dimensions of the graded components of a finitely generated K-
algebra.

Definition 5.40. If R is an T -graded ring, the Hilbert function of R is the function
hR : N 7→ N ∪ {∞} with values hR(t) := `R0(Rt). Here `(Rt) denotes the length of Rt

is an R0-module.
Similarly, if M is an N-graded R-module, we define the Hilbert function of M by

hM : N 7→ N ∪ {∞}, hM(t) = `R0(Mt).
If T = N, we define the Hilbert series of R or of an R-module M as above by

HR(z) =
∑

i∈N hR(i)zi and HM(z) =
∑

i∈N hM(i)zi.
(The textbook calls this Poicaré series, but in modern terminology that means

something else.)

Example 5.41. Consider the standard graded ring

R = K[x, y]/(x2, y3) = K︸︷︷︸
R0

⊕
(Kx⊕Ky)︸ ︷︷ ︸

R1

⊕
(Kxy ⊕Ky2)︸ ︷︷ ︸

R2

⊕
Kxy2︸ ︷︷ ︸
R3

.

Then hR(t) =


1 if t = 0

2 if t = 1, 2

1 if t = 3

0 if t ≥ 4

and HR(z) = 1 + 2z + 2z2 + z3. Notice that hR(t) is

eventually the zero function, which we will take by convention to have degree −1 as
a polynomial. Note also that dim(R) = 0 since R is a finite dimensional K-algebra
(finite length), hence an artinian ring.

April 14, 2021
The key example of a Hilbert function is that of a polynomial ring.

Example 5.42. Let K be a field, and R = K[x1, . . . , xn] be a polynomial ring with
the standard grading: |xi| = 1 for each i. To compute the Hilbert function, we need to
compute the size of a K-basis for HR(t) for each t. We have

Rt =
⊕

a1+···+an=t

Kxa11 · · ·xann .

We can find a bijection between these monomials and the set of strings that contain
t stars and n − 1 bars, where the monomial xa11 · · ·xann corresponds to the string with
a1 stars, then a bar, then a2 stars, a bar, etc. Thus, the number of monomials is the
number of ways to choose n− 1 bars from t+ n− 1 spots, i.e.,

hR(t) =

(
t+ n− 1

n− 1

)
for t ≥ 0.
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We observe the binomial function here can be expressed as a polynomial in t for t ≥ 0;
let

Pn(t) =
(t+ n− 1)(t+ n− 2) · · · (t+ 1)

(n− 1)!
∈ Q[t].

Observe that Pn(t) has −1, . . . ,−(n− 1) as roots. Then we have

hR(t) =

{
Pn(t) if t > −n
0 if t < 0.

Note that the two cases overlap for t = −(n− 1), . . . ,−1.

Notice that in this example the Hilbert function is eventually (for t ≥ −n) equal to
a polynomial of degree n− 1. Moreover recall that dim(R) = n.

To compute the Hilbert series, notice that the number of monomials of degree d
is equal to the number of ordered tuples (a1, . . . , an) with

∑n
i=1 = d. This is the

coefficient of zd in the product

(1 + z+ z2 + · · ·+ za1 + · · · )(1 + z+ z2 + · · ·+ za2 + · · · ) · · · (1 + z+ z2 + · · ·+ zan + · · · )

hence

HR(z) = (1 + z + z2 + · · ·+ zi + · · · )n =
1

(1− z)n
.

A very important property of length that makes the theory of Hilbert functions
work is its additivity on short exact sequences:

Lemma 5.43. If L,M,N are R-modules that form a short exact sequence 0 → L →
M → N → 0 then M has finite length if and only if L and N have finite lengths and
in this case there is an equality `(M) = `(L) + `(N).

We can generalize Example 5.42 as follows.

Theorem 5.44 (Hilbert-Serre). Let R0 be an artinian ring and let R = R0[x1, . . . , xn]
be a finitely generated R0-algebra graded by |xi| = di. The Hilbert series HM(z) of any
finitely generated R- module M is a rational function of the form

HM(z) =
f(z)∏n

i=1(1− zdi) with f ∈ Z[z]

Proof. By induction on n.
If n = 0 then R = R0 and M is a finitely generated R0-module. Since R0 is an

artinian ring `(R0) <∞ by Theorem 5.26. Since M is a finitely generated R0-module,
it is a quotient of Rm

0 for some m ≥ 0. Thus `(M) ≤ `(Rm
0 ) = m`(R0) <∞ by Lemma

5.43. This yields that `(Mt) = 0 for t� 0 thus HM(z) = f(z) for some f ∈ N[z]. (In
this case the Hilbert series is a polynomial.)
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For the induction step, multiplication by xn on M induces an exact sequence

0→ K →M
xn−→M → N → 0

where K = {m ∈ M | xnm = 0} and N = M/(xn)M . Because K and N are
annihilated by xn they are finitely generated modules over R/(xn) = R0[x1, . . . , xn−1].
The exact sequence above decomposes into a direct sum of exact sequences of R0

modules of the form

0→ Kt →Mt
xn−→Mt+dn → Nt+dn → 0

Additivity of length yields

`(Kt)− `(Mt) + `(Mt+dn)− `(Nt+dn) = 0

or
hK(t)− hM(t) + hM(t+ dn)− hN(t+ dn) = 0.

In terms of Hilbert series this gives after multiplying by zt+dn and summing up

zdnHK(t)− zdnHM(t) +HM(t+ dn)−HN(t+ dn) = 0

or
(1− zdn)HM(t) = HN(t)− zdnHK(t).

Applying the inductive hypothesis for HN(t) and HK(t) and substituting into the above
identity yields the desired conclusion.

Remark 5.45. When R has the standard grading (|xi| = 1 for all 1 ≤ i ≤ n) then the
Hilbert series in the Hilbert-Serre theorem becomes

HM(z) =
f(z)

(1− z)n
with f ∈ Z[z].

However this may not be in reduced form. The reduced form will be

HM(z) =
h(z)

(1− z)d(M)
with h ∈ Z[z], h(1) 6= 0 and d(M) ≥ 0. (5.1)

Definition 5.46. For a graded module M over a graded ring R we denote by d(M)

the order of the pole of HM(z) at z = 1. This is defined as follows: if HM(z) = f(z)
g(z)

in
lowest terms, then

d(M) = max{n | (1− z)n | g(z)}.
If R is standard graded, this allows to express HM(z) as in equation (5.1).

Example 5.47. The standard graded polynomial ring R = K[x1, . . . , xn] has d(R) = n
according to Example 5.42.
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Corollary 5.48. Let R0 be an artinian ring and let R be a finitely generated standard
graded R0-algebra. The Hilbert function hM(z) of any finitely generated R-module M
is given for sufficiently large t by a polynomial PM(t) ∈ Q[t] of degree d(M) − 1. In
particular the degree of PM(t) is at most the number of generators of R as an R0-algebra
minus 1.

Proof. Use the formula for the Hilbert series

HM(z) =
h(z)

(1− z)d(M)
with h ∈ Z[z]

from the Hilbert-Serre theorem, the “negative binomial” formula

1

(1− z)d(M)
=
∞∑
i=0

(
i+ d(M)− 1

d(M)− 1

)
zi.

and the fact that the binomial coefficients above are polynomials in i of degree d(M)−1
for i� 0.

Definition 5.49. The Hilbert polynomial of a standard graded module is the polyno-
mial PM(t) that agrees with hM(t) for t� 0.

Example 5.50. The Hilbert polynomial of a standard graded ring R = K[x1, . . . , xn]

is PR(t) = (t+n−1)(t+n−2)···(t+1)
(n−1)!

∈ Q[t] as discussed in Example 5.42.

5.4 Associated graded rings, Hilbert-Samuel func-

tion

Graded rings and modules from filtrations

Next I want to introduce a way of constructing graded rings and modules from ungraded
ones. For this we need to define a special type of filtration.

Definition 5.51. Let R be a ring, I an ideal and M an R-module. A filtration of M
is a possibly infinite descending chain of submodules

M = M0 ⊇M1 ⊇ · · · ⊇Mn ⊇Mn+1 · · ·

The filtration is and I-filtration if IMn ⊆ Mn+1 for all n ∈ N and it is I-stable if
IMn = Mn+1 for all n� 0.

Example 5.52. Setting Mn = InM gives a stable I-filtration. In particular, for
M = R this filtration is

R = I0 ⊇ I ⊇ I2 · · · ⊇ In ⊇ In+1 · · ·
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Definition 5.53. The Rees algebra of I is a standard graded ring obtained from the
above filtration by taking its external direct sum as follows

R(I) =
⊕
n∈N

In.

An alternative way to define the Rees algebra of I is to describe it as a subring of
the graded ring R[t] (where deg(t) = 1) using an internal direct sum:

R(I) =
⊕
n∈N

Intn = {a0 + a1t+ a2t
2 + · · ·+ amt

m ∈ R[t] | ai ∈ I i∀i}.

Then R(I) is a graded subring of R[t]. The advantage to this approach is that the
exponent of the variable t identifies the degrees of the homogeneous components of a
particular element of R(I).

Exercise 5.54. Let R be a ring and I = (f1, . . . , fk) a finitely generated ideal. Prove
that R(I) = R[f1t, . . . , fkt]. In particular, this shows that R(I) is a finitely generated
R-algebra. If R is noetherian this indicates that R(I) is a finitely generated R-algebra
for any ideal I.

Definition 5.55. Let R be a ring, I an ideal and M an R-module equipped with an
I-filtration F = {Mn}n∈N. This filtration gives rise to the graded module

R(F) =
⊕
n∈N

Mn.

This module R(F) is a R[I]-module. The multiplication goes as expected : if a ∈ In
and m ∈Mn′ then their product is

am ∈ InMn′ ⊆Mn+n′ .

The definition of graded module is satisfied since InM
′
n ⊆Mn+n′ for all n, n′ ∈ N which

is a consequence of the definition for I-filtration.

April 19, 2021

Theorem 5.56. Let R be a Noetherian ring, I an ideal and M a finitely generated
R-module equipped with an I-filtration F = {Mn}n∈N. The following are equivalent:

1. the filtration is I-stable

2. R(F) is a finitely generated R(I)-module.
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Proof. By Exercise 5.54 and Hilbert’s basis theorem, R(I) is a noetherian ring.
Since M is finitely generated and R is Noetherian, each submodule Mn is finitely

generated. Consequently each finite direct sum Qn :=
⊕n

i=0Mi is finitely generated is
finitely generated as an R-module. Then the R(I)-submodule of grF(M) generated by
Qn, denoted QnR(I), is a finitely generated R(I)-module (same generators).

Now there is a ascending chain of R(I)-modules

· · · ⊆ QnR(I) ⊆ Qn+1R(I) ⊆ · · ·
whose union is grF(M). Then grF(M) is a finitely generated R(I)-module if and only
if the chain stabilizes. Looking more closely at Qn we see that

QnR(I) =
n⊕
i=0

Mi ⊕ IMn ⊕ I2Mn ⊕ · · ·

Thus the chain stabilizes iff Mn+i = I iMn for all n � 0, that is, the filtration F is
a-stable.

Now we come to an important theorem about I-stable filtrations:

Theorem 5.57 (Artin-Rees). Let R be a Noetherian ring, I an ideal of R. If N
is a submodule of M and F = {Mn}n∈N is an I-stable filtration on M then setting
Nn = Mn ∩N gives an I-stable filtration F ′ = {Nn}n∈N of N .

In particular, there exists k ∈ N such that

InM ∩N = In−k(IkM ∩N) for n ≥ k.

Proof. The fact that F ′ is a filtration follows from its definition. By Theorem 5.56
R(F) is a finitely generated R(I)-module and R(I) is Noetherian. Moreover R(F ′) is
a submodule of R(F). Since the latter is finitely generated so is R(F ′)). By Theorem
5.56, F ′ is thus I-stable.

To see the “in particular” set Mn = InM and notice that the displayed equality is
the definition for the resulting filtration Nn = InM ∩N to be I-stable.

Associated graded rings

We next wish to construct different graded rings from the previously mentioned filtra-
tions which bear the name associated graded rings.

Definition 5.58. The associated graded ring of an ideal I in a ring R is the ring

grI(R) :=
⊕
n∈N

In

In+1
=
R(I)

IR(I)
,

with n-th graded piece In/In+1, and multiplication

(a+ In+1)(b+ Im+1) = ab+ Im+n+1 for a ∈ In, b ∈ Im.
If (R,m) is local, then gr(R) := grm(R) will be called the associated graded ring of R.
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Remark 5.59. Note that the multiplication is well-defined. Indeed if a ∈ In, b ∈ Im, u ∈
In+1, v ∈ Im+1, that is, a+ u ∈ a+ In+1 and b+ v ∈ b+ Im+1 then

(a+ u)(b+ v) = ab = av + bu+ uv ∈ ab+ Im+n+1.

Remark 5.60. We observe also from the definitions that

• grI(R) is a standard graded ring because it is a quotient of the standard graded
ring R(I)

• [grI(R)]0 = R/I; if (R,m, k) is local then [gr(R)]0 = R/m = k

• each graded piece [gr(R)]n = In/In+1 is an R-module annihilated by I, so it is
an R/I-module. If (R,m, k) is local then [gr(R)]n is a k-vector space.

Remark 5.61. There is a surjective map ∗ : R → grI(R) given by f 7→ f ∗ where f ∗

is the image of f in Iv/Iv+1 for v = min{i | f ∈ I i}. This map is not a ring
homomorphism. When R is local and I = m, f ∗ has a nice interpretation as the
term(s) of lowest degree of f .

This map helps in finding the associated graded ring of a quotient as follows:

gr(R/J) =
gr(R)

(f ∗ | f ∈ J)
.

April 21, 2021

Example 5.62. Let R = K[x, y]/(y2−x2(x+1))(x,y). This is a local ring with maximal
ideal m = (x, y). Note that the element y2−x2(x+1) has valuation v = 2 with respect
to the m-adic filtration on k[x, y] and that

f ∗ = y2 − x2(x+ 1) + m3 = y2 − x2 + m3.

We will compute gr(R). According to the remark above, we have

grm(R) =
K[x, y]

(f ∗ | f ∈ (y2 − x2(x+ 1))
=

K[x, y]

(y2 − x2)
.

Let’s see why y2 − x2 = 0 in gr(R): this is because in R we have y2 − x2 = x3 ∈ m3,
that is the image of y2 − x2 in m2/m3 through the map in Remark 5.61 is 0.

Geometrically, if R is the coordinate ring ov an algebraic set X, then the ring
grm(R) is the coordinate ring of the tangent cone to X at the origin. In this example
we see that V (x2 − y2) is the union of two lines V (x− y) and V (x+ y) which are the
two tangent lines to the nodal cubic at the point (0, 0).
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Hilbert-Samuel functions

Definition 5.63. For (R,m) local, we set HR(t) = Hgr(R)(t) and hR(t) = hgr(R)(t). We
call this the Hilbert function and Hilbert series of the local ring R.

Definition 5.64. For an ideal I of a ring R so that R/I is artinian we define the
Hilbert-Samuel function of R with respect to I to be χRI (n) = `R/I(R/I

n).

Remark 5.65. We have a filtration of R/In as follows

R/In ⊆ I/In ⊆ I2/In ⊆ · · · ⊆ In−1/In ⊆ 0

with quotients (I i/In)/(I i+1/In) ∼= I i/I i+1. Since length is additive along filtrations it
follows that

χRI (n) = `R/I(R/I
n) =

n−1∑
i=0

`R/I(I
i/I i+1) =

n−1∑
i=0

hgrI(R)(i) (5.2)

Because of the previous summation formula, we can think of the function χRI as a
discrete “integral” of the Hilbert function of hgrI(R). Thus if hgrI(R) is a polynomial of
degree d− 1 then χRI is a polynomial of degree d.

We now see that under appropriate circumstances Hilbert-Samuel functions, just
like Hilbert functions, are eventually given by polynomials.

Theorem 5.66. Let (R,m, k) be a noetherian local ring and q an m-primary ideal
generated by s elements. Then

1. the function hgrq(R) : N → N is eventually (for large enough inputs) equal to a
polynomial Pgrq(R) of degree at most s− 1

2. the function χq(R) : N → N is eventually (for large enough inputs) equal to a
polynomial gq(R) of degree at most s

3. deg(gq(R)) = deg(gm(R)); in particular deg(gq(R)) does not depend on q, but
only on R.

Proof. Since
√
q = m we see that V(q) = V(m) = {m} and thus dim(R/q) = 0. Since

R/q is a noetherian ring of Krull dimension 0 it is artinian and therefore has finite
length.

(1.) Let q = (f1, . . . , fs). Recall that grq(R) is a standard graded algebra and
it is finitely generated by f ∗1 , . . . , f

∗
s as a R/q-algebra. By Corollary 5.48 the hilbert

function of grq(R) is eventually equal to its Hilbert polynomial which has degree at
most s− 1.

(2.) Based on part (1.) equation (5.2) and Remark 5.65 show that χq(n) is equal
to a polynomial g(n) for n� 0. Furthermore, we have

deg(g) = deg(Pgrq(R)) + 1 ≤ s− 1 + 1 = s.
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(3.) Suppose that m = (g1, . . . , gt). Since m =
√
q there exist positive integers ni

such that gni
i ∈ q for 1 ≤ i ≤ t. Setting N =

∑t
i=1(ni − 1)− 1 we see by a pigeonhole

argument that mN ⊆ q. Because mN ⊆ q ⊆ m we have for each n ∈ N that

mnN ⊆ qn ⊆ mn

and thus there are inequalities

`R/m(R/mnN) = dimk(R/m
nN) ≥ dimk(R/q

n) = `R/q(R/q
n) ≥ `R/m(R/mn) = dimk(R/m

n)

that is

χRm(Nn) ≥ χRq (n) ≥ χRm(n) or gm(Nn) ≥ gq(n) ≥ gm(n) for n� 0.

The last inequality shows that deg(gq) = deg(gm).

Definition 5.67. We call the polynomial gm(R) from Theorem 5.66 the Hilbert-Samuel
polynomial of R.
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5.5 The dimension theorem

Finally we come to the main theorem regarding the dimension of noetherian local rings.

Theorem 5.68 (The dimension theorem). Let (R,m, k) be a noetherian local ring and
consider the numbers

dim(R) = the Krull dimension of R
d(R) = the degree of the Hilbert-Samuel polynomial of R
δ(R) = the smallest number of minimal generators of an m-primary ideal

Then
dim(R) = d(R) = δ(R).

Before we prove this theorem we observe an important consequence.

Corollary 5.69. Let (R,m, k) be a noetherian local ring. Then dim(R) is finite.

Proof. This is because dim(R) = δ(R) ≤ µ(m) by definition of δ(R).

Example 5.70. Let’s study again the localization of the coordinate ring of the nodal
cubic at m′ = (x, y)

R =

(
K[x, y]

(y2 − x2(x+ 1))

)
m

.

This is a local ring (R,m, K), where m = m′R.
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Since K[x] ↪→ R is a Noether normalization (by definition of R, y is integral over
k[x]), we see that dim(R) = 1.

Consider the ideal q = (x) of R and note that since 0 = y2−x2(x+1) ∈ q and x ∈ q
we have y2 ∈ q. Thus m =

√
q and we deduce that q is m-primary. Hence δ(R) ≤ 1

and since 0 is not m-primary in fact δ(R) = 1.
Finally, we have computed in Example 5.62 the associated graded ring

grm(R) =
K[x, y]

(y2 − x2)
= K ⊕Kx⊕Ky︸ ︷︷ ︸

deg 1

⊕Kx2 ⊕Kxy︸ ︷︷ ︸
deg 2

⊕ · · ·Kxd ⊕Kxd−1y︸ ︷︷ ︸
deg d

⊕ · · · .

Thus

hgrm(R)(d) =

{
1 d = 0

2 d ≥ 1

and

χRm(n) =
n−1∑
d=1

hgrm(R)(d) = 1 + 2(n− 2) = 2n− 3.

The latter is a polynomial of degree 1 in n so d(R) = 1.

For the proof of the Dimension Theorem we will show

δ(R) ≥ d(R) ≥ dim(R) ≥ δ(R).

Theorem 5.66 shows that δ(R) ≥ d(R). Next we show dim(R) ≥ δ(R). We will use:

Lemma 5.71 (Prime avoidance). If I, p1, . . . , pn are ideals in a ring R, with pi prime
for each i, and I ⊆ ⋃m

i=1 pj, then I ⊆ pj for some j.

Proof. We prove that if I is not contained in pj for all j then I is not contained in⋃m
j=1 pj by induction on m. The case m = 1 is obvious. For m > 1, using the induction

hypothesis, we have that for each i there is a yi ∈ I \
⋃
j 6=i pj. If for some i we have

yi /∈ qi, we are done. Otherwise, yi ∈ pi for all i. Let ŷi = y1 · · · yi−1yi+1 · · · ym.
Note that ŷi /∈ qi for all i, since ys /∈ pi for all s 6= i and pi is prime, and ŷi ∈ ps for

all s 6= i, since we have assumed ys ∈ ps. Clearly ŷi ∈ I for all i. Now set x =
∑

i ŷi.
It follows that x ∈ I and x /∈ pi for all i.

Proposition 5.72. For a noetherian local ring (R,m, k) we have dim(R) ≥ δ(R).

Proof. Let d = dim(R). We will show there is an m-primary ideal generated by d
elements.

We construct by induction on 0 ≤ i ≤ d that there are x1, . . . , xd ∈ R such that
height(x1, . . . , xi) ≥ i. The case i = 0 gives the 0 ideal which has height 0.

Suppose i < d and x1, . . . , xi have been constructed so that height(x1, . . . , xi) ≥ i.
Let p1, . . . , ps be the (necessarily minimal) primes in V((x1, . . . , xi)) so that height(pj) =
i, if any such primes exist. Since height(m) = d > i we see that m 6= pj for all such
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primes. By the prime avoidance Lemma 5.71 we deduce that m 6⊆ ⋃s
j=1 pj and so we

choose xi+1 ∈ m so that xi+1 6∈ pj for all j.
Now if q ∈ V((x1, . . . , xi, xi+1)) we have p ⊆ q for some p ∈ Min(x1, . . . , xi). If

height(p) ≥ i + 1 then height(q) ≥ i + 1. If height(p) = i then p = pj for some j and
thus xi+1 6∈ p. Hence p ( q and so height(q) ≥ height(p) + 1 = i+ 1.

Now since height(x1, . . . , xd) = d = height(m) we have that V(x1, . . . , xd) = {m}
and so

√
(x1, . . . , xd) = m. Since its radical is the maximal ideal m, we conclude that

(x1, . . . , xd) is m-primary.

April 26, 2021
To prove the remaining inequality in the dimension theorem we need one additional

lemma.

Lemma 5.73. Let (R,m, k) be a noetherian local ring. If x is a non zero-divisor in R
and R′ = R/(x) then d(R′) ≤ d(R)− 1.

Proof. There is a short exact sequence

0→ (x)→ R→ R/(x)→ 0.

We consider the m-adic filtration F = {mn}n≥0 on R and the induced filtration on (x),
F ′ = {(x) ∩mn}n≥0. For each n ∈ N these fit into another short exact sequence

0→ (x)

(x) ∩mn
→ R

mn
→ R

(x) + mn
→ 0

or

0→ (x)

(x) ∩mn
→ R

mn
→ R′

mn → 0.

Additivity of length in short exact sequences yields

χRm(n) = `

(
(x)

(x) ∩mn

)
+ χR

′

m (n) (5.3)

By the Artin-Rees Lemma there is k ∈ N so that

(x) ∩mn = mn−k((x) ∩mk) for n ≥ k

and thus there are containments

mn(x) ⊆ (x) ∩mn ⊆ mn−k(x)

which yield inequalities

`

(
(x)

mn(x)

)
≥ `

(
(x)

(x) ∩mn

)
≥ `

(
(x)

mn−k(x)

)
.
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Since x is a non zero-divisor in R, the map R → (x) sending 1 7→ x is an R-module
isomorphism. Since (x) ∼= R, the inequalities above can be rewritten as

χRm(n) ≥ `

(
(x)

(x) ∩mn

)
≥ χRm(n− k).

This shows that the function n 7→ `
(

(x)
(x)∩mn

)
, which is eventually polynomial, has the

same degree, d(R), and same leading coefficient as χRm.
From (5.3) we now see that the function χR

′
m (n) is eventually equal to a polynomial

of degree strictly smaller than d(R).

Proposition 5.74. Let (R,m, k) be a noetherian local ring. Then d(R) ≥ dim(R).

Proof. By induction on d = d(R).
If d = 0 then `(R/mn) is constant for n � 0. Since `(mn/mn+1) = `(R/mn) −

`(R/mn+1), we see that `(mn/mn+1) = 0 for n � 0 which means mn/mn+1 = 0 or
mn = mn+1 for n � 0. By Nakayama’s lemma we have mn = 0 for n � 0. Thus R is
artinian by Proposition 5.27 and so dim(R) = 0.

Suppose d > 0 and let p0 ( p1 ( · · · ( pr be a chain of primes in R. Let x ∈ p1 \p0.
Let R′ = R/p0, a local ring with maximal ideal m′ = m/p0. Let x be the image of x
in R′. Since R′ is a domain, x is a non zero-divisor. By the previous lemma we have
d(R′/(x)) ≤ d(R′)− 1.

Since there is a surjection R/mn � R′/m′n we have

χRm(n) = `R(R/mn) ≥ `R′(R
′/m′n) = χR

′

m (n).

(Recall that length is the same as vector space dimension over both R and R′). This
shows the first inequality in the sequence

d = d(R) ≥ d(R′) ≥ d(R′/(x)) + 1 ≥ dim(R′/(x)) + 1.

The second inequality follows from Lemma 5.73 and the third is from the inductive hy-
pothesis applied to R′/(x)). To summarize, the above inequality shows dim(R′/(x)) ≤
d− 1.

The images of p1 ( · · · ( pr in R′/(x)) form a chain of length r − 1, so that
r − 1 ≤ d − 1. This shows that r ≤ d and taking the maximum of such r yields the
desired conclusion dim(R) ≤ d.

WE have now established the Dimension Theorem.

Proof of the Dimension Theorem 5.68. It follows from Theorem 5.66, Proposition 5.72,
and Proposition 5.74.

The definition of δ(R) singles out the M-primary ideals with dim(R) generators. A
set of minimal generators for such an ideal has a special name
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Definition 5.75. Let (R,m, k) be a noetherian local ring with dim(R) = d. A system
of parameters, abbreviated s.o.p., for R is a set of elements x1, . . . , xd ∈ R so that√

(x1, . . . , xd) = m.

As a consequence of the Dimension Theorem every noetherian local ring has a
system of parameters (in fact it has many). Systems of parameters are closely related
to Noether normalization: it turns out that if R is a K-algebra then x1, . . . , xd is an
s.o.p. for R if and only if K[x1, . . . , xd] is a Noether normalization for R.

Here are some very important consequences of the Dimension Theorem:

Theorem 5.76 (Generalized Principal Ideal Theorem). Let R be a noetherian ring,
and x1, . . . , xr ∈ R. Then height(x1, . . . , xr) ≤ r.

Proof. Let p ∈ Min((x1, . . . , xr)). ThenRp is a noetherian local ring and V((x1, . . . , xr)Rp) =
{pRp}. This implies that

√
(x1, . . . , xr)Rp = pRp and hence (x1, . . . , xr)Rp is pRp-

primary. Now we deduce from the Dimension Theorem that r ≥ δ(Rp) = height(p).

A famous corollary of this is

Corollary 5.77 (Krull’s Principal Ideal Theorem). Let R be a noetherian ring. For
any x ∈ R we have height(x) ≤ 1.
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5.6 Regular local rings

The dimension theorem provides a useful bound on dimension of a local ring: the
dimension is less or equal to the number of generators of the maximal ideal. We study
the rings for which equality holds.

Corollary 5.78. Let (R,m, k) be a noetherian local ring. Then dim(R) ≤ dimk(m/m
2).

Proof. We deduce from the Dimension Theorem that dim(R) = δ(R) ≤ µ(m) =
dimk(m/m

2), where the last equality follows from Nakayama’s lemma.

We shall consider the case of equality, that is dim(R) ≤ dimk(m/m
2), in the next

section.

Definition 5.79. A noetherian local ring (R,m, k) is regular if dim(R) = dimk(m/m
2).

A noetherian ring R is called regular if Rm is a regular local ring for all maximal ideals
m.

Example 5.80. • A local ring (R,m) with dimR = 0 is regular if and only if R is
a field since we must have µ(m) = dimR = 0 so m = (0).
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• For any prime integer p, Z(p) is a regular local ring since its dimension is one and
its maximal ideal is principal. It follows that Z is regular.

• K[x1, . . . , xd](x1−a1,...,xn−an) is a regular local ring, since its dimension is n (equidi-
mensionality) and its maximal ideal is generated by n elements. It follows that
K[x1, . . . , xd] is regular, at least when K is algebraically closed. This is also the
case for arbitrary K.

• If R = K[x1, . . . , xn],m = (x1, . . . , xn) and f ∈ R1 then R/(f) ∼= K[x1, . . . , xn−1]
is regular. But if f ∈ R2

+ then R/(f) is not regular since we have dim(R/(f))m =
n− 1 but dimkm/m

2 = n.

The last example explains some geometric phenomena that we have seen earlier in
the course: consider the equation of a line L in A2

K , i.e. set f = ax+by+c 6∈ R2
+. Then

R/(f) = K[L] is a regular ring. We can see this geometrically as saying that every
point on the line L is smooth (more about what this word means later). On the other
hand let f be the equation of the cuspidal curve 2.40 f = y2 − x3 or the nodal curve
2.41 f = y2 + x2(x− 1). In either case we have f ∈ R+ so if Z is the cusp or the nodal
cubic then K[Z] = R/(f) is not regular. This gives an easy way to see that L (which
is isomorphic to A1

K) cannot be isomorphic to Z, since the respective coordinate rings
cannot be isomorphic.

April 31, 2021

The Jacobian criterion

We want to give now the geometric idea behind the notion of a regular local ring. We
first need to discuss the notion of tangent space.

Consider the graph of a function y = f(x). Let (a, f(a)) be a point on this graph.
Then the tangent line to the graph at the point (a, f(a)) has equation

y = f(a) + f ′(a)(x− a).

One could consider the above mentioned graph as an algebraic set V (f(x)−y), and set
g(x, y) = f(x)− y. Rewriting the equation of the tangent line in this notation yields

∂g

∂x
(a)(x− a) +

∂g

∂y
(a)(y − f(a)) = 0.

The left hand side of the equation above is the linear approximation (linear part of the
Taylor series) of g(x, y) at (a, f(a)).

More generally, we have

Definition 5.81. If X = V (I) ⊆ An with I = (f1, . . . , fs) and a = (a1, . . . , an) ∈ X
then the tangent space to X at a is

TX,a = V

(
n∑
j=1

∂f1

∂xj
(a)(xj − aj), . . . ,

n∑
j=1

∂fs
∂xj

(a)(xj − aj)
)
.
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Remark 5.82. Tangent spaces are affine subspaces of An = kn. The vector space
dimension of TX,a is dimk(TX,a) = n− rank(J) where J is the matrix of coefficients of
the linear system in Definition 5.81

J =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fs
∂x1

· · · ∂fs
∂xn

 .
This matrix is called the Jacobian matrix of I = (f1, . . . , fs).

Definition 5.83. One says that X is smooth at a or a is a smooth point of X if the
dimension of the tangent space TX,a (as a vector space or algebraic variety - they are
the same) is equal to the dimension of the coordinate ring of the algebraic variety X.
A point that is not smooth is called singular.

We are now ready for the geometric interpretation of regular rings.

Theorem 5.84. Let X be an algebraic variety, consider a point a = (a1, . . . , an) ∈ X
with maximal ideal ma (note that I ⊆ ma) and coordinate ring

R = K[x1, . . . , xn]/I.

The following are equivalent

1. Rma is a regular local ring

2. a is a smooth point of X, i.e. dim(R) = dimk(TX,a)

3. the rank of the Jacobian matrix of I evaluated at a is equal to height(I).

Proof. We first see that the image of f ∈ ma in ma/m
2
a is the linear part of the Taylor

series of f , by using Taylor’s formula to write

f = f(a)︸︷︷︸
0

+
∑
j

∂fi
∂xj

(a)(xj − aj) + g with g ∈ m2.

Note also that a basis for ma/m
2
a is given by {x1 − a1, . . . , xn − an} so we can identify

the image of f in ma/m
2
a written in this basis with the vector ∇a(f) = ( ∂fi

∂x1
, . . . , ∂f

∂xn
).

This shows that the subspace of An
K spanned by ∇a(f1), . . . ,∇a(ft) is isomorphic to

the subspace of ma/m
2
a given by the images of the fi’s.

Now, let m = ma/I be the maximal ideal ofR. We have that m/m2 ∼= (ma/m
2
a)/(I/m

2
a)

and I/m2
a = SpanK{f1, . . . , ft} hence

dimK(m/m2) = dimK(ma/m
2
a)− SpanK{f1, . . . , ft}

= n− dimK SpanK{∇a(f1), . . .∇a(ft)}
= dimTX,a.
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Since R is a K-algebra domain all chains from (0) to any maximal ideal in R have
the same length, so the following formula holds

dim(R) = dimRma .

Also, denoting height(I) = h we have

dim(R) = dimK[x1, . . . , xn]− height(I) = n− h.

We now find that dim(R) = dimK(m/m2) ⇐⇒ dim(R) = dimTX,a ⇐⇒

n− h = n− dimK SpanK{∇a(f1), . . .∇a(ft)} ⇐⇒

h = dimK SpanK{∇a(f1), . . .∇a(ft)} = rank J(a).

Example 5.85. 1. LetR = C[x, y]/(y2−x3). The matrix J is [2x, 3y2], which shows
that the only non-smooth point of the cuspidal cubic curve is V (2x, 3y2) = (0, 0).
Notice that the tangent space to the cuspidal cubic at (0, 0) is A2

K while at every
other point it is a 1-dimensional subspace of A2

K .

2. Similarly for R = C[x, y]/(y2 − x2(x + 1)) the matrix J is [−3x2 − 2x, y], which
shows that the only non-smooth points of the nodal curve are the zero set of the
ideal (−3x2 − 2x, y) = (x, y) ∩ (−3x − 2, y). Thus this curve has two singular
points: (0, 0) and (−2/3, 0).

98



Chapter 6

Where next?

In this course, we have studied classical commutative algebra and a bit of affine geom-
etry. To get an idea of what this work encompasses in the realm of time, here are the
main figures whose contributions we have been learning about:

• David Hilbert (1862-1943)

• Emmy Noether (1882-1935)

• Wolfgang Krull (1899-1971)

• Oskar Zariski (1899-1986)

Most of the material which we have studied was developed at the end of the 19-
th century and the in the first half of the 20-th century. However, there is much
more to commutative algebra and its connections to related disciplines have evolved
tremendously since then.

The following are the three main directions which build upon the material presented
in these notes:

1. Modern commutative algebra is concerned with classes of rings which are
not as restrictive as regular local rings, but maintain some of the nice properties
that these rings have. These classes of rings fit into the following taxonomy:

Regular rings ⊆ Complete Intersection rings ⊆ Gorenstein rings ⊆
Cohen-Macaulay rings.

Several of these classes are defined by their homological properties (see item 2).
A good place to learn about these rings is the book Cohen-Macaulay rings by
Bruns and Herzog.

2. Homological algebra is concerned with methods that are widely applicable in
algebra, geometry and topology and which generally revolve around the use of
complexes. A good place to learn further methods of homological algebra is the
book by the same name by Weibel.
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3. Modern algebraic geometry is primarily concerned with algebraic sets in pro-
jective (as opposed to affine) spaces as well as their generalizations called schemes.
These correspond to homogeneous ideals of the polynomial ring and their coor-
dinate rings are graded rings. There are also geometric objects called sheaves
which correspond to graded modules over these rings. Generally speaking the
algebra-geometry dictionary is much enrich by the introduction of schemes and
sheaves. Learning this entire dictionary takes a lot of dedication and patience
in addition to the strong foundations in commutative algebra that we have de-
veloped. Some good references are the text books by Safarevich and Hartshorne
and the course notes by Vakil.
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