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Pre-requisites

I am assuming knowledge of groups, rings, modules, and ideals at the level of a first
year graduate course, e.g. UNL’s Math 817–818.



Chapter 1

Rings, modules, and categories

August 17, 2020

1.1 Brief reminder of rings and modules

1.1.1 Rings

In Math 818 you have studied various special classes of commutative rings: PID’s,
Euclidean domains, UFD’s. In this class a ring will mean a unital but not necessarily
commutative ring. In Math 902 we will study unital commutative rings exclusively.

Definition 1.1. A ring is a set R with two binary operations + and · such that

• (R,+) is abelian group, with identity 0

• (R, ·) is a (possibly non-commutative) monoid with identity 1,

• the left and right distributive laws hold: (r+ s)t = rt+ st and t(r+ s) = tr+ ts.

Definition 1.2. A ring homomorphism or ring map f : R→ S is a function satisfying

• f(r1 + r2) = f(r1) + f(r2),

• f(r1r2) = f(r1)f(r2) and

• f(1) = 1.

Conventions: We stipulate that throughout the course

• all rings are unital and nontrivial, meaning that 0 6= 1.

• all ring homomorphisms R→ S are assumed to map 1R 7→ 1S

• all ideals I are assumed to be strict subsets of R (R itself an improper ideal).
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If R is a ring and I is a two-sided ideal I then R/I is also a ring under the induced
operations called a quotient ring.

Example 1.3. For a field k, the map ρ : k → M2(k) sending x to

[
x 0
0 0

]
preserves

addition and multiplication, but fails to send 1 to 1 = I2, so this is not a ring homo-
morphism according to our definition.

You’ve seen many examples of commutative rings before: e.g., fields, Z, Z/n, poly-
nomial rings, rings of algebraic integers (such as Z[

√
−5]), etc. Here are some non-

commutative examples:

Example 1.4. For any n ≥ 1 and ring R, the set of n × n matrices with entries in
R, Mn(R), is ring under the usual rules for matrix addition and multiplication. This
makes sense even if R is non-commutative. The multiplicative identity is In. The ring
Mn(R) is non-commutative if n > 1.

Example 1.5 (The ring of real quaternions). Let H be the 4-dimensional R-vector
space with basis 1, i, j, k; that is,

H = {a+ bi+ cj + dk | a, b, c, d ∈ R},

where multiplication is defined uniquely by the following rules: multiplication between
elements of R and elements of H is the same as scalar multiplication on the vector
space H, i2 = j2 = k2 = ijk = −1, and a strong form of the associative law is satisfied
(qv) · w = q(v · w) = v · (qw) for all v, w ∈ H and q ∈ R. Then (H,+, ·) is a non-
commutative ring and, in fact, it is a division ring, meaning every non-zero element has
a two-sided inverse (i.e., it satisfies the axioms of a field, except for commutativity).

It may not be clear that the rules above give a well-defined multiplication on H,
but one can see that they are consistent by looking at another way of describing H, or
rather a ring isomorphic to H: it is the R subspace ofM2(C) spanned by I2,

√
−1 · I2,[

0 −
√
−1√

−1 0

]
, and

[
0 1
−1 0

]
(representing 1, i, j, and k in the notation above). A

tedious check shows that this subspace is indeed closed under matrix multiplication and
hence forms a ring and that the matrices singled out satisfy the identities postulated
for H.

Definition 1.6. Given a ring R, let Rop refer to the same set, same rule for + but
with multiplication defined by x ·op y := yx. Then Rop is also a ring called the opposite
ring of R. Note that (Rop)op = R.

Exercise 1.7. Prove that for any ring R and integer n ≥ 1, there is a ring isomorphism

Mn(R)op ∼=Mn(Rop).
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1.1.2 Modules

Definition 1.8. Given a ring R, a left R-module is an abelian group (M,+) equipped
with a pairing R×M →M , written (r,m) 7→ rm, such that:

• r1(r2m) = (r1r2)m,

• (r1 + r2)m = r1m+ r2m,

• r(m1 +m2) = rm1 + rm2, and

• 1m = m.

A right R-module is defined analogously, starting with a pairing M ×R→M written
as (m, r) 7→ mr.

The default is that “module” means “left module”.
A submodule of a module is a subset that contains 0 and is closed under + and

scaling (on the left or on the right, as appropriate).

Remark 1.9. Every left R-module M is also a right Rop-module via m · r = r ·m, and
vice versa. When R is commutative, since R = Rop, every left R-module M is also a
right R-module by the preceding reasoning. So for R commutative, we usually just say
“module” to mean both the left and the right R-module structures.

Example 1.10. A left Z-module M is the same thing as an abelian group. We can
deduce this from the exercise above by recalling that for any ring A, there is a unique
ring homomorphism Z→ A. It follows that for any abelian group M there is a unique
ring homomorphism Z→ EndAb(M) giving it a Z-module structure.

Example 1.11. For a field k, a k-module is a k vector space. More generally, if D is
a division ring (e.g., a field or the quaternions), then every left D-module has a basis
and hence is isomorphic to a possibly infinite direct sum of copies of D regarded as
a left module over itself. The proof of this fact is identical to the proof for fields. In
other words, every left module over a division ring is a free module. Since Dop is also
a division ring, every right D-module is free too.

Here is a partial converse:

Exercise 1.12. If R 6= 0 and every left R-module is free, then R is a division ring.
Tip: You might start by showing that if every non-zero element x of R has a left

inverse, then every element has a two-side inverse. I.e., If for all 0 6= x ∈ R, there
exists a y ∈ R such that yx = 1, then for all x 6= 0, there is a y such that xy = 1 = yx.

The following exercise shows that a module structure on an abelian group can be
thought of as a ring homomorphism. This point of view will prove fruitful later.
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Exercise 1.13. Show that a giving a pairing as in the definition for left module above
is equivalent to specifying a ring homomorphism R → EndAb(M). Similarly, giving a
pairing as in the definition for right module above is equivalent to specifying a ring
homomorphism Rop → EndAb(M). In particular, a right R-module is exactly the same
thing as a left Rop-module.

Definition 1.14. An R-module homomorphism, also called an R-map, is a function
between left (or right) R-modules that preserves + and commutes with scaling, i.e,
f : M → N is an R-module homomorphism if

• f(m1 +m2) = f(m1) + f(m2) for all m1,m2 ∈M

• f(rm) = rf(m) for any r ∈ R,m ∈M .

The set of all R-module homomorphisms between two R-modules M , N is denoted
HomR(M,N). We see below that this set is in its turn an Rop-module. We denote
EndR(M) = HomR(M,M).

Proposition 1.15. 1 If R is a ring and M,N are left R-modules then the set HomR(M,N)
of R-module homomorphisms from M to N is an abelian group with the addition

(f + g)(x) = f(x) + g(x) for f, g ∈ HomR(M,N).

If R is commutative, this group has a left R-module structure given by the scalar mul-
tiplication

(sf)(x) = sf(x) for f ∈ HomR(M,N), s ∈ R.

Proof. The fact that HomR(M,N) forms an abelian group with respect to addition of
functions is easy to check.

Next I will check that the rule for sf gives an element of HomR(M,N). Indeed, sf
preserves +

(sf)(x+y) = sf(x+y) = s(f(x)+f(y)) = sf(x)+sf(y) = (sf)(x)+(sf)Y (Y ) for all x, y ∈M

and is R-linear

(sf)(rx) = sf(rx) = srf(x) = r(sf(x)) = (r(sf)) (x).

Notice that the reasoning would not work if R were not commutative, hence in that
case the rule for sf would not yield an R-module homomorphism.

One can easily check that distributivity and associativity hold for the two operations
defined above.

Exercise 1.16. 1. Show there is an isomorphism of abelian groups HomR(R,M) ∼=
M given by f 7→ f(1). If R is commutative, show it is an R-module isomorphism.

1This replaces an earlier erroneous statement about an Rop module structure on HomR(M,N).
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2. Set EndR(R) = HomR(R,R), where R is regarded as a left module over itself in
the standard way. Prove that for any ring R, we have an isomorphism of rings
EndR(R) ∼= Rop. More generally, show that there are ring isomorphisms

EndR(Rn) ∼=Mn(R)op ∼=Mn(Rop).

August 19, 2020

1.2 Categories and functors

1.2.1 Definition and first examples

The importance of category theory lies in the following:

• Category theory gives a unified treatment to similar notions or result when they
apply to different classes of objects, for example, there is a first isomorphism
theorem for groups, rings, modules, vector spaces.

• Often mathematical objects are defined by universal properties involving maps
and diagrams. An example of this that should be familiar from Math 818 is
the universal mapping property of a quotient group/ring/module. Category the-
ory gives a unified framework for manipulating maps and diagrams and objects
defined from such diagrams by universal mapping properties.

• Functors (which are maps between categories) are the principal way of relating an
area of mathematics to another. For example, you may have learned in topology
about the “fundamental group” π1(X) of a (pointed) topological space X. This
gives in fact a map π1 : 〈〈Top*〉〉 → 〈〈Groups〉〉 , X 7→ π1(X), which is an example
of a functor, and a very neat way of relating topological spaces to groups.

Definition 1.17. A category C consists of the following data:

1. Objects: a class of objects, written obC;

2. Morphisms: for each pair of objectsX, Y ∈ obC, there is a set, written HomC(X, Y )
and referred to as the set of morphisms from X to Y ;

3. Compositions: for each triple of objects X, Y, Z ∈ obC a function

HomC(X, Y )× HomC(Y, Z)→ HomC(X,Z)

written as (g, f) 7→ f ◦ g and referred to the composition rule.

This data is required to satisfy the following axioms:

1. if either X 6= X ′ or Y 6= Y ′, then HomC(X, Y ) ∩ HomC(X
′, Y ′) = ∅;
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2. composition is associative: (f ◦ g) ◦ h = f ◦ (g ◦ h) whenever h ∈ HomC(X, Y ),
g ∈ HomC(Y, Z) and f ∈ HomC(Z,Q) for some objects X, Y, Z,Q ∈ obC;

3. for each X there is an element idX ∈ HomC(X,X), referred to as the identity
morphism of X, such that idX ◦ g = g and f ◦ idX = f for all objects Y and Z
and all morphisms f ∈ HomC(X, Y ) and all g ∈ HomC(Z,X).

Remark 1.18. Some comments:

1. The objects of category form a “class” — in set theory a class is a collection that is
in some sense “bigger” than a set, so that every set is a class by not vice versa, and
that it is OK to talk about the “class of all sets” without running into paradoxes
(the class of all sets is not a set).

2. It’s easy to overlook the first axiom, but it is needed. Roughly, it says that the source
and target of a morphism are part of the data determining it. In most examples it
is obviously satisfied.

3. A standard argument shows that in a category C, idX is the only element of
HomC(X,X) that satisfies its defining property: If e ∈ HomC(X,X) has the same
two defining properties as idX , then idX = idX ◦ e = e. So, the existence of identity
morphisms is part of the axioms, not part of the data defining a category.

Example 1.19. Some standard examples of categories:

• Let 〈〈Sets〉〉 denote the category of sets: its objects are sets, the set of mor-
phisms between any two objects is the set of functions between these sets, and
the composition rule is the usual rule for composing functions. Note that idX is
the identity function. Isomorphisms are bijections.

• Let 〈〈Rings〉〉 denote the category of rings. It’s objects are (untial) rings and a
morphisms are (unital) ring homomorphism.

• Let 〈〈Groups〉〉 denote the category of groups. A morphism is defined to be a
group homomorphism.

• Let 〈〈Top〉〉 denote the category of topological spaces. Morphisms are continu-
ous maps. Note that an isomorphism is called a homeomorphism for historical
reasons. Important: Not every continuous bijection is a homeomorphism!

• For a fixed ring R, let 〈〈RMod〉〉 denote the category of left R-modules. Mor-
phisms are defined to be left R-modules homomorphisms. A particular case is
R = Z, where 〈〈ZMod〉〉 = 〈〈Ab〉〉 is the category of Abelian groups.

In each of the above examples, the objects are sets equipped with extra structure (a
group law, a topology, etc.), and the morphisms are functions that respect the structure
in a suitable sense (respect the group law, are continuous, etc.). Let us refer to such a
category as a “concrete category”. (There is actually a rigorous definition of this term,
which we will not discuss here.) Here is an example of a “non-concrete” category:
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Example 1.20. Let (P,≤) be a quasi-poset. This means that ≤ satisfies the reflexive
and transitive properties

a ≤ b and b ≤ c⇒ a ≤ c

and
a ≤ a.

A quasi-poset is a poset provided ≤ is also antisymmetric: a ≤ b and b ≤ a⇒ a = b.
We can regard a quasi-poset as forming a category PO(P ) as follows:
Set obPO(P ) = P . For any pair of objects a, b ∈ P , the set HomPO(P )(a, b) is

either a one-element set or empty, depending on whether a ≤ b or not. In order to give
a name to the morphisms, let a form a distinct symbol fa,b for each pair of elements of
P satisfying a ≤ b. So

HomPO(P )(a, b) =

{
{f ba} if a ≤ b

∅ else.

The rule for composition

HomPO(P )(a, b)× HomPO(P )(b, c)→ HomPO(P )(a, c)

is the only one possible: If both inputs are non-empty (i.e., if a ≤ b and b ≤ c), then
so is the target (by the first axiom of a quasi-poset), and we set

f cb ◦ f ba := f ca.

The first axiom of a quasi-poset ensures that this is well-defined. If either input is
empty, then so is the product, and there exists a unique function from the empty set
to any other set.

Now let’s check the axioms: suppose HomPO(P )(a, b) ∩ HomPO(P )(c, d) 6= ∅, then
f ba = fdc , but because we have chosen these symbols to be distinct we conclude that
a = c, b = d.

Composition is associative for a formal reason: there is exactly one function between
any two one-element sets.

The set HomPO(P )(a, a) is non-empty (by the second axiom of a quasi-poset) and
its unique element (namely, faa ) serves as the required two-sided identity.

Here is a sort of converse to the above example:

Exercise 1.21. Suppose C is a category with the properties that obC is a set (as
opposed to a proper class) and every Hom set has at most one element. Show that the
rule

X ≤ Y ⇐⇒ HomC(X, Y ) 6= ∅

makes obC into a quasi-poset.
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Example 1.22. Take C to be any non empty category and fix A ∈ obC. Define a
new category CA whose objects are certain morphisms in C and whose morphisms are
certain diagrams of C. In detail, set

obCA = {f : A→ Z | Z ∈ C} =
⋃
Z∈C

HomC(A,Z)

HomCA(f, g) = { commutative diagrams A
f

~~

g

��
X

h // Y

in C, i.e., h ◦ f = g.},

and define compositions by

A
g

��

`

��
Y

j // Z

◦ A
f

~~

g

��
X h // Y

= A
f

~~

`

��
X

j◦h // Z

.

Exercise 1.23. Show that the definitions above satisfy the axioms of a category.

August 21, 2020

1.2.2 Types of morphisms

Some more terminology and notation that illustrates how category theory is the science
of arrows and diagrams:

Definition 1.24. A diagram in a category C is a directed multigraph whose vertices
are objects in C and whose arrows are morphisms in C. A commutative diagram in C
is a diagram in which for each pair of vertices A and B, any two paths from A to B
are equal; that is, the composites are the same morphism.

Example 1.25. If G is a group, a, b ∈ G and µa, µb ∈ Hom〈〈Groups〉〉(G,G) are the
homomorphism given by left multiplication by a, b respectively, then the diagram below
commutes if and only if ab = ba:

G
µa //

µb
��

G

µb
��

G
µa // G

Definition 1.26. A morphism f : X → Y in a category C is called an isomorphism
provided there exists a morphism g : Y → X such that g ◦ f = idX and f ◦ g = idY .

A morphism f : X → Y in a category C is called a monomorphism provided that
for any Z ∈ obC and any morphisms α, β : Z → X such that f ◦ α = f ◦ β one has
α = β.

A morphism f : X → Y in a category C is called an epimorphism provided there
for any Z ∈ obC and any morphisms α, β : Y → Z such that α ◦ f = β ◦ f one has
α = β.
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Remark 1.27. For each category C there is an opposite category Cop for which

• obCop = obC and

• HomCop(X, Y ) = HomC(Y,X), that is, for each morphism f : X → Y in C there
is a morphism f op : Y → X in Cop.

Intuitively, Cop is the category obtained from C by reversion all the arrows. We now see
that f is a monomorphism in C if and only if f op is an epimorphism in Cop. Thus we say
that monomorphism and epimorphism are dual notions (obtained by reversing arrows).
The importance of this fact is that whenever we have a theorem about monomorphisms
it can be translated into a dual theorem about epimorphisms in the opposite category.

Example 1.28. • The identity morphism is always an isomorphism.

• The isomorphisms in 〈〈Sets〉〉 are all the bijections.

• P is a poset iff the only isomorphisms in PO(P ) are the identity homomorphisms.

Remark 1.29. The usual argument shows that if f is an isomorphism, then there is
only one g satisifying these conditions and hence we write this g asf−1. Namely, say
f ◦ h = idY and h ◦ f = idX also hold. Then

h = h ◦ idY = h ◦ (f ◦ g) = (h ◦ f) ◦ g = idX ◦ g = g.

Example 1.30. • In 〈〈Sets〉〉 the monomorphisms are the injections and the epi-
morphisms are the surjections.

• All morphisms in PO(P ) are both monomorphisms and epimorphismsm.

Remark 1.31. In 〈〈Sets〉〉 it is true that a morphims f is an isomorphism iff it is both
a monomorphim and an epimorphism. This is no longer true in other categories: for
example if P is a poset, in PO(P ) all morphisms are both mono- and epi- but only the
identity morphisms are iso-.

Exercise 1.32. What are the monomorphisms and epimorphisms in 〈〈Rings〉〉? Is it
true in 〈〈Rings〉〉 that f is an isomorphism if and only if it is both a monomorphism
and an epimorphism?

Definition 1.33. For a category C and X ∈ obC, we write EndC(X) for HomC(X,X).
The elements of this set are called endomorphisms of X. Endomorphisms that are
isomorphisms are called automorphisms, and the set of all automorphisms of a given
object X is written AutC(X).

Remark 1.34. For any object X of a category C, the axioms of a category imply that
EndC(X) is a monoid (aka, a semigroup that has an identity element) under the com-
position law f ◦ g. The set AutC(X) is the subset of units of this monoid and it forms
a group under composition.

In fact all monoids can be recovered as the endomorphisms of some category:

Exercise 1.35. Show that there is a bijection between categories with exactly one
object and monoids (semigroups with identity).
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1.2.3 Universal properties, product, coproduct

Many of the concepts introduced in Math 817/818 have an explicit description and an
accompanying description in terms of a universal property (e.g. the universal property
for quotient groups/rings/vector spaces will be recalled below). The explicit description
may be very useful in concrete computations, but as a rule it is the universal property
that clarifies the true nature of the construction and may be more useful in abstract
arguments.

Also, deeper relationships become apparent when the constructions are viewed in
terms of their universal properties. For example, we will see that cartesian products of
sets and disjoint unions of sets are really dual constructions (in the sense that reversing
arrows transforms the universal property for one into that for the other.

Definition 1.36. A terminal object in a category C is an object T such that for every
object F of C, the set HomC(F, T ) has precisely one element.

An initial object of C is an object I of C such that the set HomC(I, Y ) has exactly
one element for all objects Y .

Example 1.37. • Does 〈〈Ab〉〉 have a initial/terminal object? Yes, it’s the 0
abelian group.

• How about 〈〈Sets〉〉? The final object is a singleton set and the initial object is
the empty set.

• How about 〈〈Rings〉〉? The final object is the 0 ring and Z is the initial object.

Initial and final objects in categories are unique in a strong sense:

Exercise 1.38. Show that in any category any two initial objects are isomorphic
through a unique isomorphism and any two final objects are isomorphic through a
unique isomorphism.

A property or construction is category-theoretic if it can be defined or described
using nothing other than the structure of the category to which the object belongs.

We say that a construction satisfies a universal property when it may be viewed
as an initial or terminal object of a category. Since being initial/final amounts to the
existence and uniqueness of certain morphisms, the explanation of a universal property
may follow the pattern, “object X is universal with respect to the following property:
for any Y such that..., there exists a unique morphism Y → X (or X → Y ) such
that....”

We now give several examples of category-theoretic universal constructions.

Quotient

Let ∼ be an equivalence relation defined on a set A and let

π : A→ A/ ∼
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be the quotient map a 7→ a, where a = {b ∈ A | b ∼ a} is the coset of a with respect
to ∼.

Lemma 1.39. The pair (A/ ∼, π) is universal with respect to the property of mapping
A to a set in such a way that equivalent elements have the same image. That is, if
f : A → X is a function such that a ∼ a′ ⇒ f(a) = f(a′), then there is a unique
function h : A/ ∼→ X that makes the following diagram commute:

A
π

||

f

��
A/ ∼ h // X

Proof. We will show that π is the initial object of the full subcategory of 〈〈Sets〉〉A
from Example 1.22 whose objects are functions f : A → X in C such that a ∼ a′ ⇒
f(a) = f(a′) and whose morphisms are the same as in 〈〈Sets〉〉A.

Consider f : A→ X a morphism in C. Then HomCA(π, f) consists of commutative
diagrams

A
π

||

f

��
A/ ∼ h // X.

Note that π is initial iff each f ∈ HomC(A,X) determines a unique such diagram, i.e
there is a unique h ∈ HomC(A/ ∼, X) such that h ◦π = f . Uniqueness follows because
this identity allows us to write down the rule for h explicitly

h(a) = f(a).

It remains to show that h is well defined. Notice that this follows from

a ∼ a′ ⇒ f(a) = f(a′)⇒ h(a) = h(a′)

by the restriction imposed on objects in our category.

August 24, 2020

Product and coproduct

Definition 1.40. In a category C, given a family of objects {Xi}i∈I , a product of the
family is given by an object P and a family of morphisms {gi : P → Xi}i∈I that is
universal in the following sense:

Given an object Y and a family of morphisms {fi : Y → Xi}i∈I , there exists a
unique morphism α : Y → P such that gi ◦ α = fi for all i.
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Here is a schematic representation for this definition in the case when I = N is
countably infinite.

X1

X2

P

g1

FF

g2

>>

gn

  

��

Y

f1

XX

f2

``

fn

~~

��

∃! α
oo

Xn

...

Remark 1.41. (P, {gi : P → Xi}) is the product of the family in the definition if and
only if the function

HomC(Y, P )→
∏
i

HomC(Y,Xi), α 7→ {gi ◦ α}i∈I

is a bijection of sets, where the notation
∏

in the codomain refers to the cartesian
product of sets.

Definition 1.42. A coproduct of family of objects {Xi}i∈I is given by an object C and
a family of morphisms gi : Xi → C that is universal in the sense that given an object
Y and morphisms fi : Xi → Y for each i, there exists a unique morphism α : C → Y
such that α ◦ gi = fi for all i.

Here is the diagram representation of the definition of coproduct. Note that all
arrows are reversed with respect to the previous diagram, thus product and coproduct
are dual notions.

X1

g1

��

f1

��

X2

g2~~ f2   
C

∃! α // Y

Xn

gn
``

fn
>>

...

WW GG
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Remark 1.43. (C, {gi : Xi → C}) is a coproduct of the family in the definition above
if and only if the function

HomC(C, Y )
∼=−→
∏
i

HomC(Xi, Y ) α 7→ {gi ◦ α}i∈I

is a bijection of sets, where again
∏

denotes cartesian product of sets.

Example 1.44. In any category C, for any object X, the product of the one-element

family {X} consisting of just X is P = X itself along with the identity map P
id−→ X.

Likewise, the coproduct of {X} is C = X with the map X
id−→ C.

Example 1.45. In 〈〈Sets〉〉, the product of any collection of sets exists and is given by
(
∏

i∈I Xi, πi) the cartesian product along with the projection maps πi from a cartesian
product of sets onto each of the factors.

The coproduct is given by (
∐

i∈I Xi, ιi), where
∐

i∈I Xi is the disjoint union of sets
and ιi : Xi →

∐
i∈I Xi is the inclusion map. By disjoint union we mean the ordinary

union if the collection happens to be pairwise disjoint, but otherwise one must first
replace each set by a bijective copy of it to make them pairwise disjoint, and then form
the ordinary union.

There is no guarantee that a product or coproduct of a given family of objects
exists. But when one does exist, it is unique up to unique isomorphism:

Proposition 1.46. If (P, {gi : P → Xi}i∈I) and (P ′, {g′i : P ′ → Xi}i∈I) are both
products for the same family {Xi}i∈I of objects in some category C, then there is a

unique isomorphism α : P
∼=−→ P ′ such that g′i ◦ α = gi for all i. The analogous

statement holds for coproducts.

Proof. We’ll just prove the statement concerning products. Using that (P, {gi}) is a
product and letting (P ′, {g′i}) play the role of the “test” object in the definition of a

product, we obtain a unique morphism α : P
∼=−→ P ′ such that g′i ◦ α = gi for all i. We

need to show α is an isomorphism.

Interchanging the roles, we also have a unique map β : P ′
∼=−→ P such that gi ◦β = g′i

for all i. Consider the composition β ◦ α : P → P . It satisfies gi ◦ (β ◦ α) = gi for
all i. But the identify map idP : P

=−→ P also satisfies gi ◦ idP = gi for all i, and so
the uniqueness part of the definition of product implies that β ◦ α = idP . A similar
argument shows that α ◦ β = idP ′ . So, α is an isomorphism.

Exercise 1.47. Prove the analogue for coproducts.

Example 1.48. The following table summarizes the structure of products and coprod-
ucts in various caregories

13



Category Product Coproduct
〈〈Sets〉〉 cartesian product disjoint union
〈〈Groups〉〉 cartesian product free product (we won’t discuss this notion)
〈〈Rings〉〉 cartesian product none

〈〈Comm Rings〉〉 cartesian product tensor product (we will define this soon)
〈〈RMod〉〉 cartesian product direct sum

Remark 1.49. In 〈〈Rings〉〉, the product of a family of rings is the cartesian product,
which is a ring with the component-wise rules for addition and multiplication.

However there is no coproduct in this category. Here is a failed attempt at finding
a coproduct. If R and S are ring, a reasonable guess for a potential coproduct would
be that C = R × S, with component-wise rules for addition and multiplication, along
with the inclusion maps i : R→ C, j : S → C defined by i(r) = (r, 0) and j(s) = (0, s).
This is not in fact a coproduct since i, j are not ring homomorphismsm since they don’t
send 1 to 1 (if R and S are non-zero rings).

As we will see, in the subcategory 〈〈CommRings〉〉 of commutative rings the co-
product of a pair of commutative rings exists, and it is given by the “tensor product”
construction.

Some terminology:

Definition 1.50. Given a category C and and subclass S of obC, the full subcategory on
S is the category D with obD = S and for any X, Y ∈ S, HomD(X, Y ) = HomC(X, Y ).

For example, 〈〈Comm Rings〉〉 is the full-subcategory of 〈〈Rings〉〉 consisting of
the commutative rings, and 〈〈Ab〉〉 is the full subcategory of 〈〈Groups〉〉 consisting of
groups that are abelian.

Remark 1.51. Beware that the product and coproduct of a family can change when you
pass from a full subcategory to a larger category. Given two non-zero abelian groups
A and B, their coproduct in 〈〈Ab〉〉 differs from their coproduct in 〈〈Groups〉〉. You’ll
encounter this in the homework.

For a ring R, the category 〈〈RMod〉〉 has arbitrary products and coproducts.

Proposition 1.52 (Products and Coproducts in 〈〈RMod〉〉). Let R be a ring, N a left
R-module and {Mi}i∈I a collection of left R-modules.

1. A product for the family {Mi}i∈I is (P =
∏

i∈IMi, πi), where P is the cartesian
product of the Mi which is a left R-module with the componentwise addition and
scalar multiplication and the map πi is the projections from the cartesian product
onto the i-th factor.

Equivalently, the function

β : HomR(N,
∏
i∈I

Mi)→
∏
i∈I

HomR(N,Mi) β(G) = (πi ◦G)i∈I

is a bijection and in fact an isomorphism of abelian group for arbitrary R and of
R-modules if R is commutative.

14



2. A coproduct for the family {Mi}i∈I is given by (C, ιi) where C is the direct sum

C =
⊕
i∈I

Xi = {(xi)i∈I | xi 6= 0 for only finitely many i}

and ιi : Mi → C is the inclusion that takes m ∈ Mi to the sequence with m in
the i-th coordinate and 0 elsewhere.

Equivalently, the function

α : HomR(
⊕
i∈I

Mi, N)→
∏
i∈I

HomR(Mi, N) α(F ) = (F ◦ ιi)i∈I

is a bijection and in fact an isomorphism of abelian groups for R arbitrary and
of R-modules if R is commutative.

Remark 1.53. If the index set I is finite then
∏

i∈IMi =
⊕

i∈IMi, so P = C, but the
product and coproduct constructions are still different because the maps they involve
are projections on one hand and inclusions on the other. If the index set I is infinite
then

⊕
i∈I Xi is a proper submodule of

∏
i∈I Xi.

Note also that α would not be well-defined if we replaced
⊕

IMi with
∏

IMi, and
β would not be well-defined if we replaced

∏
IMi with

⊕
IMi.

Proof. (1) One needs to show that (P, πi) satisfies the universal mapping property
of the product: given R-maps gi : N → Mi for each i, there is a unique R-map
G : N →

∏
iMi such that πj ◦G = gj for all j. Indeed, the condition that πj ◦G = gj

yields that such a map must be given by

G(n) = (gi(n))i∈I .

In order for this map to verify the definition of product, one needs to check that G
is an R-module homomorphism. This follows because each of the gi are R-module
homomorphisms.

As for the fact that β as defined above is a bijection, this follows by the existence
and uniqueness of G, given a tuple of morphisms (gi)i∈I ∈

∏
i∈I HomR(N,Mi). Both the

domain and codomain of β are abelian groups and left R-modules if R is commutative
by Proposition 1.72. Now we check that β is an group homomorphism:

β(G+H) = (πi ◦ (G+H))i∈I = (πi ◦G)i∈I + (πi ◦H)i∈I

because πi are group homomorphisms and

β(sG) = (πi ◦ (sG))i∈I = (s(πi ◦G))i∈I = s(πi ◦G)i∈I for s ∈ R

where the second equality follows from

(πi ◦ (sG))(n) = πi ((sgj(n))j∈I) = sgi(n) = s(πi ◦G)(n).

15



(2) One needs to show that (C, ιi) satisfies the universal mapping property of the
coproduct: Given an R-map fi : Mi → N for each i, there exists a unique R-map

F :
⊕

i∈IMi → N such that for each j the composition Mj
ιj−→
⊕

i∈IMi
F−→ N is fj.

We show that this map can be define by

F ((mi)i∈I) =
∑
i∈I

fi(mi).

Note that this definition makes sense since (mi)i∈I is an element of the direct sum
C and thus there are only a finite number of nonzero summands in the summation
displayed above, so we are dealing with a finite sum, which is well defined in a group.

One needs to check that F is indeed an R-module homomorphism, which I leave
as an exercise. The uniqueness of F holds since

⊕
i∈IMi is generated by the subset

∪iιi(Mi). The map α is the inverse of the map sending (fi)i∈I to F , hence a bijection.
I will leave the check that α is a morphism of abelian groups and if R is commutative
of R-modules as an exercise.

The important takeaway that one should remember from the previous proposition
is that there are abelian groups and if R is commutative R-module homomorphisms
between the following Hom sets.

HomR(
⊕
i∈I

Mi, N) ∼=
∏
i∈I

HomR(Mi, N) (1.2.1)

HomR(N,
∏
i∈I

Mi) ∼=
∏
i∈I

HomR(N,Mi) (1.2.2)

In other words, Hom takes direct sum in the source and direct product in the target
to direct products of hom sets.

Exercise 1.54. Let (P,≤) be a quasi-poset, regarded as a category as described above.
Under what conditions do products/coproducts exist for a pair of objects in this cate-
gory? Describe them in terms of the order relation.

August 26, 2020

1.2.4 Functors

One can think of functors as homomorphisms of categories.

Definition 1.55. Given two categories C and D, a covariant functor, sometimes called
just a functor, from C to D, written as

F : C → D

consists of the following data:
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1. a function F : obC → obD of classes (yes this makes sense, or so I am told) and

2. for each pair of objects X, Y ∈ obC, a function of sets

F(X, Y ) : HomC(X, Y )→ HomD(F (X), F (Y )).

This data must satisfy

1. for all X ∈ obC, we have F (idX) = idF (X) and

2. F (f ◦ g) = F (f) ◦ F (g), whenever f ◦ g is defined.

Remark 1.56. It is necessary to include the axiom F (idX) = idF (X).

Remark 1.57. A functor takes commutative diagrams to commutative diagrams.

Remark 1.58. The composition of functors is a functor: If F : C → D and G : D → E
are functors, then we may define G ◦F : C → D on objects by (F ◦G)(X) = F (G(X))
and on morphisms by composing

HomC(X, Y )
F−→ HomD(F (X), F (Y ))

G−→ HomE(G(F (X)), G(F (Y ))).

The axioms are not hard to check.

Definition 1.59. Given two categories C and D, a contravariant functor from C to D
consists of the following data:

1. a function F : obC → obD of classes and

2. for each pair of objectsX, Y ∈ obC, a function F : HomC(X, Y )→ HomD(F (Y ), F (X))
of sets. (Note the order is backwards from the definition of a covariant functor.)

This data must satisfy

1. for all X ∈ obC, we have F (idX) = idF (X) and

2. F (f ◦ g) = F (g) ◦ F (f), whenever f ◦ g is defined. (Again, note that this is
backwards.)

Remark 1.60. A contravariant functor also takes commutative diagrams to commuta-
tive diagrams, but reverses all the arrows.

Example 1.61. For any C we have the evident identity functor.
More generally, if D is a full subcategory of C, then we have an inclusion functor

D ↪→ C.

Example 1.62. There are “forgetful” functors from 〈〈Groups〉〉 to 〈〈Sets〉〉, from
〈〈Rings〉〉 to 〈〈Sets〉〉, from 〈〈Top〉〉 to 〈〈Sets〉〉, etc. The first sends a group to its
underlying set (i.e., forget the group operation) and a homomorphism to the underly-
ing function. And similarly for the other examples.

Note that none of these categories are full subcategories of 〈〈Sets〉〉.
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Example 1.63. Fix a positive integer n and define a functor F : 〈〈Rings〉〉 → 〈〈Rings〉〉
on objects by

F (R) =Mn(R)

and given an ring homomorphism f : R→ R′ we define

F (f) :Mn(R)→Mn(R′).

to be map given by applying f to each entry of an n× n matrix.
The case n = 1 is (very nearly) the identity functor.

Example 1.64. The assignment of a (unital) ring R to its groups of units R× deter-
mines a functor

F : 〈〈Rings〉〉 → 〈〈Groups〉〉 , F (R) = R×, F (f) = f |R× .

The required rule for morphisms sends a ring homomorphism f : R→ S to its restric-
tion to R×, which does indeed land in S× and gives a group homomorphism. The two
axioms for being a functor are easy to check.

Example 1.65. For a group G, let G′ denote its derived subgroup

G′ = {aba−1b−1 | a, b ∈ G} and let Gab = G/G.′

This construction gives a functor

F : 〈〈Groups〉〉 → 〈〈Ab〉〉 F (G) = Gab.

If f : G → H is a homomorphism of groups, then f(G′) ⊆ H ′ and hence by the
universal mapping property of the quotient f induces a map f : Gab → Hab. We define
F (f) = f to be this induced map. The axioms of a functor are easy to check.

Exercise 1.66. Recall that a quasi-poset (P,≤) may be interpreted as a very special
kind of category. If (P ′,≤) is another poset, also interpreted as a category, show that
a covariant functor from (P,≤) to (P ′,≤) is the same thing as an order preserving
function.

Definition 1.67. An additive category is a category A such that:

1. each Hom set HomA(X, Y ) is endowed with the extra structure of an abelian
group (usually written with additive notation)

2. for all objects the composition pairing

HomA(X, Y )× HomA(Y, Z)→ HomA(X,Z)

is a group homomorphism; that is, we have

(f + g) ◦ h = f ◦ h+ g ◦ h and f ′ ◦ (g′ + h′) = f ′ ◦ g′ + f ′ ◦ h′,

for all morphisms f, g, h, f ′, g′, h′ such that the compositions are defined.
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3. C has a “zero object”, written 0, that is both terminal and initial.

4. Every pair of objects X, Y has a product denoted X ⊕ Y .

Example 1.68. The following are examples of additive categories

1. 〈〈Ab〉〉 with 0 being the trivial group

2. 〈〈RMod〉〉 for any ring R, with 0 being the 0 module

3. Any full subcategory of an additive category that contains the 0 object and is
closed under finite products. For example, for a ring R, the category of all finitely
generated left R-modules is additive.

Remark 1.69. Notice that the second axiom of an additive category implies that the
endomorphism sets EndA(X) are in fact rings with respect to + and ◦.

August 28, 2020

Definition 1.70. Given two additive categories A,B a functor F : A → B is called an
additive functor if for all objects X, Y ∈ obA, the function

FX,Y : HomA(X, Y )→ HomB(F (X), F (Y ))

is a homomorphism of abelian groups.
A contravariant functor between additive categories is additive if

FX,Y : HomA(X, Y )→ HomB(F (Y ), F (X))

is a homomorphism of abelian groups for all X, Y .

Exercise 1.71. Prove that if F is an additive functor then F (X⊕Y ) ∼= F (X)⊕F (Y )
and F (0) ∼= 0.

Module structure on HomR(M,N)

For left R-modules M,N the set HomR(M,N) is an abelian group and it is furthermore
an R-module if R is commutative.

Proposition 1.72. If R is a ring and M,N are left R-modules then the set HomR(M,N)
of R-module homomorphisms from M to N is an abelian group with the addition

(f + g)(x) = f(x) + g(x) for f, g ∈ HomR(M,N).

If R is commutative, this group has a left R-module structure given by the scalar mul-
tiplication

(sf)(x) = sf(x) for f ∈ HomR(M,N), s ∈ R.
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Proof. The fact that HomR(M,N) forms an abelian group with respect to addition of
functions is easy to check. Next I will check that the rule for sf gives an element of
HomR(M,N). Indeed, sf preserves +

(sf)(x+y) = sf(x+y) = s(f(x)+f(y)) = sf(x)+sf(y) = (sf)(x)+(sf)Y (Y ) for x, y ∈M

and is R-linear

(sf)(rx) = sf(rx) = srf(x) = r(sf(x)) = (r(sf)) (x) for x ∈M.

Notice that the reasoning would not work if R were not commutative, hence in that
case the rule for sf would not yield an R-module homomorphism.

One can easily check that distributivity and associativity hold for the two operations
defined above.

Remark 1.73. If R, S are rings we say that M is an R − S-bimodule if M is a left R
module and a right S module and these two structures satisfy the following associative
property (rm)s = r(ms). For example R is an R − R bimodule with respect to the
internal multiplication. Any left R-module M is also a right Rop module but this does
not necessarily make M into an R − Rop bimodule since the two multiplications need
not satisfy the property (rm)s = r(ms).

IfR, S are rings, M is anR−S-bimodule andN is a leftR-module then HomR(M,N)
has a left S-module structure with scalar multiplication given by (sf)(x) = f(xs).

IfR, S are rings, M is a leftR-module andN is anR−S-bimodule then HomR(M,N)
has a right S-module structure with scalar multiplication given by (fs)(x) = f(x)s.

Example 1.74. We can see that for any abelian group A, HomZ(Z, A) ∼= A by checking
that f 7→ f(1) is an isomorphism. In particular, HomZ(Z,Z) = EndZ(Z) ∼= Z and
HomZ(Z,Z/n).

Next we compute HomZ(Z/m,Z/n). Similar to above, any element f of this set is
completely determined by f(1). Now we know that m1 = 0 in Z/m, hence mf(1) =
f(m1) = f(0) = 0 in Z/n. Thus

HomZ(Z/m,Z/n) ∼= {t ∈ Z/n | mt = 0}
= {t ∈ Z/n | n | mt} = {t ∈ Z/n | n

gcd(m,n)
| t}

= 〈 n

gcd(m,n)
〉Z/n ∼= Z/ gcd(m,n),

where the last isomorphism is due to the fact that any cyclic group with d elements is
isomorphic to Z/d (here d = gcd(m,n).)

Note that we can use equations (1.2.1) to extend this to Hom between any two
finitely generated Z-modules, for example

HomZ(Z⊕ Z/2,Z/3⊕ Z/4)
∼= HomZ(Z,Z/3)⊕ HomZ(Z/2,Z/3)⊕ HomZ(ZZ/4)⊕ HomZ(Z/2,Z/4)

∼= Z/3⊕ 0⊕ Z/4⊕ Z/2.
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We will use this to build two functors: one which is covariant Hom(M,−) and one
which is contravariant HomR(−, N).

The covariant Hom functor

The following additive functor will be very important to us:

Proposition 1.75. Fix a ring R and a left R-module M . We define a functor

HomR(M,−) : 〈〈RMod〉〉 → 〈〈Ab〉〉

as follows:

• on objects, for any N , let HomR(M,N) be the set of R-module homomorphisms
regarded as a abelian group as usual.

• given a morphism g : N → N ′ of left R-modules, let HomR(M, g) to be left
composition by g (sometimes written as g∗), i.e.

HomR(M, g) : HomR(M,N)→ HomR(M,N ′), HomR(M, g)(α) = g ◦ α.

The rules above give rise to an additive covariant functor.
When R is commutative, this rule can be viewed as an additive functor

HomR(M,−) : 〈〈RMod〉〉 → 〈〈RMod〉〉 .

Proof. We check the requirements in Definition 1.55:

1. HomR(M, idX)(α) = idX ◦ α = α whenever the composition is defined, thus
HomR(M, idX)(α) is the identity map on HomR(M,X).

2. HomR(M, f ◦ g)(α) = (f ◦ g) ◦ α = f ◦ (g ◦ α) = HomR(M, f)(g ◦ α)
= HomR(M, f)(HomR(M, g)(α)) = (HomR(M, f) ◦ HomR(M, g))(α)

Furthermore HomR(M, g) is indeed a morphism of abelian groups since

HomR(M, g)(α+ β) = g ◦ (α+ β) = g ◦α+ g ◦ β = HomR(M, g)(α) + HomR(M, g)(β).

If R is commutative, we have a left R-module structure on Hom(M,N) as in Propo-
sition 1.72 and we can make the functor discussed above into a functor

HomR(M,−) : 〈〈RMod〉〉 → 〈〈RMod〉〉 .

The only issue is whether HomR(M, g) is an R-module map. This is true since

HomR(M, g)(sα) = g◦(sα) = g(sα) = s(g◦α) = sHomR(M, g)(α) by the R-linearity of g.
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Example 1.76. Let’s study the functor HomZ(Z,−). We have that for any Z-module
M , HomZ(Z, N) ∼= N via the map f 7→ f(1). Moreover for a Z-module map g : N → N ′

I claim that HomZ(Z, g) : HomZ(Z, N) → HomZ(Z, N ′) is ”the same” as g : N → N ′.
More specifically, the following diagram commutes

HomZ(Z, N)

∼=
��

HomZ(Z,g) // HomZ(Z, N ′)
∼=
��

N
g // N ′.

We say in this situation that HomZ(Z,−) is naturally isomorphic to the identity functor
on 〈〈ZMod〉〉. A formal definition for this notion will be given later.

Now let’s study the functor HomZ(−,Z/2). Let’s consider the quotient homomor-
phism

π : Z→ Z/2, π(x) = x.

Then HomZ(Z/2, π) : HomZ(Z,Z/2) → HomZ(Z/2,Z/2) fits in the commutative dia-
gram

HomZ(Z,Z/2)

∼=
��

HomZ(Z/2,π)// HomZ(Z/2,Z/2)

∼=
��

0 // Z/2.

This shows that HomZ(Z/2, π) is the map that sends every element of its domain to
0 ∈ HomZ(Z/2,Z/2). Note that in this example the functor HomZ(Z/2,−) sends a
surjective morphism (epimorphism) to a non surjective morphism.

The contravariant Hom functor

So far all the examples of functors that we have seen have been covariant. The following
is an example of a contravariant functor:

Proposition 1.77. Fix a ring R and a left R-module N . We define a functor

HomR(−, N) : 〈〈RMod〉〉 → 〈〈Ab〉〉

as follows:

• on objects, for any M , let HomR(M,N) be the set of R-module homomorphisms
regarded as a abelian group as usual.

• given a morphism g : M → M ′ of left R-modules, let HomR(g,N) to be right
composition by g (sometimes written as g∗), i.e. the map

HomR(g,N) : HomR(M ′, N)→ HomR(M,N) HomR(g,N)(α) = α ◦ g.
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Then this rule defines an additive contravariant functor.
Moreover, if R is commutative, we may interpret HomR(−, N) as a contravariant

functor from 〈〈RMod〉〉 to itself.

Proof. Note that HomR(g,N) does indeed map HomR(M ′, N) to HomR(M,N): Given
α ∈ HomR(M ′, N), the function HomR(g,N)(α) = α◦g is an R-module homomorphism
since it is a composition of two such maps.

The two axioms for being a contra-variant functor are easy to check:

1. We have HomR(idM , N) = idHomR(M,N) since HomR(idM , N)(α) = α ◦ idM = α
for all α ∈ HomR(M,N) and

2. HomR(g ◦ f,N) = HomR(f,N) ◦ HomR(g,N) for all composable g, f since

HomR(g ◦ f,N)(α) = α ◦ (g ◦ f) = (α ◦ g) ◦ f = HomR(f,HomR(g,N)).

Furthermore HomR(g,N) is indeed a morphism of abelian groups since

HomR(g,N)(α+ β) = (α+ β) ◦ g = α ◦ g + β ◦ g = HomR(g,N)(α) + HomR(g,N)(β).

If R is commutative then HomR(g,N) is an R-module map since

HomR(g,N)(sα) = (sα) ◦ g = sHomR(M, g)(α).

Example 1.78. Let’s compute HomZ(µd,Z/d) : HomZ(Z,Z/d) → HomZ(Z,Z/d),
where µd : Z→ Z is the map µd(x) = dx. We can write a commutative diagram

HomZ(Z,Z/d)

∼=
��

HomZ(µd,Z/d)// HomZ(Z,Z/d)

∼=
��

Z/d 0 // Z/d.

where the vertical maps send f 7→ f(1) by setting the bottom horizontal map to be
the induced map µd : Z/d→ Z/d which maps µd(x) = dx = 0, i.e the zero map. This
shows that the contravariant Hom can take monomorphsms (injective homomorphisms)
to maps that are not monomorphisms nor epimorphisms.

Example 1.79. A special case of the above occurs when R = k is a field and N =
k. Then Homk(−, k) is the functor sending a k-vector space V to its dual V ∗ :=
Homk(V, k), that is the vector space of linear functionals on V . Note that if V is finite
dimensional, then V ∗ has the same dimension as V and hence V and V ∗ are isomorphic.
But, there is no “natural” isomorphism from V to V ∗. More on that later.
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1.2.5 Natural Transformations

Definition 1.80. Given two categories C and D and two functors F,G : C → D
between them, a natural transformation from F to G, sometimes written as

η : F ⇒ G,

consists of the following data:

For each X ∈ obC a morphism

ηX : F (X)→ G(X)

in D (i.e., ηX ∈ HomD(F (X), G(X))).

This data are required to satisfy the following condition:

For all X, Y ∈ obC and all f : X → Y , we have{
ηY ◦ F (f) = G(f) ◦ ηX if F is covariant

ηX ◦ F (f) = G(f) ◦ ηY if F is contravariant

i.e the applicable diagram commutes F (X)
F (f) //

ηX
��

F (Y )

ηY
��

G(X)
G(f) // G(Y )

or F (X)

ηX
��

F (Y )

ηY
��

F (f)
oo

G(X) G(Y ).
G(f)
oo

A natural transformation η of functors is called a natural isomorphism if ηX is an
isomorphism for all objects X.

Example 1.81. We have seen in Example 1.76 that there is a natural isomorphism of
functors between the identity functor on 〈〈Ab〉〉 and the functor HomZ(Z,−).

Example 1.82. Fix a field k and let 〈〈Vectk〉〉 be the category of k-vector spaces
and D : 〈〈Vectk〉〉 → 〈〈Vectk〉〉 be the functor Homk(−, k). Then there is a natural
transformation

η : id〈〈Vectk〉〉 ⇒ D ◦D

given by the collection of k-vector space maps

ηV : V → D(D(V ))

defined as follows:

For v ∈ V , let ηV (v) : Homk(Homk(V, k), k)) be “evaluation at v”: for
γ ∈ Homk(V, k), we have ηV (v)(γ) = γ(v).
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Since the dual of a finite dimensional vector space is again finite dimensional, D

retricts to an endo-functor on the category
〈〈

Vectfdk

〉〉
of finite dimensional vector

spaces. On the homework you will prove that this restriction is a natural isomorphism.
(You should also check it is a natural transformation carefully.)

Definition 1.83. An equivalence between two categories C and D consists of a pair of
functors

F : C → D and G : D → C

and a pair of natural isomorphisms η : idC ⇒ G ◦ F and η′ : idD ⇒ F ◦G.

Remark 1.84. Equivalence of categories really is an equivalence relation, but I won’t
prove that.

Example 1.85 (Concrete linear algebra is equivalent to abstract linear algebra). For
each natural number n, the categories Mn(k) of and 〈〈Vectnk〉〉 of n-dimensional k-
vector spaces are equivalent.

Example 1.86. In operator algebras, the category of commutative, unital C∗-algebras
is equivalent to the opposite of the category of compact Hausdorff spaces.
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1.3 Projective and injective modules

1.3.1 Exact sequences and exact functors

Definition 1.87. A sequence of R-modules and R-module maps of the form

· · · di+1−−→Mi
di−→Mi−1

di−1−−→ · · ·

(possible infinite, possibly not) is a chain complex if di◦di+1 = 0 for all i or, equivalently,
Im(di+1) ⊆ Ker(di) for all i.

A chain complex is an exact sequence if Im(di+1) = Ker(di) for all i.

Remark 1.88. A sequence of the form M
g−→ N → 0 is exact if and only if g is surjective,

and a sequence of the form 0→M
f−→ N is exact iff f is injective.

Definition 1.89. A left exact sequence is an exact sequence of the form

0→M ′ i−→M
g−→M ′′

This means i is injective and M ′ ∼= Im(i) = Ker(g).
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A right exact sequence is an exact sequence of the form

M ′ f−→M
p−→M ′′ → 0

This means p is onto and Im(f) = Ker(p), so, M ′′ ∼= M/Ker(p) = M/ Im(f). We
denote M/ Im(f) = coker(f) and call it the cokernel of f . Thus in a right exact
sequence as above, M ′′ ∼= coker(f).

A short exact sequence is an exact sequence of the form

0→M ′ i−→M
p−→M ′′ → 0

Note that in a short exact sequence M ′ ∼= Ker(p) and M ∼= coker(i). We also say that
M is an “extension” of M ′ and M ′′ if it fits in a short exact sequence as above.

Given modules M ′ and M ′′, we have the “trivial” s.e.s.

0→M ′ ι−→M ′ ⊕M ′′ π−→M ′′ → 0

where ι is the canonical inclusion and π is the canonical projection. The following
result gives equivalent conditions for when a s.e.s. is equivalent to a split one.

Theorem 1.90 (The splitting theorem). Given a s.e.s. of left R-modules

0→M ′ i−→M
p−→M ′′ → 0,

TFAE:

1. There is a commutative diagram where each vertical arrow is an isomorphism

0 //M ′ i //

id
��

M
p //

θ
��

M ′′ //

id
��

0

0 //M ′ ι //M ′ ⊕M ′′ π //M ′′ // 0.

2. There is an isomorphism θ : M
∼=−→M ′ ⊕M ′′ such that θ ◦ i = ι and π ◦ θ = p.

3. There is a map q : M →M ′ such that q ◦ i = idM ′ (we say i is a “split injection”
in this case).

4. There is a map j : M ′′ →M such that p◦j = idM ′′ (we say p is a “split surjection”
in this case).

5. There are maps q : M →M ′ and j : M ′′ →M such that q◦i = idM ′, p◦j = idM ′′,
and i ◦ q + j ◦ p = idM .

If these equivalent conditions hold, we call the s.e.s. a split exact sequence.
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Proof. (1) ⇔ (2) follows by definition of commutative diagram.
(1) ⇒ (5): The main idea is that there are obvious splitting maps for the bottom

s.e.s. Define π′ to be the canonical projection π′ : M ′ ⊕M ′′ →M ′, (m′,m′′) 7→ m′ and
ι′′ to be the inclusion ι′′ : M ′′ → M ′ ⊕M ′′,m′′ 7→ (0,m′′). Notice that π′ ◦ ι = idM ′
and π ◦ ι′′ = idM ′′ and i ◦ π′ + ι′′ ◦ p = idM ′⊕M ′′ .

We can use this to set q = π′ ◦ θ and j = θ−1 ◦ ι′′ and check

q ◦ i = π′ ◦ θ ◦ i = π′ ◦ ι = idM ′

p ◦ j = p ◦ θ−1 ◦ ι′′ = π ◦ ι′′ = idM ′′

i ◦ q + j ◦ p = i ◦ π′ ◦ θ + θ−1 ◦ ι′′ ◦ p = θ−1 ◦ (θ ◦ i ◦ π′ + ι′′ ◦ p ◦ θ−1) ◦ θ
= θ−1 ◦ (ι ◦ π′ + ι′′ ◦ π) ◦ θ = θ−1 ◦ idM ′⊕M ′′ ◦ θ = idM .

(5) ⇒ (3, 4) is clear.
(3) ⇒ (2): Given such a q, define θ(m) = (q(m), p(m)). It is clear θ ◦ i = ι and

π◦θ = p. We will now show that θ is injective: if θ(m) = 0 then p(m) = 0 so m ∈ Im(i)
therefore m = i(m′) for some m′ ∈ M ′. But now 0 = q(m) = q(i(m′)) = m′ so m′ = 0
and thus m = 0.

We next show that θ is surjective: (m′,m′′) ∈M ′⊕M ′′. Since p is onto, then there
exists some u ∈M so thar p(u) = m′′. Let m = i(m′) + u− i(q(u)). Then

θ(m) = (q(i(m′)) + q(u)− q(i(q(u))), p(i(m′)) + p(u)− p(i(q(u))))

= (m′ + q(u)− q(u),m′′ + 0− 0) = (m′,m′′).

Therefore h is bijective, so it is an isomorphism.
The proof that (4) ⇒ (2) is similar, and omitted.
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Example 1.91. Suppose R = k is a field. Then every short exact sequence of R-
modules splits. We could verify any of the four equivalent conditions directly; I’ll do
(3). Given a surjection p : V � V ′′ of k-vector spaces, pick a basis B of V ′′. For each
w ∈ B pick any element w̃ of V such that p(w̃) = w. The function w 7→ w̃ from B to
V extends uniquely to a k-linear map j : V ′′ → V such that j(w) = w̃ for all w ∈ B.
The composition p ◦ j is the identity on V ′′ since it is the identity on the basis B by
construction.

Remark 1.92. The proof in the previous example actually shows that, for any ring R,
a s.e.s. whose right-most term is free is split exact.

Example 1.93. Here is an example of a non-split exact sequence: Take R to be any
(commutative) integral domain and r ∈ R any non-zero, non-unit element. Then, using
that R is a domain, the sequence

0→ R
r−→ R→ R/r → 0
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is exact (where the second map is the canonical surjection). But it cannot by split
exact: If it were, then we would have an isomorphism R ∼= R⊕R/r of modules and so
in particular there would be an ideal I of R isomorphic as a module to R/r. But then
rI = 0 and since R is a domain, this could only happen if I = 0, which would mean r
is a unit.

For example

0→ Z 2−→ Z→ Z/2→ 0

is an exact, but not split exact, sequence of Z-modules.

Exact functors

Definition 1.94. For any rings R and S, a covariant additive functor F : 〈〈RMod〉〉 →
〈〈SMod〉〉 (or “right” modules) is called right exact if whenever

M ′ g−→M
p−→M ′′ → 0

is exact, then so is

F (M ′)
F (g)−−→ F (M)

F (p)−−→ F (M ′′)→ 0.

(Recall F (0) = 0 since F is additive.)
F is left exact if whenever

0→M ′ g−→M
p−→M ′′

is exact, then so is

0→ F (M ′)
F (g)−−→ F (M)

F (p)−−→ F (M ′′).

We say F is exact if it is additive and both left and right exact.

Remark 1.95. An exact functor takes any s.e.s. to a s.e.s.

Remark 1.96. A contravariant functor F : C → D is the same as a covariant functor F :
Cop → D. Applying the definitions above to the latter yields corresponding definitions
for exactness of contravariant functors.

Definition 1.97. For any ringsR and S, a contravariant additive functor F : 〈〈RMod〉〉 →
〈〈SMod〉〉 (or “right” modules) is called right exact if whenever

0→M ′′ g−→M
p−→M ′

is exact, then so is

F (M ′)
F (g)−−→ F (M)

F (p)−−→ F (M ′′)→ 0.

(Recall F (0) = 0 since F is additive.)
F is left exact if whenever

M ′′ g−→M
p−→M ′ → 0
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is exact, then so is

0→ F (M ′)
F (g)−−→ F (M)

F (p)−−→ F (M ′′).

We say F is exact if it is additive and both left and right exact.

Proposition 1.98. If R is commutative and M,N are R-modules the covariant and
contravariant Hom functors HomR(M,−) : 〈〈RMod〉〉 → 〈〈RMod〉〉 and HomR(−, N) :
〈〈RMod〉〉 → 〈〈RMod〉〉 are left exact.

More generally, if R, S are rings and M,N are R − S bimodules, the functors
HomR(M,−) : 〈〈RMod〉〉 → 〈〈SMod〉〉 and HomR(−, N) : 〈〈RMod〉〉 → 〈〈ModS〉〉 (where
〈〈ModS〉〉 means right S modules) are left exact.

Proof. Homework.

Remark 1.99. Examples 1.76 and 1.78 show that these functors are in general not right
exact and hence not exact.

1.3.2 Projective modules

We now examine the question: for which R-modules P is the functor HomR(P,−)
exact? This really is asking when HomR(P,−) is right exact because we know that
this functor is always left exact.
So the question is: given a surjective map of R-modules p : N � N ′′ when is the map

HomR(P, p) : HomR(P,N)→ HomR(P,N ′′)

onto? It is onto iff given f : M → N ′′, there is a g : M → N such that p ◦ g = f . This
motivates:

Definition 1.100. An R-module P is projective if given any surjective homomorphism
of modules p : N � N ′′ and a homomorphism f : P → N ′′, there is a homomorphism
g : P → N such that p ◦ g = h. In other words, given the solid arrows in the diagram

P

f
��

∃g

}}
N

p // N ′′ // 0

in which the bottom row is exact, there exists at least one dotted arrow that causes
the triangle to commute.

Proposition 1.101. Every free R-module is projective.

Proof. Suppose P is free with basis B and let a diagram as in the definition be given.
Since p is surjective, for each b ∈ B, we can find an element nb ∈ N such that
f(b) = p(nb). Since B is a basis, the assignment b 7→ nb extends uniquely to an R-
module homomorphism g : P → N . The triangle commutes since p ◦ g and f agree on
B.
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Remark 1.102. Examples 1.107, 1.108 show that the converse is not true: there exist
projective modules which are not free.

Example 1.103. The module Z/n for n ≥ 2 is not a projective Z-module. Consider
the diagram as in the definition in which P = Z/n, N = Z, N ′ = Z/n, p is the
canonical surjection, and f is the identity map. The only R-map from Z/n to Z is the
zero map and so no such g exists as in the definition.

Definition 1.104. An R-module F is free if it is isomorphic to a (finite or infinite)
direct sum of copies of R, i.e., F ∼=

⊕
i∈I R. A module F is free if and only if it has a

basis, i.e. a generating set that is also R-linearly independent.

Proposition 1.105. For a ring R and module P , the following are equivalent:

1. P is projective,

2. the functor HomR(P,−) (from R-modules to abelian groups) is exact,

3. every short exact sequence of the form 0→ N ′ → N → P → 0 is split,

4. every surjective R-module homomorphism p : N � P is split surjective, and

5. P is a summand of a free R-module; i.e., there is an R-module Q such that
F = P ⊕Q is a free R-module.

Proof. Since HomR(P,−) is left exact for any module P , HomR(P,−) is exact if and
only if it preserves surjections (justify this as an exercise!). The definition of “projec-
tive” is just a long-winded version of the property that HomR(P,−) preserves surjec-
tions. The equivalence of (1) and (2) is thus essentially by definition.

The equivalence of (3) and (4) follows from the Splitting Theorem 1.90. Note that
given an onto map p : N � P , we may form the short exact sequence 0 → Ker(p) →
N

p−→ P → 0.
Suppose (1) holds and p : N � P is onto. Applying the definition with f = idP

and p = p gives an R-map g such that p ◦ f = idP . So (1) ⇒ (4).
Assume (3) holds. By choosing a generating set for P (e.g., all of P ) we may find

a surjection p : F � P with F a free R-module. This map splits by assumption, and
thus P ⊕Ker(p) ∼= F , so that (5) holds. So (3) ⇒ (5).

Assume (5) holds. Say F = P ⊕ Q is free, and let a diagram as in the definition
be given. Let π : F � P be the canonical surjection. Since F is projective (by the
example above), there is a h : F → N so that p ◦ h = f ◦ π. Define g : P → N to be
h◦ ι where ι : P → F sends x to (x, 0). Then p(g(x)) = p(h(x, 0)) = f(π(x, 0)) = f(x).
So P is projective (i.e. (1) holds).

Remark 1.106. The proof of (5) ⇒ (1) shows more than advertised: it shows that if P
is a summand of projective R-module, then P is projective.

30



September 7, 2020

Example 1.107. Let
R = R[x, y]/(x2 + y2 − 1),

the ring of polynomial functions defined on the circle, and let P be the ideal (x, 1− y).
We show that P is projective as an R-module but not free.

To see that P is projective, one notices that that the map

q : R2 (x,1−y)−−−−→ P

is a split surjection, with splitting j : P → R2 given by

j(r) =

(
(1 + y)r

2x
,
r

2

)T
since

(q ◦ j)(r) = x
(1 + y)r

2x
+ (1− y)

r

2
=

(1 + y)r

2
+

(1− y)r

2
= r.

The only issue remaining is the well-definedness of the map j, specifically whether
dividing by x makes sense. In fact since r ∈ P = (x, 1− y) we have r = αx+ β(1− y)
so (1 + y)r = αx(1 + y) + β(1− y2) = ax(1 + y) + βx2 = x(α(1 + y) + βx) and we see
that it make sense to write (1 + y)r/2x = (α(1 + y) + βx)/2 ∈ R.

To see that P is not free, first notice (or take as an exercise) that an ideal of
a commutative ring R is free as an R-module if and only if it is principal. Now
see that P is not principal because if P = (r) then x = αr and 1 − y = βr, so
x2 + y2 − 1 = (αx − β(1 + y))r in R[x, y], which can only occur if one of the factors
is a unit, since x2 + y2 − 1 is irreducible e.g by Eisenstein’s criterion. Either way, we
obtain P = R, which is a contradiction.

P is an algebraic version of the Möbius strip.

Example 1.108. Let
R = R[x, y, z]/(x2 + y2 + z2 − 1)

and let P be the kernel of the map

π : R3 (x,y,z)−−−→ R.

π is in fact a split surjection, since π ◦ j = idR where j(r) = (xr, yr, zr)T . This also
follows because R is projective. So we have

R3 ∼= P ⊕R

and in particular this shows P is projective.
It’s not free; can you prove it? Tip: Hairy Ball Theorem.

The following technical result is sometimes useful:
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Lemma 1.109. Let R be a ring and {Mi}i∈I a family of R-modules. The coproduct
(direct sum)

⊕
i∈IMi of this family is projective if and only if each Mi is projective.

Proof. There is a natural isomorphism (i.e. a natural transformation η of functors such
that ηX is an isomorphism for all X)

HomR(
⊕
i∈I

Mi,−)
∼=

=⇒
∏
i∈I

HomR(Mi,−).

Here “natural” means that if g : N → N ′ is and R-module homomorphism then there
is a commutative diagram

HomR(
⊕

i∈IMi, N)
HomR(

⊕
i∈IMi,g) //

∼=
��

HomR(
⊕

i∈IMi, N
′)

∼=
��∏

i∈I HomR(Mi, N)

∏
i∈I HomR(Mi,g) //

∏
i∈I HomR(Mi, N

′)

from which we see that the top map is surjective if and only if the bottom map is
surjective if and only if each HomR(Mi, g) is surjective.

1.3.3 Injective modules

Injective is the dual notion for projective.

Definition 1.110. An R-module E is injective if given solid arrows as in the diagram

0 // N ′

f
��

i // N

∃g~~
E

in which the top row is exact, there exists at least one dotted arrow that causes the
triangle to commute.

Exercise 1.111. Show that if V is a k-vector space then V is injective as a k-module.
However, this does not generalize to free R-modules. For example, show that Z is not
an injective Z-module.

Proposition 1.112. The following are equivalent for an R-module E:

1. E is injective,

2. the functor HomR(−, E) (from R-modules to abelian groups) is exact,

3. every short exact sequence of the form 0→ E → N → N ′′ → 0 is split, and

4. every injective R-module homomorphism of the form j : E ↪→M is split.
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In the proof we’ll use the following notion

Definition 1.113. A pushout of a diagram

A
i //

j
��

B

C

in a category C is a triple (D, f, g) so that the diagram below commutes

A
i //

j
��

B

f
��

C
g // D

and satisfies the following universal property: for any other commutative diagram as
above with D replaced by Y there is a unique dotted map that makes the big diagram
below commute

A
i //

j
��

B

f
��

f ′

��

C
g //

g′
''

D

  
Y.

Exercise 1.114. Show that in the category 〈〈RMod〉〉 the pushout exists and is given
(in the notation of Definition 1.113) as an object by

D =
B
⊕

C

{(i(a),−j(a)) | a ∈ A}
with maps f, g given by the inclusions of the two summands into B ⊕ C followed by
the quotient map B ⊕ C → D.

Proof of Proposition 1.112. As with the previous proposition, the equivalence of (1)
and (2) is essentially by definition, since HomR(−, E) is left exact for any module E,
so this functor is right exact if and only if it takes injections i : N ′ → N to surjections
HomR(i, E) : HomR(N,E) → HomR(N ′, E) (exercise!). Likewise, the equivalence of
(3) and (4) follows from the Splitting Theorem 1.90.

The proof of (1) ⇒ (4) is very similar to the analogous proof for the proposition
involving projective modules above: if E is injective and j : E ↪→ M is a one-to-one
R-map, then

0 // E

idE
��

j //M

∃q~~
E
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can be completed, and q ◦ j = idE for any such completion.
Assume (4) and let a diagram as in the definition of “injective” be given. Form the

pushout module

M =
E ⊕N

{(f(n′),−i(n′)) | n′ ∈ N ′}
.

(I leave it to you to check that the denominator is a submodule of E ⊕ N .) Let
j : E →M be the map sending a to the class of (a, 0) and let h : N →M be the map
sending n to the class of (0, n). Then the pushout diagram below commutes

N ′
i //

f
��

N

h
��

E
j //M

and I claim that j is injective. The former is clear by construction of M : given n′ ∈ N ′,
we have j(f(n′))− h(i(n′)) = (f(n′),−i(n′)) = 0 ∈M . If j(a) = (a, 0) = 0 in M , then
there is an n′ ∈ N ′ such that f(n′) = a and i(n′) = 0. But i is one-to-one and hence
a = 0.

By assumption (i.e. statement (4)), there is a map q : M � E such that q◦j = idM .
Define g : N → E as g := q ◦ h. Then g ◦ i = q ◦ h ◦ i = q ◦ j ◦ f = idE ◦ f = f .

This proves E is injective.

Lemma 1.115. An arbitrary product of injective modules is injective.

Proof. This holds since there is a natural isomorphism

HomR(−,
∏
i

Ei)
∼=

=⇒
∏
i

HomR(−, Ei)

and a product of functors is exact if and only if each of them is.

Example 1.116. Suppose R is an integral domain and E is an injective R-module.
I claim E must have the following property: for all x ∈ E and 0 6= r ∈ R, there is
an element y ∈ E such that ry = x i.e., every element of E can be divided by every
non-zero element of R’. To see this, just apply the definition to the diagram

0 // R

x
��

r // R

∃g��
E

We give this necessary condition a suggestive name – “divisible”.

Definition 1.117. An R-module E is called divisible if it satisfies for all x ∈ E and
0 6= r ∈ R, there is an element y ∈ E such that ry = x.
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Theorem 1.118 (Baer’s criterion). For any ring R, an R-module E is injective if and
only if every diagram of the form represented below in solid arrows

0 // J

f
��

ι // R

∃g��
E

where J is an ideal of R and ι is the inclusion map, can be completed by some dashed
homomorphism g to a commutative diagram.

Proof. One direction is immediate from the definition.
Suppose each diagram as in the statement can be completed and let a diagram

0 // N ′

f
��

i // N

∃g~~
E

as in the definition of “injective” be given. For simplicity of notation, we may assume i
is the inclusion of a submodule N ′ of N into N . We need to show that given an R-map
g : N ′ → E, there is an R-map g : N → E such that g|N ′ = f .

Consider pairs (M,h) such that N ′ ⊆ M ⊆ N and h : M → E is an R-map such
that h|N ′ = f . Let S be the collection of all such pairs, and partially order it by
(M1, h1) ≤ (M2, h2) if and only if M1 ⊆ M2 and h2|M1 = h1. The set S is non-empty
since (N ′, f) belongs to it.

Let us show S satisfies the hypotheses of Zorn’s Lemma. Suppose {(Mi, hi)}i∈I
is a totally ordered subset of S. Then M := ∪i∈IMi is a submodule of N (since the
collection is totally ordered) and the function h : M → E defined as h(m) = hi(m) for
any i such that m ∈ Mi is a well-defined R-map (again, since the collection is totally
ordered). So (M,h) ∈ S and (M,h) ≥ (Mi, hi) for all i.

By Zorn’s Lemma, S has a maximal element (M,h). It suffices to prove M = N . If
not pick x ∈ N \M and let T = M +Rx. I will show h can be extended to T , arriving
at a contradiction:

Set I = {r ∈ R | rx ∈ M}. The map R
x−→ T (sending r to tx) restricts to a map

I
x−→M by definition of I, and so we have a commutative square

I
⊆ //

x
��

R

x
��

M
⊆ // T

By assumption the map α : I → E given as the composition I
x−→ M

h−→ E extends to
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a map :
¯
R→ E. This gives a diagram

I
⊆ //

x
��

R

x
��

β

��

M
⊆ //

h
''

T

��
E

in which the inner square and the outer quadrilateral both commute. I claim there
is an R-map γ : T → E (the dashed arrow in the diagram) causing both triangles
to commute. It is given abstractly by the fact that the square in this diagram is a
push-out. More concretely, define γ : T → E by γ(m+ rx) = h(m) + β(r) for m ∈M
and r ∈ R. I leave it to you to prove γ is well-defined (note that m + rx can equal
m′ + r′x without m′ = m and r = r′) and an R-map. Granting this, we clearly have
γ|M = h. So (M,h) < (T, γ) in S, a contradiction. It must be the M = N , and so we
have proven E is injective.
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Corollary 1.119. For a PID, E is an injective R-module if and only if it is divisible.

Proof. We already proved one direction (for any domain). Assume E is divisible. By
Baer’s Criterion and the fact that every ideal in R is principal by assumption, we just
need to show every diagram of the form

0 // (r)

f
��

ι // R

∃g~~
E

can be completed, where r is any element of R. If r = 0, we may take g = 0. If r 6= 0,
then let f(r) = x ∈ E. Since E is divisible there is y ∈ E such that x = ry, Now
define g : R→ E by g(u) = uy and notice that (g ◦ ι)(r) = g(r) = ry = x = f(r) hence
g ◦ ι = f for any element of (r) since this is true for the generator r.

Example 1.120. Using the above criterion, Q, Q/Z and C× are injective Z-modules.

1.4 Tensor product

1.4.1 Tensor product as an abelian group

Definition 1.121. For a ring R, a right R-module M , a left R-module N , and an
abelian group A, a function

b : M ×N → A

is called R-biadditive if the following conditions hold:
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1. b(m+m′, n) = b(m,n) + b(m′, n) for all m,m′ ∈M , n ∈ N ,

2. b(m,n+ n′) = b(m,n) + b(m,n′) for all m ∈M , n, n′ ∈ N , and

3. b(mr, n) = b(m, rn) for all m ∈M , n,∈ N , and r ∈ R.

Assume R is commutative and A is an R-module (not just an abelian group). Such
a pairing b is called R-bilinear if we also have

(4) b(mr, n) = b(m, rn) = rb(m,n) for all m ∈M , n,∈ N , and r ∈ R.

Example 1.122. Examples of bilinear maps include

• f : R×R→ R, f(r, s) = rs

• for an R-module M , f : R2 ×M →M2, f((r, s),m) = (rm, sm)

• for a right ideal I and a left module M , f : (R/I)×M →M/IM, f(r,m) = rm

We now define tensor products using a universal property.

Definition 1.123. Let R be a (not necessarily commutative) ring, let M be a right
R-module, let N be a left R-module.

An abelian group M⊗RN together with an R-biadditive map h : M×N →M⊗RN
is called the tensor product of M and N if it has the following universal property: for
any abelian group A and R-biadditive map f : M × N → A, there exists a unique
group homomorphism g : M ⊗R N → A such that f = g ◦ h.

M ×N f //

h
��

A

M ⊗R N
∃!g

::

Remark 1.124. The tensor product of M and N is unique up to isomorphism. (This jus-
tifies the slightly abusive language “the” tensor product instead of “a” tensor product
in the definition above.)

Theorem 1.125. Let R be a (not necessarily commutative) ring, let M be a right
R-module, let N be a left R-module. Then a tensor product M⊗RN exists and is given
by defining an abelian group M ⊗R N by generators and relations as follows:

• The generators are all expressions of the form m⊗ n for m ∈M and n ∈ N .

• The relations are

1. (m+m′)⊗ n = m⊗ n+m′ ⊗ n for all m,m′ ∈M and n ∈ N ,

2. m⊗ (n+ n′) = m⊗ n+m⊗ n′ for all m ∈M and n, n′ ∈ N , and
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3. (mr)⊗ n = m⊗ (rn) for all m ∈M , n ∈ N , and r ∈ R.

Equivalently, M ⊗R N is the quotient⊕
(m,n)∈M×N Z · (m⊗ n)

(Y )

where

Y = {(m+m′)⊗n)−m⊗n−m′⊗n}∪{m⊗(n+n′)−m⊗n−m⊗n′}∪{(mr)⊗n−m⊗(rn)}.

Further we define h : M ×N →M ⊗R N to be the function h(m,n) = m⊗ n.
Then the pair (M ⊗R N, h) defined above is the tensor product of M and N .

Remark 1.126. It is important to note that while expressions of the form m⊗n, called
simple tensors, are elements of M ⊗R N , not every element of M ⊗R N has this form.
Instead, every element of M ⊗R N is a finite sum of simple tensors

m1 ⊗ n1 +m2 ⊗ n2 + · · ·+mk ⊗ nk.

Proof of Theorem 1.125. It is immediate from the construction that h is R-biadditive.
Given a biadditive map b : M × N → A, define b̃ :

⊕
(m,n)∈M×N Z · (m ⊗ n) → A to

be the unique homomorphism of abelian groups sending the basis element m ⊗ n to
b(m,n). Since b is biadditive, we have

b̃((m+m′)⊗ n−m⊗ n−m′ ⊗ n) = b(m+m′, n)− b(m,n)− b(m′, n) = 0,

b̃(m⊗ (n+ n′)−m⊗ n−m⊗ n) = b(m,n+ n′)− b(m,n)− b(m,n′) = 0,

and
b̃((mr)⊗ n−m⊗ (rn)) = b(mr, n)− b(m, rn) = 0.

Thus b̃(< Y >) = 0 and so it induces a homomorphism of abelian groups

α : M ⊗R N → A.

It is evident from the construction that α◦h = b. Since the image of B generates M⊗A
N as an abelian group, α is the unique homomorphism satisfying this equation.

Exercise 1.127. In M⊗RN we have 0M ⊗n = 0M⊗RN = m⊗0N for each m ∈M,n ∈
N .

September 14, 2020

Example 1.128. I claim Z/m⊗Z Z/n ∼= Z/g where g = gcd(m,n).
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Proof. Define a function
b : Z/m× Z/n→ Z/g

by b(i, j) = ij. It is not hard to see that b is well-defined (exercise!) and Z-biadditive.
By the Theorem, it therefore induces a homomorphism of abelian groups

α : Z/m⊗Z Z/n→ Z/g

such that α(i⊗ j) = ij.
Now define a homomorphism φ : Z → Z/m ⊗Z Z/n by sending 1 to 1 ⊗ 1. Notice

that
φ(g) = g · (1⊗ 1) = g ⊗ 1 = 1⊗ g.

Recall that g = im+ jn for some i, j ∈ Z. So

g ⊗ 1 = im⊗ 1 + 1⊗ jn = 0⊗ 1 + 1⊗ 0 = 0 + 0 = 0.

So, φ induces a homomorphism

β = φ : Z/g → Z/m⊗Z Z/n

with β(i) = i⊗ 1 = 1⊗ i.
We have α(β(i)) = α(i⊗ 1) = i so that α ◦ β = id.
A typical element of Z/m× Z/n has the form

∑
t it ⊗ jt. We have

β(α(
∑
t

it ⊗ jt)) =
∑
t

it · jt ⊗ 1 =
∑
t

it ⊗ jt

and so β ◦ α = id.

1.4.2 Tensor product as a module

We have not required in Definition 1.123 that M ⊗R N be a module. Indeed, this is
not always the case but we will see below that is is an R-module if R is commutative.
First we give a more general statement.

Proposition 1.129. If R, S is are rings M is an S − R bimodule and N is a left
R-module, then:

0. The abelian group M × N becomes a left S-module with the following rule for
scaling:

s(m,n) = (sm, n).

1. The abelian group M ⊗R N becomes a left S-module with the following rule for
scaling:

s ·

(∑
i

mi ⊗ ni

)
:=
∑
i

(smi)⊗ ni.

39



2. The map h : M × N → M ⊗R N given by h(m,n) = m ⊗ n is an S-module
homomorphism.

3. Given any left S-module A and S-linear map b : M × N → A, there exists a
unique S-module homomorphism g : M ⊗R N → A such that g ◦ h = b.

If R, S is are rings M is a right R-module and N is an R− S-bimodule, then:

0’. The abelian group M × N becomes a right S-module with the following rule for
scaling:

(m,n) = (m,ns).

(1’) The abelian group M ⊗R N becomes a right S-module with the following rule for
scaling: (∑

i

mi ⊗ ni

)
· s :=

∑
i

mi ⊗ (nis).

(2’) The map h : M × N → M ⊗R N given by h(m,n) = m ⊗ n is an S-module
homomorphism.

(3’) Given any right S-module A and S-linear map b : M × N → A, there exists a
unique S-module homomorphism g : M ⊗R N → A such that g ◦ h = b.

Proof. We only show (1), (2), (3).
For (1) we first need to verify that this scalar multiplication is well-defined (Re-

member in M ⊗R N one there are relations e.g (m” +m′)⊗ n = m⊗ n+m′ ⊗ n and
one needs to be concerned whether multiplying either side by a give element s ∈ S
produces the same result.) An equivalent way of thinking about scalar multiplication
by a fixed element s is as a group homomorphism M⊗RN →M⊗RN given by u 7→ su.
If we can show that this map is well defined then we’ll be done.

Fix s ∈ S and define a map fs : M ×N → M ⊗R N by fs(m,n) = (sm)⊗ n. One
can check that fs is R-biadditive. Then there exists a unique group homomorphism
gs : M⊗RN →M⊗RN given by gs(m⊗n) = (sm)⊗n. In particular the multiplication
is well-defined! It is then easy to see that the rest of the module properties hold.

(2) The map is already a group homomorphism. We check that it is S-linear.

h(s(m,n)) = h((sm, n)) = (sm)⊗ n = s(m⊗ n) = s · h(m,n).

(3) Existence and uniqueness of such a group homomorphism g is guaranteed by
the definition of tensor product. We now show it is also S-linear using the S-linearity
of b:

g(s(
k∑
i=1

mi ⊗ ni)) = g(
k∑
i=1

smi ⊗ ni) =
k∑
i=1

g(h(smi, ni)) =
k∑
i=1

b(smi, ni)

= s

(
k∑
i=1

b(mi, ni)

)
= s

(
k∑
i=1

g(mi ⊗ ni)

)
.
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We now focus on the case to when R is commutative. Recall that any R-module
M is an R−R bimodule. Hence we deduce:

Corollary 1.130. If R is a commutative ring and M and N are R-modules, then:

1. The abelian group M ⊗R N becomes an R-module with the following rule for
scaling:

r ·

(∑
i

mi ⊗ ni

)
:=
∑
i

rmi ⊗ ni =
∑
i

mi ⊗ nir.

2. The map h : M ×N →M ⊗R N given by h(m,n) = m⊗ n is R-bilinear.

3. Given any R-module A and R-bilinear pairing b : M × N → A, there exists a
unique R-module homomorphism g : M ⊗R N → A such that g ◦ h = b.

Remark 1.131. When R is not commutative, the proof fails because the rule for scaling
is not well-defined. If we let fr(m,n) = (mr, n) then fr(ms, n) = msr ⊗ n need not
equal fr(m, sn) = mr ⊗ sn = mrs⊗ n since sr need not equal rs.

Example 1.132. Let R be a ring. Then:

1. If M is a left R-module, then R ⊗R M ∼= M as left R-modules via the map
r ⊗m 7→ rm

2. Let M be an R − S bimodule, let N be an S − T bimodule, and let P be a left
T -module. Then (M ⊗S N)⊗T P ∼= M ⊗S (N ⊗T P ) as left R-modules.

3. If R is commutative, and M and N are R-modules, then M ⊗RN ∼= N ⊗RM as
R-modules via the map m⊗ n 7→ n⊗m.

Remark 1.133. A special case of (1) yields the isomorphism R⊗R R ∼= R, r ⊗ s 7→ rs.

Exercise 1.134. Show that if R, S are commutative rings, the tensor product R⊗Z S
is the (object of the) coproduct of R, S in the category of rings.

1.4.3 Functoriality, extension of scalars, and localization

Let’s discuss the functorality of −⊗R − now.

Proposition 1.135. For a ring R, right R-modules M,M ′ and left R-modules N,N ′,
and R-module homomorphisms f : M → M ′ and g : N → N ′, there are homomor-
phisms of abelian groups

f ⊗ idN : M ⊗R N →M ′ ⊗R N
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and
idM ⊗ g : M ⊗R N →M ⊗R N ′

given on generators by (f ⊗ id)(m⊗ n) = f(m)⊗ n and (id⊗ g)(m⊗ n) = m⊗ g(n).
For a fixed M , the following assignments denoted M ⊗R − : 〈〈RMod〉〉 → 〈〈Ab〉〉

form a right exact additive covariant functor:

• objects: a left R-module N maps to M ⊗R N and

• morphisms: a homomorphism g of left R-modules maps to idM ⊗ g

For a fixed N , the following assignments denoted − ⊗R N : 〈〈ModR〉〉 → 〈〈Ab〉〉
form a right exact additive covariant functor:

• objects: a right R-module M maps to M ⊗R N and

• morphisms: a homomorphism f of right R-modules maps to f ⊗ idN

If R is commutative, f ⊗ id and id⊗ g are R-module homomorphisms and M ⊗R−
and −⊗R N are functors 〈〈RMod〉〉 → 〈〈RMod〉〉.

Proof. The fact that these rules define functors is left as an exercise.
The functor M⊗R− is additive; i.e, we have idM ⊗R (f +g) = idM ⊗R f +idM ⊗R g.

To see this, note the the left map sends a generator m ⊗ n to m ⊗ (f(n) + g(n)) and
the right map sends it to m⊗ f(n) +m⊗ g(n), and these are equal. Similarly −⊗RN
is additive.

I’ll just show M ⊗ − is right exact: Let N ′
g−→ N

p−→ N ′′ → 0 be a right exact
sequence of left R-modules. We need to show

M ⊗N ′ idM⊗g−−−−→M ⊗N idM⊗p−−−−→M ⊗N ′′ → 0

is also right exact.
The surjectivity of idM ⊗ p holds since given a generator m ⊗ n′′ of M ⊗ N ′′, we

have n′′ = p(n) for some n (since p is surjective) and thus m⊗ n′′ = (idM ⊗ p)(m⊗ n).
Since a set of generators is contained in its image, idM ⊗ p is onto.

Reasoning more generally, if F is a covariant additive functor , and the composition

of M ′ g−→ M
p−→ M ′′ is the 0 map, then the composition of F (M ′)

F (g)−−→ F (M)
F (p)−−→

F (M ′′) is automatically the 0 map too, since

F (p) ◦ F (g) = F (p ◦ g) = F (0) = 0.

So, given a chain complex
M ′ g−→M

p−→M ′′ → 0

so long as F is additive, we have Im(F (g)) ⊆ Ker(F (p)).
Since the functor M ⊗R − is additive, the argument above gives Im(idM ⊗ g) ⊆

Ker(idM ⊗ p). It remains only to prove the opposite containment.
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Since Im(idM ⊗ g) ⊆ Ker(idM ⊗ p), idM ⊗ p induces a map we will write as

φ : T →M ⊗N ′′

where
T := coker(M ⊗N ′ idM⊗g−−−−→M ⊗N) = (M ⊗N)/ Im(idM ⊗ g).

The kernel of φ is Ker(idM ⊗ p)/ Im(idM ⊗ g) and so it suffices to prove φ is injective.
(In fact, it’s an isomorphism.)

Define a function
b : M ×N ′′ → T

by
b(m,n′′) = m⊗ n

where n is chosen so that p(n) = n′′. This is independent of choice of n since if
p(n2) = n′′ then n− n2 = g(n′) and hence

m⊗ n−m⊗ n2 = m⊗ g(n′) = 0 ∈ T.

It is easy to check that b is R-biadditive and hence induces a map

ψ : M ⊗R N ′′ → T.

I claim this map is inverse to ψ ◦ φ = id and hence φ is injective.
For m⊗ n ∈ T we have

ψ(φ(m⊗ n)) = φ(m⊗ p(n)) = m⊗ n

and since such elements generate T , we see that ψ ◦ φ is the identity.

Remark 1.136. Here is how not to prove Ker ⊆ Im:

“Say (idM ⊗ p)(m⊗ n) = m⊗ p(n) = 0. Then p(n) = 0. This deduction
is flawed. So n = g(n′) by exactness of the original sequence, and hence
m⊗n = (idM ⊗ g)(m⊗n′).” Also it does not suffice to prove this for
simple tensors.

Remark 1.137. Tensoring is not in general left exact. Indeed, consider the left exact
sequence of Z-modules

0→ Z ·n−→ Z→ Z/n
and tensor with Z/n. It does not matter if we do so on the left or right by Example
1.132 (2). We obtain

0→ Z⊗Z Z/n
·n⊗idZn−−−−→ Z⊗Z Z/n→ Z/n⊗Z Z/n.

But (·n ⊗ idZn)(m, k) = (nm, k) = (m,nk) = 0 so ·n ⊗ idZn : Z/n → Z/n is the zero
map which is no longer injective.
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Definition 1.138. A left R-module N is called (left) flat if the functor − ⊗R N :
〈〈ModR〉〉 → 〈〈Ab〉〉 is exact. Equivalently, an R module N is flat iff −⊗RN preserves
injections.

Similarly, a right R-module M is (right) flat if M⊗R− is exact/preserves injections.
When R is commutative, the the natural isomorphism M ⊗R − ∼= − ⊗R M shows

that M is left-flat if and only if it is right flat, and we just say M is “flat” in this case.

Example 1.139. Remark 1.137 shows that Z/n is not flat as a Z-module. However
Z/n is flat as a Z/n-module since the functor Z/n ⊗Z/n − is naturally isomorphic to
the identity functor on Z/n-modules.

Definition 1.140. Recall that for a ring R, left ideal I and left R-module M , we write
IM for the set of all expressions of the form

IM = {a1m1 + · · ·+ ajmj | j ≥ 0, ai ∈ I,mi ∈M}.

Then IM is a submodule of M .

Corollary 1.141 (of Proposition 1.135). Let I be a two-sided ideal of R, with M a left
R-module. Then R/I ⊗RM ∼= M/IM as left R/I-modules via the map r ⊗m 7→ rm.

Proof. Consider the s.e.s.
0→ I → R→ R/I → 0

and apply −⊗RM to get the right exact sequence

I ⊗RM → R⊗RM → R/I ⊗RM → 0.

Recall from Example 1.132 (1) that R⊗RM ∼= M as left R-modules via ϕ(r⊗m) = rm.
Use this isomorphism to construct a commutative diagram where the first vertical map,
ϕ′(i⊗m) = im is obviously surjective and the last map is ϕ′′(r⊗m) = rm. I will skip
showing that any of these maps are well defined left R-module homomorphisms and
also that the diagram commutes.

I ⊗RM ι //

ϕ′

����

R⊗RM π //

ϕ∼=
��

R/I ⊗RM //

ϕ′′

��

0

0 // IM
i //M

p //M/IM // 0

To establish ϕ′′ is surjective, let m̄ ∈M/IM with m ∈M . Then m = ϕ′′(1⊗m).
Now if u ∈ R/I ⊗R M is such that ϕ′′(u) = 0 then let v ∈ R ⊗R M be such

that π(v) = u. Then p(ϕ(v)) = 0 so ϕ(v) ∈ Ker(p) = Im(i) = IM = ϕ′(I ⊗R M)
and so there exists w ∈ I ⊗R M such that i(ϕ′(w)) = ϕ(v) = 0. This implies that
ϕ(ι(w)) = ϕ(v), but since ϕ is injective this forces v = ι(w). But now we can deduce
u = π(v) = π(ι(w)) = 0. We have established ϕ′′ is injective.

The last two paragraphs are an example of diagram chase.
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Remark 1.142. For a commutative ring R and ideals I and J , the special case M = R/J
of the result above gives an isomorphism of R-modules

R/I ⊗R R/J ∼= (R/J)/(I(R/J)) = (R/J)/((I + J)/J) ∼= R/(I + J).

September 18, 2020

Extension of scalars

Definition 1.143 (Module structure via extension of scalars). Let g : R→ S be a map
of rings and M a left R-module. The map g allows us to view S as a right R-module
via s · r := sg(r) and in fact S is an S −R bimodule. We check the required condition

s′(s · r) = s′(sg(r)) = (s′s)g(r) = (s′s) · r,

where we have used associativity of multiplication in S in the middle.
By Proposition 1.129 the abelian group S ⊗RM is a left S-module.

Definition 1.144. Given g : R→ S a map of rings, extension of scalars along g is the
functor S ⊗R − : 〈〈RMod〉〉 → 〈〈SMod〉〉 that takes

• a left R-module M to the left R-module S ⊗RM

• an R-module homomorphism f : M → N to an S-module homomorphism idS ⊗
f : S ⊗RM → S ⊗R N given by (idS ⊗ f)(s⊗m) = s⊗ f(m).

Definition 1.145. Let R be a commutative ring. A subset S of R is multiplicatively
closed if 1 ∈ S and s, t ∈ S ⇒ st ∈ S. Define a new set S−1R called the localization of
R at S as follows:

S−1R =
{r
s
| r ∈ R, s ∈ S

}
/ ∼

where ∼ is the equivalence relation r
s
∼ r′

s′
if and only if t(rs′− r′s) = 0 for some t ∈ S.

This set is a ring with respect to the operations

r

s
+
r′

s′
=
rs′ + r′s

ss′
r

s
· r
′

s′
=
rr′

ss′
.

As a simple example, if R is a domain and S = R \ {0}, then S−1R is the field of
fractions of R.

For an R-module M define

S−1M =
{m
s
| m ∈M, s ∈ S

}
/ ∼

where ∼ is the equivalence relation m
s
∼ m′

s′
if and only if t(ms′ −m′s) = 0 for some

t ∈ S. Then S−1M is an S−1R module via the operations

m

s
+
m′

s′
=
ms′ +m′s

ss′
r

s
· m
s′

=
rm

ss′
.
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If f : M → N is a morphism of R-modules, we define S−1f : S−1M → S−1N by
(S−1f)(m/s) 7→ f(m)/s. Then S−1f is a well-defined S−1R-module homomorphism.

The rules above determine a functor S−1(−) : 〈〈RMod〉〉 → 〈〈S−1RMod〉〉 called
localization at S. The axioms of a functor are easy to check.

Proposition 1.146. The extension of scalars functor S−1R⊗R − along the canonical
map g : R→ S−1R, g(r) = r

1
is naturally isomorphic to the localization functor S−1(−)

as follows: for each M there is an isomorphism

ηM : S−1R⊗RM
∼=−→ S−1M

of S−1R-modules that sends r
s
⊗m to rm

s
.

Proof. Define b : S−1R ×M → S−1M by b( r
s
,m) = rm

s
. Then b is easily seen to be

well-defined and R-bilinear and hence it induces a R-module map

ηM : S−1R⊗RM → S−1M

We need to know that ηM is a morphism not just of R-modules but of S−1R modules.
Let’s check: Since ηM is R-linear we have

ηM((r′/s′)
∑
i

(ri/si)⊗mi) = ηM(
∑
i

r′ri/(s
′si)⊗m) =∑

i

r′rim/(ss
′) = (r′/s′)

∑
i

rim/si = (r′/s′)ηM(
∑
i

ri/si ⊗m).

To show ηM is a bijection, we define a map f going the other direction by f(m/s) =
1
s
⊗m. One should check f is well-defined, but I’ll leave that to you. The composition

f ◦ g sends a generator r
s
⊗m to 1

s
⊗ rm = r

s
⊗m and hence is the identity. The other

composition sends m/s to m/s.
Finally, so show that the map ηM determines a natural isomorphism, we need to

verify that if f : M →M ′ is an R-module homomorphism, then we have S−1(f)◦ηM =
ηM ′ ◦ id⊗ f . This follows immediately from the formulas:

ηM ′(id⊗ f)(r/s⊗m) =
rf(m)

s
=
f(rm)

s
= S−1(f)(ηM(r/s⊗m)).

Proposition 1.147. The localization functor as well as the extension of scalars functor
along the canonical map g : R→ S−1R are exact and hence S−1R is a flat R-module.

Proof. The localization functor was proven exact on homework. If two functors are
naturally isomorphic one is exact if and only if the other is.

Example 1.148. Q is a flat Z-module.
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1.4.4 Hom-tensor adjointness and ⊗ distributes over ⊕
A useful property of tensor products is that they commute with arbitrary coproducts:

Proposition 1.149. For any commutative ring R, a family of R-modules {Mi : i ∈ I},
and another R-module N , there is an R-module isomorphism

φ :

(⊕
i∈I

Mi

)
⊗N

∼=−→
⊕
I

(Mi ⊗R N)

that sends (mi)i∈I ⊗ n to (mi⊗ n)i∈I , and similarly there is an R-module isomorphism

N ⊗R

(⊕
i∈I

Mi

)
∼=

(⊕
i∈I

N ⊗RMi

)
.

Remark 1.150. I am being lazy here by assuming R is commutative. With the ev-
ident modifications, the proposition is true for non-commtuative rings and suitable
bimodules.

Proof. Define

b :

(⊕
I

M

)
×N →

⊕
I

Mi ⊗R N

by
b((mi)i, n) = (mi ⊗ n)i.

I leave it to you to check that b is R-bi-linear and hence induces an R-module homo-
morphism φ as in the statement.

To show φ is an isomorphism, we construct an inverse. For each i we define a
pairing

bi : Mi ×N →

(⊕
i∈I

Mi

)
⊗N

by bi(x, n) = ιi(x) ⊗ n, where ιi : Mi ↪→
(⊕

i∈IMi

)
is the canonical inclusion map.

Then bi is R-bi-linear and hence induces an R-map ψi : Mi ⊗R N →
(⊕

i∈IMi

)
⊗N .

By the universal mapping property for coproducts the maps ψi, i ∈ I determine an
R-map

ψ :
⊕
i

(Mi ⊗R N)→

(⊕
i∈I

Mi

)
⊗N.

It is easy to see that both ψ ◦ φ and φ ◦ ψ are the identity maps.
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We now come to adjointness.
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Definition 1.151. Let C, D be categories, and let F : C → D, G : D → C be functors.
We say that F and G are adjoint (and we say that G is right-adjoint to F and F is
left-adjoint to G ) if there are natural isomorphisms

HomC(X,G(Y )) ∼= HomD(F (X), Y ).

We show below that Hom and ⊗ are adjoint functors.

Theorem 1.152 (Hom-Tensor Adjointness). Let R, S, T be rings, and let RMT , SNR,
and SL be modules/bimodules as indicated by the subscripts. Then there is a natural
isomorphism of left T -modules

HomS(N ⊗RM,L) ∼= HomR(M,HomS(N,L))

given by sending an S-map φ : N⊗RM → L to the R-map fφ : M → HomS(N,L) given
as fφ(m)(n) = φ(n⊗m). The inverse map sends θ to the unique map gθ : N⊗RM → L
so that gθ(n⊗m) = θ(m)(n).

Proof. Many of the details of this proof will be omitted.
Let’s denote the proposed inverse map by g. We will first show that the map

g is well-defined. Fix m ∈ HomR(M,HomS(N,L)). Define bθ : N × M → L by
bθ(n,m) = θ(m)(n). One can check that bθ is R-biadditive. Then by the universal
property, there exists a unique gθ as in the statement. One can then check that gθ is
S-linear using that θ is S-linear. Finally one can check that g is T -linear.

Similar checks are required for f .
Now we will show that f and g are inverses. Indeed:

(f ◦ g)(θ)(m)(n) = fgθ(m)(n) = gθ(n⊗m) = θ(m)(n)

(g ◦ f)(φ)(n⊗m) = gfφ(n⊗m) = fθ(m)(n) = θ(n⊗m).

Thus these maps are isomorphism of T -modules.

There are a lot of nice properties of adjoint functor such as:

• applying a right adjoint functor to a product of objects yields the product of the
images;

• applying a left adjoint functor to a coproduct of objects yields the coproduct of
the images;

• every additive right adjoint functor between two abelian categories is left exact;

• every additive left adjoint functor between two abelian categories is right exact.

We will not explore these properties here.
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Chapter 2

Representation theory

2.1 Group representations as R[G]-modules

2.1.1 Linear group representatios

Recall from Math 817 that the most important aspect of group theory is that groups
have actions on various sets: the group itself, its cosets, some groups are even defined
as transformations of Euclidean space (e.g. the dihedral group) so they act on it.

Also in 817 you have seen Cayley’s Theorem that every group can be embedded in
a permutation group (more precisely, a group G can be viewed as a subgroup of the
permutations on the underlying set of G). More generally, a group G acting on a set
X gives rise to a group homomorphism ρ : G→ Perm(X) = Aut〈〈Sets〉〉(X).

In this chapter we study the scenario in which a group acts on a set V with ad-
ditional algebraic structure, such as a module or vector space and the action of the
group preserves this structure. When this happens, we say that G acts “linearly” on
V . Here is the official definition.

Definition 2.1. Let R be a ring, V a left R-module, and G a group. An R-linear
representation or R-linear action of G on V is an action of G on V , i.e., a pairing
G× V → V , written (g, v) 7→ gv, such that

1. eGv = v for all v ∈ V and

2. (gh)v = g(hv) for all g, h ∈ G, v ∈ V

that is also R-linear, in the sense that

4. g(v + u) = gv + gu for all g ∈ G, u, v ∈ V and

5. g(rv) = rg(v) for all g ∈ G, v ∈ V, r ∈ R.

Remark 2.2. Sometimes we abusively say V is a G-representation to mean that there
is some unspecified linear action of G on V .
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Remark 2.3. Often we will specialize to the case of k-linear representations when R = k
is a field and thus V is a k-vector space.

Example 2.4. G = Sn acts k-linearly on kn by permuting the entries:

σ · (a1, . . . , an) = (aσ(1), . . . , aσ(n)).

Lemma 2.5. Specifying an R-linear representation of G on V is equivalent to specifying
a group homomorphism ρ : G → AutR(V ), where AutR(V ) is the group of R-linear
automorphisms of V .

Proof. Given an R-linear representation of G on V as in Definition 2.1 we set

ρ : G→ AutR(V ), ρ(g)(v) = gv.

Properties 3 and 4 in Definition 2.1 say that ρ(g) is an R-module homomorphism. Its
inverse is ρ(g−1), hence ρ(g) is really an automorphism. Properties 1 and 2 in Definition
2.1 say that ρ is a group homomorphism.

Conversely, given ρ we define a representation by setting gv = ρ(g)(v).

Remark 2.6. When V = Rn is a free R-module of rank n then AutR(V ) ∼= GLn(R),
the group of invertible n× n matrices with entries in R.

Example 2.7. 1. For any group G and commutative ring R we can take V = R and
ρ(g) = idR for all g ∈ G. This representation is called the trivial representation.

2. Any representation on V = R is determined by specifying a group homomorphism
ρ : G→ AutR(R) ∼= R×.

For example, if G = Cn = 〈g〉 (the multiplicative cyclic group of order n) and

R = C, there are n possible such homomorphisms, determined by ρ(g) = e
2πki
n

where 0 ≤ k ≤ n− 1.

Another important example of a rank 1 representation is the sign representation
of the symmetric group Sn, given by the group homomorphism which assigns to
each permutation its sign, regarded as an element of the arbitrary ring R.

3. Let G = D2n, symmetries of the equilateral polygon on n vertices. Then G
acts linearly on V = R2 by rotations and reflections. If G is generated by r
(rotation by 2π/n) and l (reflection about the y-axis), then the associated group
homomorphism ρ : G ↪→ GL2(R) maps

ρ(r) =

[
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

]
ρ(l) =

[
−1 0
0 1

]
.

4. Let R = Fp, V = R2 and let G = Cp = 〈g〉. We see that the assignment

ρ : G→ EndFp(F2
p)
∼= GL2(Fp) ρ(gr) =

[
1 0
r 1

]
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is a representation.The fact that this map is well defined is very much dependent
on the choice of R as the field Fp: in any other characteristic it would not work,
because the matrix shown would no longer have order p.
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Definition 2.8. If φ : G → AutR(V ) and ψ : G → AutR(W ) are R-linear repre-
sentations of G on V and W respectively then a G-equivariant map from V to W is
an R-module homomorphism f : V → W such that f(gv) = gf(v) for all v ∈ V .
Equivalently the following diagram commutes:

V
f //

φ(g)
��

W

ψ(g)
��

V
f //W

Example 2.9. For the representations of G = Sn on V = kn given by permuting
the entries of an n-tuple, the only equivariant maps f : V → V are the scaling maps
f(a1, . . . , an) = c(a1, . . . , an) where c ∈ k.

Proposition 2.10. Fix a group G and a ring R. The collection of left R-linear repre-
sentations of G and G-equivariant maps between them forms a category which we will
denote 〈〈RepR(G)〉〉.

Proof. The verification of the axioms is left as an exercise. The composition we use
in the category 〈〈RG-Rep〉〉 is the ususal composition of functions and the identity
morphisms are the identity functions idV .

2.1.2 Group rings and their modules

Next we will turn representations into modules. First we define a suitable ring.

Definition 2.11. Given a commutative ring R, an R-algebra is defined to be a (not
necessarily commutative) unital ring A equipped with a ring homomorphism R → A,
called the structure map, whose image lies in the center of A.

An R-algebra homomorphism between R-algebras A,B with structure maps α :
R→ A, β : R→ B are the ring homomorphisms γ : A→ B that satisfy γ ◦ α = β.

Proposition 2.12. Fix a commutative ring R. The collection of R-algebras and R-
algebra homomorphisms forms a category denoted 〈〈R-Algebras〉〉.

Proof. Exercise.

Next we see how to construct R-algebras from a group in a concrete way.
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Definition 2.13. For any ring R and group G, we define the group ring R[G] as follows:
As a set, R[G] is the free left R-module with basis G; that is,

R[G] =

{∑
g

rgg | rg = 0R for all by a finite number of g′s

}
.

We define addition as module addition; that is,(∑
g

rgg

)
+

(∑
h

shh

)
=
∑
f∈G

(rf + sf ) f.

Multiplication is the unique pairing that obeys the distributive laws and is such that R
is a subring, 1RG is a subgroup of (R[G]×, ·), and every element of R commutes with
every element of G. In general, we have(∑

g

rgg

)
·

(∑
h

shh

)
=
∑
f∈G

 ∑
(g,h)∈G×G,gh=f

rgsh

 f.

where the inner sum is over pairs of semi-group elements whose product is f .

Remark 2.14. As a matter of notation, the element 1Rg will be written as just g and
the element reG as just r, so that we will regard G and R as subsets of R[G]. They
overlap in the one element 1ReG which will be written as just 1.

Remark 2.15. When R is commutative (in particular when R is a field), R[G] is an
R-algebra called the group R-algebra of G.

Exercise 2.16. For any ring R and G = Cn, prove there is a ring isomorphism

R[Cn] ∼= R[x]/(xn − 1).

Proposition 2.17 (Universal Mapping Property of group rings). Let R,A be rings
and G a group. Given a ring homomorphism ι : R → A and a group homomorphism
f : G→ (A×, ·), such that for every r ∈ R, g ∈ G we have that ι(r) and f(g) commute
in (A, ·), there is a unique ring homomorphism α : R[G] → A such that α|R = ι and
α|G = f . Explicitly, α is given by

α

(∑
g

rgg

)
=
∑
g

ι(rg)f(g).

Proof. Most of this follows from noticing that R[G] is a coproduct. Indeed, we can
vie R[G] as an internal direct sum R[G] =

⊕
g∈GRg and hence it is the coproduct

for the family {Rg}g∈G where each Rg ∼= R. For each g ∈ G set up an R-module
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homomorphism fg : Rg → A by mapping fg(rgg) = ι(rg)f(g). Then the definition of
coproduct gives a unique R-module homomorphism

α : R[G] =
⊕
g∈G

Rg → A such that α|Rg = fg.

From the way we defined the maps fg we can deduce that α|R = ι and α|G = f and

α

(∑
g

rgg

)
=
∑
g

ι(rg)f(g).

It remains to check that this map is in fact a ring homomorphism, i.e. it preserves
multiplication. This can be done using the formula for α above and the fact that ι(R)
and f(G) commute in A.

Remark 2.18. If we assumed that A is an R-algebra in the proposition above, then
we would not need the commutativity condition as ι(R) is in the center of A so it
commutes with everything.

Exercise 2.19. Show that if R is commutative then forming the group R-algebra is a
functor R[−] : 〈〈Groups〉〉 → 〈〈R-Algebras〉〉.
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Example 2.20. (The regular representation) Fix a group G and a ring R. The (left)
regular representation of G on R[G] is given by the action g · v = gv for any v ∈ R[G],
where the right hand side denotes multiplication in R[G]. Note that this extends the
action of the group G on itself by left multiplication.

Equivalently the group ring R[G] is given the structure of an R-linear representation
of G by means of the map

ρ : G→ AutR(R[G]), ρ(g) = αg,

where αg : R[G] → R[G] is the morphism given by Proposition 2.17 applied for A =
R[G], ι = R ↪→ R[G] and f : G→ R[G]×, f(g′) = gg′.

Example 2.21. Let’s analyze the regular representation of the cyclic group Cn = 〈g〉
further. R[Cn] is a free R-module with basis 1, g, g2, . . . , gn−1 and thus AutR(R[Cn]) ∼=
GLn(R). Let’s determine the group homomorphism ρ : Cn → GLn(R) corresponding
to the regular representation: g ∈ Cn acts by cyclically permuting the basis elements,
so

ρ(g) =


0 0 · · · 1
1 0 · · · 0
0 1 · · · 0
...

...
...

...

 .
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Now recall that R[Cn] ∼= R[x]/(xn − 1) via g 7→ x and realize that if we look at the

multiplication map by x R[x]/(xn − 1)
·x−→ R[x]/(xn − 1) as an R-linear map between

free R-modules, this map is represented by the same matrix.

Remark 2.22. In a similar way to the example above we see that if G is a finite group
then the map ρ corresponding to the regular representation takes every element of G
to a permutation matrix.

Example 2.23. Take R = R and G = Q8, where Q8 = {±e,±i,±j,±k} is the group
of quaternions. Recall the of real quaternion algebra H from Example 1.5:

H = {a+ bi+ cj + dk | a, b, c, d,∈ R, i2 = j2 = k2 = ijk = −1}.

We give this a structure of a Q8, R-linear representation via multiplication by the
images of elements of Q8 under the map f : Q8 → H that maps elements of Q8 to
elements having the same name in H. That is, q ∈ Q8 acting on v ∈ H is f(q)v. More
formally, the inclusion ι : R ↪→ H, which is a ring homomorphism together with the
group homomorphism f : Q8 → (H×, ·) from above give by Proposition 2.17 gives a
ring homomorphism

ρ : R[Q8]→ H,
which is equivalent to the action by multiplication described above.

It would be forgivable to assume this map is an isomorphism based on the termi-
nology, but notice that the source is 8 dimensional as an R-vector space and the image
is only 4-dimensional. Note that (1R)(−e) and (−1R)e are different elements of R[Q8]
that get mapped to the same element of the target. What is true is that the kernel of
α is the R-linear span of −e + e, −i + i, −j + j, −k + k, which does indeed form a
two-sided ideal of the source. The first isomorphism theorem gives a ring isomorphism

α : R[Q8]/I
∼=−→ H.

Notice that the representation H is thus a module over the group ring R[Q8]. We see
below that this is true for all representations.

Modules over group rings

We are now ready to translate group representations in the language of modules. We
start by defining two mutually inverse functions

〈〈RepR(G)〉〉 →
〈〈

R[G]Mod
〉〉

and
〈〈

R[G]Mod
〉〉
→ 〈〈RepR(G)〉〉 .

Lemma 2.24. Assume R is a ring, V is a left R-module, and G is a group. Given a
group homomorphism ρ : G → AutR(V ), i.e. an R-linear representation of G on V ,
there is a unique structure on (V,+) of a left R[G]-module denoted V ρ such that(∑

g∈G

rgg

)
m =

∑
g∈G

rg · α(g)(m).

54



(In particular r ·m is the original rule for scaling when r ∈ R and g ·m = ρ(g)(m).)
Conversely, if M is a left R[G]-module, then we may regard M as a left R-module

via restriction of scalars to R ⊆ R[G], and the map ρM : G → AutR(M) defined by
ρM(g)(m) = gm is a group homomorphism.

Moreover, these two constructions are mutually inverse in the evident sense.

Proof. Recall that, if S is a ring, to give an S-module structure on a set N is equivalent
to giving a bi-additive pairing S ×N → N, s× n 7→ sn which is in turn equivalent to
giving an S-module homomorphism S → End〈〈Ab〉〉(N,+), s 7→ (n 7→ sn) (see Exercise
1.13).

Given V , ι : R ↪→ R[G] and ρ : G → AutR(V ) as in the statement, note that
AutR(V ) ≤ AutAb(V ) = End〈〈Ab〉〉(V,+)× ≤ End〈〈Ab〉〉(V,+), so we can instead think
of ρ as a group homomorphism

ρ : G→ End〈〈Ab〉〉(V,+).

However, the fact that ρ(g) ∈ AutR(M) means ρ(g) and ι(r) commute in EndAb(M,+)
for all g ∈ G and r ∈ R. By Proposition 2.17 we obtain a ring map α : R[G] →
EndAb(M,+) which makes (M,+) into a left R[G]-module. Tracking through the
constructions we see that r ·m and g ·m are as advertised in the statement.
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We can augment these functions to functors to prove:

Theorem 2.25. The categories 〈〈RepR(G)〉〉 and
〈〈

R[G]Mod
〉〉

are isomorphic.

Proof. Define a functor F : 〈〈RepR(G)〉〉 →
〈〈

R[G]Mod
〉〉

on objects to map V 7→ V ρ

as in the first part of Lemma 2.24. On G-equivariant morphisms f : V → W define
F (f) : V ρ → W τ to be F (f) = f . We need to show that f is indeed an R[G]-
module homomorphism, not just an R-module homomorphism. So we compute using
R-linearity and G-equivaraince of f

f
((∑

rgg
)
v
)

= f
(∑

rgρ(g)(v)
)

=
∑

rgτ(g)(f(v)) =
(∑

rgg
)
f(v).

Define G :
〈〈

R[G]Mod
〉〉
→ 〈〈RepR(G)〉〉 to be the functor that forgets the R[G]-

module structure but remembers ρM as in the second part of Lemma 2.24. Let φ :
M → N be an R[G]-module homomorphism and set G(φ) = φ. It is clear that φ is
also an R-module homomorphism. We need to show φ is G-equivariant. This follows
using the R[G]-linearity of φ, i.e. φ(gm) = gφ(m) for all m ∈M .

It remains to see that F and G are mutually inverse functors. On objects this is
given by Lemma 2.24 and on morphisms both F and G act as the identity so their
composition also acts as the identity.
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Summarizing the information from this section, we have 3 equivalent ways of describing
R-linear representations of G on V :

• an R-linear action of G on the R-module V ,

• a group homomorphism ρ : G→ AutR(V ), and

• a left R[G]-module structure on V (that extends the R-linear structure and the
G-action)

2.2 Semisimple modules and representations

In this section we aim to:

• decompose representations as direct sums of “simpler” representations

• classify all the indecomposable representations of a given group.

2.2.1 Decomposing representations by Maschke’s theorem

We come now to our first non-trivial result, and one that is fundamental to the study
of representations of finite groups over fields of characteristic zero, or characteristic not
dividing the group order. This surprising result says that in this situation representa-
tions always break apart as direct sums of smaller representations.

Corollary 2.26. The category 〈〈RepR(G)〉〉 has coproducts. The coproduct of a family
of R-linear G-representations (V1, ρ1), (V2, ρ2) is the direct sum representation

(V1 ⊕ V2, ρ1 ⊕ ρ2)

together with the inclusion maps ι1, ι2 of the summands V1, V2 into V1⊕V2. The action
of G on V1 ⊕ V2 is componentwise: g · (v1, v2) = (g · v1, g · v2) or equivalently

(ρ1 ⊕ ρ2)(g)(v1, v2) = (ρ1(g)(v1), ρ2(g)(v2)).

Proof. We use the isomorphism of categories in Theorem 2.25 and the fact that
〈〈

R[G]Mod
〉〉

admits coproducts. One can see that the representation (V1⊕V2, ρ1⊕ρ2) satisfies, using
notation from Lemma 2.24,

(V1 ⊕ V2)ρ1⊕ρ2 = V ρ1
1 ⊕ V

ρ2
2

in the category of R[G]-modules and use that the right hand side is a coproduct in
that category.

Definition 2.27. Let V be an R-linear representation of a group G. An R-submodule
W of V is a subrepresentation if W is stable under the action of G, that is g · w ∈ W
for all w ∈ W .
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Remark 2.28. If W is a subrepresentation of V then V/W can be given a structure
of quotient representation with respect to the R-linear action g · v = g · v. This is
independent of choice of representative because W is stable under the G action on V .

Example 2.29. Let C2 act on R2 by reflection over the x-axis. Specifically we have ρ :

C2 = 〈g〉 → GL2(R), ρ(e) = I2, ρ(g) =

[
1 0
0 −1

]
. Observe that the subrepresentations

are V0 = {0}, V1 = Span{e1}, V2 = Span{e2}, V = R2 and that V decomposes as
V = V1 ⊕ V2.
Exercise 2.30. Show that if W as above is a subrepresentation of a representation
(V, ρ) then ρ induces a group homomorphism ρW : G → AutR(W ) by restriction
ρW (g) = ρ(G)|W and W ρW is an R[G]-submodule of V ρ.

We do now require the ring R to be a field, and in this situation we will often use
the symbol k instead of R.

Theorem 2.31 (Maschke’s Theorem - representation theoretic version). Let V be a
k-linear representation of a finite group G such that char(k) - |G| (i.e. |G| is invertible
in k). Let W be a subrepresentation of V . Then there exists a subrepresentation U of
V such that V = W ⊕ U as representations.
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Proof. Let i : W ↪→ V be the inclusion map. Then we have a short exact sequence

0→ W
i−→ V

q−→ V/W → 0

which splits because the modules in this sequence are k-vector spaces, hence free k-
modules. In particular, W/V is free, hence projective by Proposition 1.101 and thus
there is a splitting map s′ : V/W → V by Proposition 1.105. Set U ′ = s′(V/W ). Then
V/W ∼= s(V/W ) and V = W ⊕ U ′ by the Splitting Theorem.

However, although V/W is a representation with respect to the action g · v = g · v
which makes q a G-equivariant map, U ′ need not be a subrepresentation of V because
U ′ need not be stable under the action of G and s′ need tot be G-equivariant. In other
words, we have split the short exact sequence in the category of k-vector spaces but
not in the category of k-linear G-representations.

To fix the problem above we now modify s′ to be equivariant. Let s : V/W → V
be given by

s(v) =
1

|G|
∑
g∈G

g · s′(g−1 · v).

It is easy to see that this map is k-linear. We check that s splits q. Indeed,

(q ◦ s)(v) = q

(
1

|G|
∑
g∈G

g · s′(g−1 · v)

)

=
1

|G|
∑
g∈G

q(g · s′(g−1 · v))
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=
1

|G|
∑
g∈G

g · s′(g−1 · v)

=
1

|G|
∑
g∈G

g · s′(g−1 · v)

=
1

|G|
∑
g∈G

g · (q ◦ s′)︸ ︷︷ ︸
idV/W

(g−1 · v)

=
1

|G|
∑
g∈G

g · g−1 · v =
1

|G|
∑
g∈G

v = v.

We check that s is G-equivariant: for h ∈ G we compute

s(h · v) =
1

|G|
∑
g∈G

g · s′(g−1 · h · v) =
1

|G|
∑
g∈G

g · s′((h−1g)−1 · v)

= h · 1

|G|
∑

h−1g∈G

h−1g · s′((h−1g)−1 · v) = h · s(v).

Now set U = s(V/W ) and observe that U is a subrepresentation of V by the calculation
above and V = W ⊕ U as before.

Definition 2.32. An R-linear representation V of a group G is called irreducible or
simple if V 6= 0 and V does not have any non-zero, proper subrepresentations.

Example 2.33. There are three irreducible R-linear representations of S3 = D6:

• the trivial representation

• the sign representation

• R2 with the natural action of D6 by reflections and rotations

The trivial and sign representations are irreducible because they have dimension 1 as
vector spaces and any 1-dimensional vector space is irreducible. The 2-dimensional
representation is simple because, visibly, no 1- dimensional subspace is invariant under
the group action of D6.

We will show eventually that these are all the irreducible representations of S3 up
to isomorphism.

Corollary 2.34 (Corollary of Maschke’s Theorem). If G is a finite group and k is a
field such that char(k) - |G|, then every finite dimensional k-linear representation of G
is a finite direct sum of irreducible representations.

Proof. The basic idea is that if V is a non-simple representation then V decomposes
into proper subrepresentations V = U ⊕W by Maschke’s theorem. This process can
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be repeated if U or W are non-simple. One needs to be concerned whether there
this procedure terminates. It does because at each step the number of summands
increases and by dimension counting this can happen at most dimk(V ) times before
we reach summands that are either irreducible or 1-dimensional, hence also irreducible
for dimension reasons.

In the following sections we will to imitate the decomposition of k-linear represen-
tations, i.e., k[G]-modules from the previous section for modules over arbitrary rings.
We start by considering the building blocks.

2.2.2 Simple modules

Definition 2.35. A left R-module M is called (left) simple if it is non-zero and it has
no non-zero, proper submodules.

Lemma 2.36. M is a simple left R-module if and only if M is isomorphic to R/I,
where I is a maximal left ideal.

Proof. Suppose M is a simple left R-module. Since M is non-zero, there is a 0 6= m ∈
M . The submodule generated by m must be all of M (since M is simple), and so M is
cyclic and hence M ∼= R/I for a proper left ideal I. By the lattice theorem there are
no left ideals with I ⊂ J ⊂ R and thus I is a maximal left ideal.

The converse follows also by the lattice theorem.

Exercise 2.37. Prove uniquness: If R/I ∼= R/J for any two maximal left ideals I and
J , then I = J . (This holds in fact without the “maximal” assumption.)

Example 2.38. If R is commutative, then an ideal I is maximal if and only if R/I is a
field. (Note that in the non-commutative case, R/I would not even be a ring unless I
happens to be a two-sided ideal.) So the simple R-modules in this case are the quotient
fields of R.

In particular, if R is a PID, the simple R-modules are those of the form R/p with p
a prime element. In particular, for R = k[x] the simple modules are those of the form
R/p(x) with p(x) an irreducible polynomial. And the simple Z-modules are Z/p for p
a prime integer.

Lemma 2.39. For a division ring D and integer n ≥ 1, let R = Mn(R) be the ring
of n× n matrices with entries in R and let M = Dn (column vectors) viewed as a left
R-module via the standard matrix multiplication. Then M is a simple R-module.

Proof. Let V 6= 0 be an R-submodule of M . We wish to show V = M . Let 0 6= v =[
v1 · · · vn

]T ∈ V and suppose vj 6= 0. Then v−1j Eijv = ei ∈ V for all i, where ei
denotes the i-th standard basis vector of Dn and Eij the matrix with entry 1 in position
(i, j) and 0 elsewhere. Since V is a D-module and contains a basis of M it follows that
V = M , as desired.
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Proposition 2.40. Suppose G is a group and M is a non-zero left R[G]-module.
M is simple as a left R[G]-module if and only if M is irreducible when viewed as a
representation of G.

Proof. To prove this, we show that the functors F : 〈〈RepR(G)〉〉 →
〈〈

R[G]Mod
〉〉

and
G :

〈〈
R[G]Mod

〉〉
→ 〈〈RepR(G)〉〉 of Theorem 2.25 take a subrepresentation of M , i.e.,

an R-submdule of M that is invariant under G to an R[G]-submodule W of M and
vice-versa.

To see this, say W ⊆M is an R-submodule and is invariant under G. Then for all
w ∈ W , we have (

∑
i rigi)w =

∑
i ri(giw) belongs to W , for all elements

∑
i rigi of the

group ring. So W is an R[G]-submodule.
If W is an R[G]-submodule, then it is closed under + and scaling by R, since R is

a subring of R[G]. Thus it is an R-module. Its invariant under the action of G since
G is a subgroup of R[G]×.

The following is a classic and easy fact about simple modules. It is reminiscent of
the well known fact that any non-zero field homomorphism is injective.

Lemma 2.41 (Schur’s Lemma). Let R be any ring and M and N two simple left R-
modules. Every non-zero R-module homomorphism f : M → N is an isomorphism. In
particular, EndR(M) is a division ring.

Proof. For the first assertion, if f 6= 0, then we have Ker(f) 6= M and Im(f) 6= 0.
Since each of these is a submodule, the simplicity assumptions give that Ker(f) = 0
and Im(f) = N , and hence that f is one-to-one and onto.

For the second, recall EndR(M) is ring, as shown before, and that the mutiplication
rule is composition. If f ∈ EndR(M) is any non-zero element, then by the first part f
has a two-sided inverse f−1 (which also belongs to EndR(M)).

2.2.3 Semisimple modules and the Krull-Schmidt theorem

Definition 2.42. For any ring R, a left R-module M is called (left) semisimple if it is
a (possibly infinite) direct sum of simple modules. The empty direct sum is allowed,
so that the 0 module is considered to be semisimple.

Example 2.43. Let M be a finitely general Z-module. Then by the FTFGAG, M is
isomorphic to Zr ⊕ Z/pe11 ⊕ · · · ⊕ Z/penn for some r ≥ 0, n ≥ 0, primes pi and positive
integers ei. Such a module is semisimple if and only if r = 0 and ei = 1 for all i.

Example 2.44. Every module over a division ring D is semisimple because any such
module has a basis, hence it is a free module.

Lemma 2.45. Let D be a division ring and set R =Mn(D) for some n ≥ 1. I claim
R is semisimple as a left module over itself.
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Proof. For each 1 ≤ i ≤ n, let Ii denote the subset of R consisting of matrices whose
only non-zero entires belong to the i-th column. The rules for matrix addition and
multiplication show that Ii is a left ideal (i.e., a left submodule) of R. Moreover,
there is evident bijection between Ii and Dn (column vectors) and this bijection is an
isomorphism of left R-modules. We proved Dn is simple as an R-module in Lemma
2.39 and hence so is Ii. Finally, R is the internal direct sum of I1, . . . , In:

R = I1 ⊕ · · · ⊕ In

because each matrix X is uniquely a sum of the form X1 + · · ·+Xn with Xi ∈Mi.

Before we discuss semisimple module further, let’s recall a few facts about internal
direct sums.

Definition 2.46. Given an R-module M and submodules M ′ and M ′′ we say that
M is the internal direct sum of M ′ and M ′′ and we write M = M ′ ⊕M ′′ if the map
ϕ : M ′ ⊕M ′′ → M, (m′,m′′) 7→ m′ +m′′ is an R-module isomorphism. We also say in
this setup that M ′ and M ′′ are (direct) summands of M .

Lemma 2.47 (Characterization of internal direct sum). The following statements are
equivalent for a R-module M and submodules M ′ and M ′′:

1. M = M ′ ⊕M ′′ (internal direct sum)

2. There is a split s.e.s 0→M ′ →M →M ′′ → 0.

3. Every m ∈ M has a unique expression of the form m = m′ + m′′ for elements
m′ ∈M ′,m′′ ∈M ′′.

4. M = M ′ +M ′′ and M ′ ∩M ′′ = {0}

Proof. (1)⇔ (3) is by definition and (3)⇔ (4) is easy (left as exercise).
Finally (1) ⇔ (2) follows from the Splitting Theorem 1.90. The key point is that

the splitting theorem furnishes an isomorphism θ : M → N ⊕N ′ which is the inverse
of the map ϕ in Definition 2.46.

Remark 2.48. If one has a split s.e.s 0 → M ′ i−→ M
p−→ M ′′ → 0 with splitting s for p

then there is also a split s.e.s 0→ i(M ′)→ M → s(M ′′)→ 0 which yields an internal
direct sum M = i(M ′)⊕ s(M ′′).

Proposition 2.49 (Equivalent conditions for simple modules). For any ring R and
left R-module M , the following are equivalent:

1. M is semisimple,

2. every submodule of M is a summand; i.e., for every submodule N of M there is
a submodule N ′ such that M = N ⊕N ′ is the internal direct sum of N and N ′,
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3. every injective R-map i : M ′ ↪→M is split (i.e., for each such i there is an R-map
q : M →M ′ with q ◦ i = idN),

4. every s.e.s of the form 0→M ′ →M →M ′′ → 0 is split exact,

5. every surjective R-map p : M � M ′′ splits (i.e., for each such p there is an
R-map j : M ′′ →M with p ◦ j = idN).

October 5, 2020

Proof. The equivalence of (3), (4), and (5) is given by the Splitting Theorem 1.90.
(2)⇒ (3) holds since given an injective map i as in (3), we have by (2) that i(M ′) is

a summand of M , hence there is a projection homomorphism π : M → i(M ′) that splits
the inclusion of the summand into M , that is π|i(M ′) = idi(M ′). Now i : M ′ → i(M ′) is
an isomorphims so we may consider the R-module homomorphism i−1 : i(M ′) → M ′

and set s : M →M ′ to be s = i−1 ◦ π. Then

s ◦ i = i−1 ◦ π ◦ i = i−1 ◦ πi(M ′) ◦ i = i−1 ◦ i = idM ′ .

(3)⇒ (2) holds since we can split the inclusion N ↪→M and thus also the s.e.s.

0→ N →M →M/N → 0.

Therefore the Splitting Theorem yields M = N⊕s(M/N) where s denotes the splitting
of the quotient map M →M/N .

The hard part is proving (1) ⇔ (2). (1) ⇒ (2) Assume (1), so that M = ⊕i∈IMi

for some collection of simple submodules Mi, and let N ⊆ M be any submodule. It
is important to note that it does not necessarily follow that N is one of the Mi; see
Example 2.55. Consider the collection S of subsets J of I such that N ∩MJ = 0 where
we define MJ := ⊕j∈JMj. View S as a poset by inclusion. It’s non-empty since J = ∅
belongs to S. If {Jα} is a totally ordered sub-collection of S, let J = ∪αJα. I claim
MJ ∩ N = 0. If not, there is a non-zero element (mj) ∈ MJ ∩ N . But since mj = 0
for all but a finite number of j’s and since the collection of Jα’s was totally ordered,
there is some α such that (mj) ∈MJα ∩N , a contradiction. We may thus apply Zorn’s
Lemma to get a maximal J ∈ S.

I claim M is the internal direct sum of N and MJ . We have N ∩ MJ = 0 by
construction and so it suffices to prove N +MJ = M . Since M =

∑
i∈IMi, the latter

is equivalent to proving that Mi ⊆ N + MJ for all i ∈ I. If this fails for some i,
then since Mi ∩ (N + MJ) is a proper submodule of Mi, which is simple, and hence
Mi ∩ (N +MJ) = 0. But then N ∩MJ ′ = 0 where J ′ = J ∪ {i} ⊃ J . Indeed, if n ∈ N
and n = mi +

∑
j∈J mj, then mi = n −

∑
j −mj ∈ Mi ∩ (N + MJ) = 0. So, J ′ is

member of S that strictly contains J , a contradiction. It must be the M = N ⊕MJ .
(2) ⇒ (1) Now assume that every submodule of M is a summand. We proceed in

three steps:
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(i) I claim that every submodule T of M inherits this property; i.e., every submodule
of T is a summand of T . For say U ⊆ T is a submodule. By assumption on M , we
have M = U ⊕ V (internal direct sum) for some V . Since U ⊆ T , it follows that
T = U + (V ∩ T ). (Given t ∈ T , we have t = u + v for some u ∈ U, v ∈ V . Since
U ⊆ T , v = t− u ∈ V ∩ T .) Since U ∩ (V ∩ T ) = 0, this shows T = U ⊕ (V ∩ T ).

October 7, 2020
(ii) I claim that every non-zero submodule T of M contains a simple summand.

Pick 0 6= x ∈ T and apply Zorn’s Lemma to show that there is a maximal submodule
U of T with respect to the property that x /∈ U . We have T = U ⊕ W by (i) for
some W 6= 0. If W is not simple, then W contains a non-zero, proper submodule W1

and hence, by using (i) again, we get that W = W1 ⊕W2 for some proper non-zero
submodule W2.

These properties implies that (U ⊕ W1) ∩ (U ⊕ W2) = U . One containment is
clear. If v belongs to the left side, then v = u + w1 = u′ + w2. It follows that
w1−w2 = u−u′ ∈ U ∩W = 0 and so w1 = w2 ∈ W1∩W2 = 0, and hence w1 = w2 = 0.
So, either x /∈ U ⊕W1 or x /∈ U ⊕W2, and either way we reach a contradiction to the
maximality of U .

(iii) For this part we consider the collection of all families {Sj}j∈J of submodules
of M satisfy the two properties

• each Sj is a simple submodule of M and

• they form an internal direct sum of the submodule that they generate; i.e.,∑
j Si = ⊕jSj. (This is equivalent to saying that for all l ∈ J we have Sl ∩∑
j∈J,j 6=l Sj = 0.)

Define an order relation on the collection of all such families by declaring {Sj}j∈J ≤
{Ti}i∈I iff J ⊆ I and Sj = Tj for all j ∈ J . Take my word for it that we may
apply Zorn’s Lemma to show that there is a member {Sj}j∈J of this collection that
is maximal. Set U = ⊕jSj =

∑
j Sj. We need to prove U = M . By (i) we have

M = U ⊕ V for some V . If V = 0 we are done. Otherwise by (ii) (and (i) again) we
have V = S ⊕ V ′ for some simple submodule S. But then {Sj}j∈J ∪ {S} is a larger
member of the collection, a contradiction.

Corollary 2.50. If M semisimple, so is every submodule and quotient module of M .

Proof. Say N ⊆M is a submodule. By the claim marked (i) in the proof of Proposition
2.49 every submodule of N is a summand, and hence N is semisimple by Proposition
2.49 (2)⇒ (1).

Given a surjection M � P , it splits by Proposition 2.49, so that P is isomorphic
to a submodule of M , namely the image of P under the splitting map. Hence P is
semisimple by the case already proven.
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Let us now derive some properties of semisimple modules in the case when M is as-
sumed to be finitely generated. These properties involve the ascending and descending
chain conditions on submodules.

Definition 2.51. A module M is said to be (left) noetherian or to satisfy the ascending
chain condition (acc) on submodules if given any ascending chain M1 ⊆ M2 ⊆ · · · of
(left) submodules of M , there is an index n such that Mn = Mn+1 = · · · .

A module M is said to be (left) artinian or to satisfy the descending chain condition
(dcc) on submodules if given any descending chain M1 ⊇M2 ⊇ · · · of (left) submodules
of M , there is an index n such that Mn = Mn+1 = · · · .

Lemma 2.52. Let R be any ring and M a finitely generated left semisimple left R-
module.Then M is both (left) noetherian and (left) artinian.

Proof. If N is a submodule of M , then, by Proposition 2.49, M = N ⊕ T for some T
and hence there is a surjective R-map M � N given by the evident projection. Since
M is finitely generated, N is finitely generated by the images of the generators of M
under this projection. It follows that every submodule of M is finitely generated.

By a standard argument it follows that M has the acc (in fact, this condition on
submodules is equivalent to acc, see Exercise 2.53.) In detail if M0 ⊆ M1 ⊆ · · ·M is
a chain of submodules, then the union M ′ = ∪iMi is a submodule of M and hence is
finitely generated. Any finite generating set would necessarily be contained in Mi for
some sufficiently large i, which gives that Mj = M ′ for all j ≥ i.

For dcc, suppose there was an infinite descending chain M = M0 ⊃ M1 ⊃ · · · .
For each i, there exists by (2) a submodule Ni of Mi such that Mi = Mi+1 ⊕ Ni

(internal direct sum), and since Mi+1 6= Mi, we have Ni 6= 0. We get M = N0 ⊕M1 =
N0 ⊕N1 ⊕M2 = · · · , which leads to an infinite strictly ascending chain

N0 ⊂ N0 ⊕N1 ⊂ N0 ⊕N1 ⊕N2 ⊂ · · · ,

contrary to the acc.

We have proven half of the following exercise within the proof if the Lemma above.

Exercise 2.53. Prove M has acc if and only if every (left) submodule of M is finitely
generated.

Remark 2.54. It is easy to show that any finitely generated semisimple module is a
finite direct sum of simple modules.

October 9, 2020

Example 2.55. Consider the semisimple Z-module M = Z/(p)⊕ Z/(p). It has many
simple submodules, for example N1 = {(a, a) | a ∈ Z/(p)} or N2 = {(a, 2a) | a ∈
Z/(p)}. One can show that

M = Z/(p)⊕ Z/(p) = N1 ⊕N2.

64



The following theorem will allow us to deduce from the above equality that N1
∼= Z/(p)

and N2
∼= Z/(p) (as one can easily check directly). More importantly, the next theorem

will allow to show that if N is any simple submodule of M then N is isomorphic to
Z/(p).

The next theorem is a statement about the uniqueness of writing a semisimple
module as a finite sum of simple modules.

Theorem 2.56 (Krull-Schmidt for semisimple modules). For any ring R, suppose we
have an isomorphism M1 ⊕ · · · ⊕Mt

∼= N1 ⊕ · · · ⊕Ns of R-modules, with all the Mi’s
and Nj’s simple. Then t = s and, after reordering, Mj

∼= Nj for all j.

Proof. Let M = M1 ⊕ · · · ⊕Mt and N = N1 ⊕ · · · ⊕ Ns, with all the Mi’s and Nj’s

simple, and suppose there is an isomorphism φ : N
∼=−→ M of R-modules. We proceed

by induction on max{s, t} with the case max{s, t} = 1 being obvious.

For each j, set αj : N1 → Mj to be the composition N1 ↪→ N
φ−→ M � Mj. Since

φ|N1 6= 0, for some j the map αj must be non-zero. Since N1 and Mj are simple, this
map must be an isomorphism by Schur’s Lemma. Renumber so that j = 1.

Let N = N1 ⊕ N ′ and M = M1 ⊕ M ′ where N ′ = N2 ⊕ · · · ⊕ Ns and M ′ =

M2 ⊕ · · · ⊕ Mt. We have that the composition of N1 ↪→ N
φ−→ M

proj−−→ M1 is an
isomorphism α1. If we can somehow “cancel” N1 and M1 from each side and deduce
that N ′ ∼= M ′, then we will be done by induction. This is a bit delicate; see Example
2.57.

Instead we show that
M = φ(N1)⊕M ′.

Indeed, let π1 : M → M1 and π2 : M → M ′ denote projections onto the respective
summands. Notice that α = π1 ◦ φ|N1 is bijective can be restated as π1|φ(N1) is an
isomorphism. Moreover π1|M ′ = 0. This shows that φ(N1) ∩M ′ = {0}.

To see that φ(N1) +M ′ = M , let φ(N1) +M ′ = U and note that it suffices to show
that U/M ′ = M/M ′. Since M/M ′ ∼= M1 via the map induced by π1, this is equivalent
to showing that π1(U) = M1. This follows because π1(U) = π1(φ(N1)) + π1(M

′) =
α1(N1) + 0 = M1.

Now notice that there are isomorphisms

N ′ ∼= N/N1
∼= M/φ(N1) ∼= M ′

where the first and last isomorphisms are induced by projection onto summands and
the middle isomorphism is induced by φ. Hence M2 ⊕ · · · ⊕Mt

∼= N2 ⊕ · · · ⊕ Ns and
the rest follows by the inductive hypothesis.

The above proof fails in general because such an isomorphism need not map the
copy of R in the source isomorphically onto any of the copies of R in the target,
since Schur’s Lemma is not available. Beware that “cancelling summands” is thus not
possible in general, as shown by the following example.
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Example 2.57. Let
R = R[x, y, z]/(x2 + y2 + z2 − 1)

be the ring of polynomial functions defined on the sphere S2 and let P be the kernel
of the map

π : R3 (x,y,z)−−−→ R.

π is in fact a split surjection, since π ◦ j = idR where j(r) = (xr, yr, zr)T . So we have

R3 = R2 ⊕R ∼= P ⊕R

but P 6∼= R2 because P is not free by the Hairy Ball Theorem. If P were free, P would
yield a nonvanishing vector field on the sphere S2 - such a vector field does not exist
by the Hairy Ball Theorem.

Corollary 2.58. If M is a finitely generated semisimple module such that M = M1 ⊕
· · ·Mn for some simple modules M1, · · · ,Mn and if N is any simple submodule of M
then N ∼= Mi for some i.

Proof. Let M = N ⊕ N ′ for some submodule N ′. If N ′ is simple or N ′ = 0 stop,
otherwise consider a simple submodule N2 of N ′ and write N ′ = N2⊕N ′′. Continuing
in this way we find a finite simple decomposition M = N ⊕ N2 ⊕ · · · ⊕ Ns because
M is finitely generated and hence it satisfies dcc thus the chain N ′ ⊇ N ′′ ⊇ · · · must
terminate.

Applying Krull-Schmidt to M = M1 ⊕ · · ·Mn = N ⊕N2 ⊕ · · · ⊕Ns yields N ∼= Mi

for some i.

October 12, 2020

2.2.4 Semisimple rings and the Artin-Wedderburn theorem

Definition 2.59. A ring R is left semi-simple if R is semi-simple as a left module over
itself. R is right semi-simple if R is semi-simple as a right modules over itself.

As a technical point, the 0 is ring is considered left and right semi-simple.

Remark 2.60. It is easy to see from the definition that R is right semisimple is equivalent
to Rop is left semi-simple. It will be a consequence of the Artin-Wedderburn Theorem
that, in fact, R is right semisimple is equivalent to R is left semi-simple but this is not
at all obvious just from the definition.

Remark 2.61. Recall that submodules of R are left ideals and the simple ones are the
minimal (non-zero) left ideals. So, R is left semi-simple if and only if R is the internal
direct sum of some collection of minimal left ideals Ij:

R =
⊕
j∈J

Ij.
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Moreover, R is f.g. as a module over itself, and so this must be a finite direct sum. In
other words the decomposition above gives that 1 = ij1 + · · ·+ ijm with finitely many
terms iji ∈ Iji . So, R is left semi-simple if and only if R decomposes as an internal
direct sum of the form R = I1⊕· · ·⊕Im for some finite collection I1, . . . , Im of minimal
left ideals.

Example 2.62. For any n ≥ 0 and division ring D, Mn(D) is left semi-simple. This
was shown in Lemma 2.45. It is also right semi-simple.

Semi-simple rings are very nice in that we can describe modules over them explicitly,
as the next two results show.

Proposition 2.63. For a ring R, the following conditions are equivalent:

1. R is a left semisimple ring.

2. Every left R-module is semisimple.

3. Every s.e.s. of left R-modules is split.

4. Every injection i : M ′ ↪→M of left R-modules splits.

5. Every surjection p : M �M ′′ of left R-modules splits.

6. Every left R-module is projective.

7. Every left R-module is injective.

Proof. The equivalence of (2)–(5) follows from Proposition 2.49. The equivalence of (4)
and (7) follows from the characterization of injective modules in Proposition 1.112 and
the equivalence of (5) and (6) follows from the characterization of projective modules
in Proposition 1.105. The implication (2) ⇒ (1) is obvious.

Now for (1) ⇒ (2): Assume (1) and let M be any left R-module. It follows from
the definition that an arbitrary coproduct of semi-simple modules is again semi-simple,
and so

⊕
I R is semi-simple for any indexing set I. By choosing a generating set of

M (e.g, M itself), we may find a surjection of the form p : ⊕IR � M . By Corollary
2.50, it follows that M is semi-simple since it is a quotient of a semisimple module
M ∼= ⊕IR/Ker(p).

We obtain from the previous result and Krull-Smidt the following important clas-
sification theorem:

Proposition 2.64. Let R be a left semi-simple ring such that R = I1 ⊕ · · · ⊕ Im with
I1, . . . , Im minimal left ideals. Let J1, . . . , Jn be a complete list of representatives of
isomorphism classes as left R-modules for I1, . . . , Im; so, for each i with 1 ≤ i ≤ m,
there is a unique j with 1 ≤ j ≤ l so that Ii ∼= Jj as left R-modules.

Then every finitely generated left R-module is isomorphic to J⊕e11 ⊕ · · · ⊕ J⊕enn for
a unique list e1, . . . , en of non-negative integers.
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Proof. Since M is finitely generated there is a surjection Rn �M . Using Proposition
2.63 this surjection splits, so that Rn ∼= M ⊕ N for some N , and each of M and N
is semi-simple and finitely generated. So M = ⊕si=1Mi and N = ⊕sj=1Nj with Mi, Nj

simple. Clearly Rn is isomorphic to a finite direct sum of copies of the Ji’s, and so the
result follows from the Krull-Schmidt Theorem for semi-simple modules.

We now come to the main theorem regarding semisimple rings

Theorem 2.65 (Artin-Wedderburn Theorem). Let R be a left semisimple ring. Then
for some m ≥ 0, positive integers n1, . . . , nm, and division rings D1, . . . , Dm, there is
a ring isomorphism

R ∼=Mn1(D1)× · · · ×Mnm(Dm).

Moreover,

1. m is the number of isomorphism classes of simple left R-modules

2. Say M1, . . . ,Mm are simples modules forming a complete set of representatives
of these isomorphism classes. Then, after reordering, Di

∼= EndR(Mi)
op and

3. nj is the number of times summands isomorphic to Mj in the decomposition of
R into a direct sum of simple left modules.

Moreover, the data (m;n1, . . . , nm;D1, . . . , Dm) is unique up to a permutation of
{1, . . . ,m} and isomorphism of division rings.

For the proof we use the following lemmas.

Lemma 2.66. If R and S are semi-simple, so is the product ring R× S.

Proof. Say we have internal direct sum decompositions R = I1 ⊕ · · · ⊕ Im and S =
J1⊕· · ·⊕Jn involving minimal left ideals. Then for all a and b, Ia×{0} and {0}×Jb are
minimal left ideals of R× S and they determine an internal direct sum decomposition
of R× S.

Example 2.67. The previous lemma and Lemma 2.45 show that for any integer m ≥ 0,
list of division rings D1, . . . , Dm and positive integers n1, . . . , nm, the ring

R =Mn1(D1)× · · · ×Mnm(Dm)

is semi-simple. The Artin-Wedderburn Theorem asserts that these are the only exam-
ples! (The case m = 0 gives the 0 ring.)

October 14, 2020
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Proof of the Artin-Wedderburn Theorem. Since R is left semi-simple, we have R ∼=
I1⊕ · · · ⊕ It with each Ii is simple (in fact a minimal ideal). Group by isomorphism to
rewrite this as R ∼= M⊕n1

1 ⊕ · · · ⊕M⊕nm
m with each Mi simple, nj ≥ 1, and such that

Mi is not isomorphic to Vj for all i 6= j. We compute the endomorphisms of both sides:

EndR(R) = HomR(
m⊕
i=1

M⊕ni
i ,

m∏
j=1

M
⊕nj
j ) ∼=

∏
j

HomR(M⊕ni
i ,

∏
i

M
⊕nj
i )

∼=
m∏
i=1

m∏
j=1

HomR(M⊕ni
i ,M

⊕nj
j )

=
m∏
i=1

HomR(M⊕ni
i ,M⊕ni

i )

= EndR(M⊕ni
i ) ∼=Mni(EndR(Mi)).

Above the second line follows from the first by properties of Hom, the third follows
because Schur’s lemma gives Hom(M⊕ni

i ,M
⊕nj
j ) = 0 whenever i 6= j. Finally, by

applying Schur’s Lemma again, D′i := EndR(Mi) is a division ring for all i.
On the one hand, we have EndR(R) ∼= Rop by a problem from the homework.
Combining these gives

Rop ∼=Mn1(D
′
1)× · · · ×Mnm(D′m)

and hence, also by a homework problem, we have

R ∼= (Mn1(D
′
1)× · · · ×Mnm(D′m))

op ∼=Mn1(D1)× · · · ×Mnm(Dm)

with Di := (D′i)
op.

Concerning uniqueness, Schur’s Lemma allows us to conclude the D1, ni and m are
unique provided the decomposition of R as a product of matrix rings arises from a
decomposition of R into simple modules R ∼= M⊕n1

1 ⊕ · · · ⊕M⊕nm
m as above. We show

this is always the case.
Say we are given an isomorphism of rings R ∼=

∏
iMti(D

′′
i ). Then since Mn(D′′)

decomposes as a direct sum of n copies of D′′n, and D′′n is a simple D′′-module by
Lemma 2.39, hence also a simple R-module since D′′n is a subring of Mn(D′′) (viewed
as the ring of D′′ multiples of the identity matrix) andMn(D′′) can be identified with
an ideal of R, hence any R-module is also a D′′-module. This leads to a decomposition
of R into simple modules. Specifically we have

M⊕n1
1 ⊕ · · · ⊕M⊕nm

m
∼= R ∼= (D′′t1i )⊕t1 ⊕ · · · ⊕ (D′′t

′
m

m )⊕t
′
m

Applying Krull-Schmidt gives m = m′, Mi
∼= D′′tii and ni = ti, thus Mi

∼= D′′nii and

Di
∼= EndR(M⊕ni

i )op ∼= EndR(D′′⊕nii )op ∼= EndopMni (D
′′
i )

(D′′⊕nii )op ∼= D′′i ,

with the last isomorphism due to a homework problem. So, every decomposition into
a product of matrix rings does indeed arise from the construction of the theorem and
thus Krull-Schmidt gives the uniqueness statement.
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2.2.5 Applications to representation theory

Returning to the setup of Maschke’s Theorem, let’s discuss what our knowledge on
semisimple rings and modules implies for representation theory.

Theorem 2.68 (Representations of finite groups – nonmodular case). Let G be a finite
group and let k be a field such that char(k) - |G|. Then

1. (Maschke’s Theorem) the group ring k[G] is semisimple

2. every irreducible k-linear representation of G is a direct summand of the left
regular representation k[G]

3. there is an isomorphism of rings

k[G] ∼=Mn1(D1)× · · · ×Mnm(Dm),

where D1, · · · , Dm are division rings. Furthermore, each Di contains a field iso-
morphic to k as a subring of its center and the above isomorphism is k-linear. In
particular, dimk(Di) <∞.

4. m is the number of distinct isomorphism classes of irreducible k-linear represen-
tation of G,

5. a complete set of isomorphism classes of irreducible representations is given by
Mi = Dni

i , 1 ≤ i ≤ m and the dimensions of these irreducible representations are
dimk(Mi) = ni · dimk(Di),

6. the nj’s give the number of times each irreducible representation occurs in the
decomposition of the regular representation of G.

7.
|G| = n2

1 dimk(D1) + · · ·+ n2
m dimk(Dm).

8. (Molien’s Theorem) if k is algebraically closed, then Di = k for 1 ≤ i ≤ m thus
there exist unique m;n1, . . . nm such that

k[G] ∼=Mn1(k)× · · · ×Mnm(k)

9. if k is algebraically closed and n1, . . . nm are the dimensions of the irreducible
k-linear representations of G then

|G| = n2
1 + · · ·+ n2

m.
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Proof. (1) is a restatement of Maschke’s Theorem 2.31.
(2) follows from Proposition 2.40 and Proposition 2.64.
(3)–(6) are restatements of the Artin-Wedderburn theorem. I will comment on some

of the additional information. In general, for any ring R and module M , if R contains
a field k in its center, then so too does the ring EndR(M). In detail, for a ∈ k, the
map λa : M → M defined by λa(m) = am is an element of the center of EndR(M)
(since la(rm) = arm = ram = lr(am), la(m + m′) = a(m + m′) = am + am′, and
for α ∈ EndR(M) we have laα(m) = aα(m) = α(am) = αla(m)). Moreover, the map
a 7→ λa is readily seen to be a ring map k → EndR(M), and since k is a field this map
is injective.

We thus see that each Di occurring in the Artin-Wedderburn Theorem applied to
k[G] contains k in its center. Tracking through the proof, one can check that the
isomorphism

k[G] ∼=Mn1(D1)× · · · ×Mnm(Dm)

is indeed k-linear. Since dimk(k[G]) = |G| <∞, we must have dimk(Di) <∞ for all i.
Statement (5) follows by the observation at the end of the proof of the Artin-

Wedderburn Theorem thatMi
∼= Dni

i . Taking vector space dimension yields dimk(Mi) =
ni · dimk(Di).

(7) follows by computing k-vector space dimension for both sides of the isomorphism
displayed in (6).

For (8) recall that Di
∼= Endk[G](Mi)

op where Mi are irreducible representations
that are finite dimensional k-vector spaces. We show that Endk[G](Mi) ∼= k by showing
that any endomorphism

θ ∈ Endk[G](Mi) is given by θ(v) = λv for some λ ∈ k and for all v ∈ V.

Indeed, consider θ as a k-linear transformation on Mi. Then θ has an eigenvalue
λ ∈ k since k is algebraically closed. Then (θ − λidMi

) : Mi → Mi is a k[G]-linear
endomorphism of Mi which is not injective, so by Schur’s Lemma θ − λidMi

= 0, i.e.
θ = λidMi

.
(9) follows by computing k-vector space dimension for both sides of the isomorphism

displayed in (8).

October 16, 2020

Corollary 2.69. If R is a commutative semisimple ring then R is a product of fields.
In particular, if G is a finite abelian group and k is a field such that char(k) - |G| then
k[G] is a product of fields.

Proof. Studying the Artin-Wedderburn decomposition of R we see that R is commu-
tative if and only if ni = 1 and Di is a field for 1 ≤ i ≤ m.

Let’s see Theorem 2.68 in action. For our examples will need the following
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Lemma 2.70. Given two group homomorhisms ρ1, ρ2 : G → k× = GL1(k), the asso-
ciated k[G]-modules M1 = k and M2 = k are isomorphic if and only if ρ1 = ρ2. Hence
M1 and M2 are isomorphic as G-representations if and only if ρ1 = ρ2

Proof. For the first assertion, let α : M1 →M2 be any homomorphism of k[G]-modules.
As a k-vector space, each Mi is just k and since α is k-linear, there is a c ∈ k such that
we have α(x) = cx for all x ∈ M1 = k. Let g ∈ G be such that ρ1(g) 6= ρ2(g). Then
we obtain a contradiction

cρ1(g) = α(g ·M1 1) = g ·M2 α(1) = ρ2(g)c = cρ2(g).

Lemma 2.71. If D is a division ring that contains R in its center and dimR(D) = 2,
then D ∼= C.

Proof. Pick x ∈ D \ R. Then R ( R[x] ⊆ D, and since R[x] is an R vector space
we see that R[x] = D by a dimension argument. Hence D is commutative and thus
D is a field. Since D is an algebraic extension of R it is contained in the algebraic
closure of R, which is C. Thus we have R ( D ⊆ C, which yields D = C for dimension
reasons.

Example 2.72. Let k = R and G = S3. We find all the simple modules over the ring
R[S3] or, equivalently, all irreducible R-linear representations of S3. We also find the
Artin-Wedderburn decomposition of R[S3].

As with any group G and field k, the one dimensional ones are given by group
homomorphisms of the form S3 → R×, and any such map factors as

S3 � Sab3 → R×.

Note that Sab3 = S3/A3
∼= C2 and there are two group homomorophisms ρ1, ρ2 : C2 →

R×, sending the generator to either 1 or −1 (the only elements of R× of order 1 or 2).
This gives two representations: M1 = R with S3 acting trivially and M2 = R with S3

acting according to the sign rule: σ · z = sgn(σ)z. These are the trivial representation
and the sign representation, respectively. It is easy to see that these are not isomorphic
cf. Lemma 2.70 since ρ1 6= ρ2.

These two one dimensional representations must correspond to two factors of R in
the AW decomposition:

R[S3] ∼= R× R×??.

Recall that S3 = D6 acts on R2 by rotations and reflections. We have shown that R2

is an irreducible representation with respect to this action. We call this representation
M3 = R2. So 2 = dim(M3) = n3 · dimR(D3). We have two possibilities:

1. n3 = 2, D3 = R in which case we obtain the AW decomposition

R[S3] ∼= R× R×M2(R).
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2. n3 = 1, dimR(D3) = 2 which yields by Lemma 2.71 that D3
∼= C and in which

case we obtain the AW decomposition

R[S3] ∼= R× R× C×??

By dimension counting we see that ?? must be a divison ring D4 such that
dimR(D4) = 2, hence D4

∼= C. But this gives R[S3] ∼= R × R × C × C, which is
a contradiction since R[S3] is not commutative whereas the product of fields on
the right of the isomorphism is commutative.

Thus case 2 is impossible and we have found the AW decomposition

R[S3] ∼= R× R×M2(R).

Furthermore, we have found all isomorphism classes of irreducible representations: any
irreducible R-linear representation of S3 is isomorphic to the trivial representation M1

or the sign representation M2 or the standard representation M3.

Example 2.73. Let k = C and consider the alternating group G = A4 of order 12. We
find all the simple modules over the ring C[A4] or, equivalently, all irreducible C-linear
representations of A4. We also find the Artin-Wedderburn decomposition of C[A4].

As before we start by finding 1-dimensional representations given by group homo-
morphisms of the form A4 → C×. Any such map factors as

A4 � Aab4
∼= C3 → C×

and thus there are three non-isomorphic 1-dimensional representations given by ρi :
C3 = 〈g〉 → C×, ρi(g) = e

2πi
3 , with i = 0, 1, 2. Note that ρ0 corresponds to the trivial

representation. Also ρ1 and ρ2 make essential use of the fact that we are working over
C as opposed to, say, R where there are no primitive cubic roots of 1.

With respect to the Artin-Wedderburn decomposition we have so far

C[A4] ∼= C× C× C×Mn4(C)× · · · ×Mnm(C).

where n3, . . . , nm ≥ 2 because we have already found all the 1-dimensional representa-
tions (ni = 1) above. Counting dimensions we obtain

12 = 1 + 1 + 1 +
m∑
i=3

ni
2.

It is easy to see there is only one solution m = 3 and n3 = 3. Hence there is a unique
up to isomorphism |C-linear irreducible representation of A4 which is a 3 dimensional
C-vector space. We give an example of such a representation: let A4 act on V = C4

by permuting the standard basis elements and thus the coordinates of any vector in
V . We see that the vector subspace

W = {(a, a, a, a) | a ∈ C} ∼= C
is invariant under this action, hence a subrepresentation of V . It follows that the
quotient vector space V/W is also a C-linear representation of A4 and dimC(V/W ) = 3.

October 19, 2020
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2.3 Character theory

2.3.1 Characters

Definition 2.74. Assume that k is a field and V is a k-linear representation of a
group G via the group homomorphism ρ : G → GL(V ). The character χV of the
representation V is the function χ : G→ k given by

χV (g) = trace(ρ(g)), for each g ∈ G.

The dimension of V , dimk V , is called the degree of the character.

Example 2.75. Below is the character of the standard representation of S3 = D6

acting on R2. The leftmost arrows represent the map ρ : S3 → GL2(R) and the
rightmost arrows represent the character function g 7→ χ(g).

We often write the values of the character as a vector: for the character above we
would write

χ = (2, 0, 0, 0,−1,−1).

Note that the values of the character are the same for all 2-cycles and separately
for all 3-cycles. This is not a coincidence but a consequence of the fact that all cycles
of a given length in Sn belong to the same conjugacy class.

Lemma 2.76. The character of a finite representation of a group G is constant on
each conjugacy class of G.

Proof. Suppose g′ = hgh−1 in G. Then ρ(G′) = ρ(h)ρ(g)ρ(h)−1 in GL(V ), i.e.
ρ(g′) and ρ(g) are conjugate matrices. But conjugate matrices have the same trace
(trace(PAP−1) = trace(A)) thus

χV (g′) = trace(ρ(g′)) = trace(ρ(h)ρ(g)ρ(h)−1) = trace(ρ(g)) = χV (g).
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Thus we can summarize the character by just writing values for one representative
of each conjugacy class. We will see later that the character is constant also on each
isomorphism class of representations. This leads to forming a character table.

Definition 2.77. The character table of a group G is a table whose rows are indexed
by the isomorphism types of simple representations of G, whose columns are indexed
by the conjugacy classes of G and whose entries are the values of the characters of the
simple representations on representatives of the conjugacy classes.

It is usual to index the first column of a character table by the (conjugacy class
of the) identity, and to put the character of the trivial representation as the top row.
With this convention the top row of every character table will be a row of 1’s.

Example 2.78. The character table for S3 is the following:

g e = () (12) (123)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

Above χ1, χ2, χ3 denote the characters of the trivial, sign, and standard representations
respectively.

We will see that the character table has remarkable properties, among which are
that it is always square, and its rows (and also its columns) satisfy certain orthogonality
relations. Our next main goal is to state and prove these results. To do this, we need
a few ways of constructing new representations from old.

Definition 2.79. Given a commutative ring R and R-modules M,N that are R-linear
representations of a group G then the following are also R-linear representations of G:

• M ⊕N with action g · (m,n) = (g ·m, g · n) – the direct sum representation

• M ⊗R N with action g ·
∑

imi ⊗ ni =
∑

i(g · mi) ⊗ (g · ni) the tensor product
representation

• HomR(M,N) with action (g · f)(m) = g · f(g−1m)

• M∗ = HomR(M,R) with action (g ·f)(m) = f(g−1m) –the dual or contragradient
representation

October 19, 2020
Here are a few properties for characters:

Proposition 2.80. Let V,M,N be finite dimensional k-linear representations of a
group G or, equivalently, k[G]-modules. Then
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(1) χ(eG) = (dimk V ) · 1k

(1’) if char(k) = 0 then χ(eG) = dimk V .

(2) if M and N are isomorphic representations then χM = χN

(3) χM⊕N = χM + χN

(4) χM⊗RN = χM · χN

(5) χV ∗(g) = χV (g−1) for all g ∈ G.

(5’) If k = C and G is finite, then χV ∗(g) = χV (g−1) = χV (g) for all g ∈ G, where
the overline denotes complex conjugate.

(6) χHomR(M,N) = χM∗ · χN .

(6’) If k = C and G is finite, then χHomR(M,N) = χM · χN

Proof. I only prove parts (1) and (2) and partially (5), leaving the rest as exercises.
(1) The map ρ : G→ GLdimk V (k) takes eG to the identity matrix Idimk V . The trace

of this matrix is (dimk V ) · 1k.
(2) Suppose that M and N are the representations of G given by ρM : G →

AutR(M), ρN : G→ AutR(N) and there is a G-equivariant isomorphism of R-modules
α : M → N . Then we have αρM(g) = ρN(g)α for all g ∈ G, thus

χN(g) = trace ρN(g) = trace(αρM(g)α−1) = trace ρM(g) = χM(g).

(5’) Taking χV ∗(g) = χV (g−1) granted by (5), let’s prove the second assertion. If G
is finite and ρ : G→ GL(V ) gives the representation V , then ρ(g)n = id∗V for n = |g|,
the order of g. It follows that the eigenvalues of ρ(g) are n-th roots of unity and hence
λ−1i = λi for each eigenvalue λi. Now we compute

χV ∗(g) = χV (g−1) = trace(ρ(g)−1) =

dim(V )∑
i=1

λ−1i =

dim(V )∑
i=1

= λi = trace(ρ(g)) = χV (g).

(6’) follows from (5’) and (6).

2.3.2 Orthogonality relations and character tables

Definition 2.81. A class function on a group G with values in a field k is a function
f : G→ k that is constant on each conjugacy class of G. The set of class functions is
denoted kcc(G).

By Lemma 2.76, characters of representations of G are class functions.
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Remark 2.82. The set of class functions kcc(G) is a k-vector space with respect to
addition of functions and scalar multiplication of functions by complex numbers. Its
dimension is equal to the number of conjugacy classes of G.

This vector space is endowed with a bilinear form by means of

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g−1).

We restrict now to complex representations, that is, k = C of finite groups G.
If k = C then the bilinear form above is in fact an inner product, and even more,

a Hermitian form and is given by

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g).

Definition 2.83. A Hermitian inner product on a complex vector space V is a complex-
valued bilinear form 〈−,−〉 : V × V → C which is antilinear in the second slot, and
is positive definite. That is, it satisfies the following properties, for all u, v ∈ V and
α ∈ C, where z denotes the complex conjugate of z.

1. < u+ v, w >=< u,w > + < v,w >

2. < u, v + w >=< u, v > + < u,w >

3. < αu, v >= α < u, v >

4. < u, αv >= α < u, v >

5. < u, v >= < v, u >

6. < u, u >≥ 0, with equality only if u = 0. (Note that < u, u >∈ R by 5.)

The theory of vector spaces endowed with inner products tells us that an orthonor-
mal basis must exist for the vector space Ccc(G) with respect to the inner product
defined above. We now give an explicit description of such a basis.

Theorem 2.84 (Row orthogonality relations). Let G be a finite group and k an alge-
braically closed field such that |G| ∈ k×. If V,W are irreducible k-linear representations
of G with characters χV , χW then

〈χV , χW 〉 =

{
1 if V ∼= W

0 otherwise.

To prove this we need to make a few definitions.

Definition 2.85. Let G be a group, R a ring, and let M be an R-linear representation
of G. The invariant submodule of M is MG = {m ∈M | g ·m = m, ∀g ∈ G}.
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Lemma 2.86. Let G be a finite group, k a field such that char(k) - |G|, and let M be
a k-linear representation of G. The inclusion MG ↪→ M is a split k[G]-module map,
with splitting given by

φ : M →MG, φ(m) =
1

|G|
∑
g∈G

g ·m

Proof. Homework.

Proof of Theorem 2.84. Let M = Homk(V,W ), which is a k-linear representation of
G as described in Definition 2.79. I claim that MG = Homk[G](V,W ). Denote N =
Homk[G](V,W ). It is clear that N is a k-linear subspace of M . We show that N is
fixed by the action of G on M . This will show both that N is a k[G] module and that
N = MG. Indeed, let f ∈ N and g ∈ G then, utilizing that f commutes with the G
action, we have

(g · f)(v) = g · f(g−1 · v) = g · g−1 · f(v) = f(v), ∀v ∈ V.

From Lemma 2.86 we conclude that M ∼= MG ⊕M/MG and

1

|G|
∑
g∈G

g|MG = idMG whereas
1

|G|
∑
g∈G

g|M/MG = 0

and thus trace
(

1
|G|
∑

g∈G ρ(g)
)

= trace(idMG) = dimkM
G. However,

trace

(
1

|G|
∑
g∈G

ρ(g)

)
=

1

|G|
∑
g∈G

trace(ρ(g)) =
1

|G|
∑
g∈G

χM(g)

=
1

|G|
∑
g∈G

χHomk(V,W )(g) =
1

|G|
∑
g∈G

χV (g)χW (g)

= 〈χV , χW 〉

Combining everything obtained so far with Schur’s Lemma we have

〈χV , χW 〉 = dimkM
G = dimk Homk[G](V,W ) =

{
1 if V ∼= W

0 otherwise.

Above we have used the fact that if V 6∼= W then Homk[G](V,W ) = 0 by Schur’s Lemma
and if V ∼= W then Homk[G](V,W ) = Endk[G](V ) ∼= k as in the proof of part (8) of
Theorem 2.68.

October 23, 2020
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Corollary 2.87. Let G be a finite group and let χ1, . . . , χm be the characters corre-
sponding to a complete set of representatives for the irreducible complex representations
of G. Then {χ1, . . . , χm} is an orthonormal basis for the vector space spanned by all
characters of G.

Proof. We see that {χ1, . . . , χm} is a spanning set because every representation can
be decomposed as a sum of irreducible representations. By Proposition 2.80 (3) then
every character can be written as a linear combination of irreducible characters.

Theorem 2.84 gives linear independence and orthonormality.

We are now able to show that the character determines the representation up to
isomorphism type:

Proposition 2.88. Let G be a finite group and let k be an algebraically closed field of
characteristic 0. Then M and N are isomorphic finite dimensional representations of
G if and only if χM = χN .

Proof. Let a complete set of representatives of isomorphism classes of irreducible G-
representations be given by V1, . . . , Vm and consider decompositions

M ∼= V r1
1 ⊕ · · · ⊕ V rm

m N ∼= V s1
1 ⊕ · · · ⊕ V sm

m .

Then 〈χM , χVi〉 = ri and 〈χN , χVi〉 = si. Thus

χM = χN ⇐⇒ 〈χM , χVi〉 = 〈χN , χVi〉, ∀i
⇐⇒ ri = si, ∀i ⇐⇒ M ∼= N.

Constructing character tables

We will use the technique of lifting representations from quotient groups.

Lemma 2.89. If H is a normal subgroup of a group G, q : G→ G/H is the quotient
map and ρ : G/H → Autk(V ) is a group homomorphism making a k-vector space V
into a k-linear representation of G/H, then ρ = ρ ◦ q : G→ Autk(V ) makes V into a
k-linear representation of G. Furthermore the representation given by ρ is irreducible
if and only if the representation given by ρ is irreducible.

Proof. Exercise.

Example 2.90. We compute the character table for complex representations of the
Klein four group

G = C2 × C2 = {e, a, b, c}.

Since the group is abelian, each element is a separate conjugacy class. We now
determine the isomorphism types of irreducible representations.
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Set V1 = C to be the trivial representation.
Each of the elements a, b, c generates a normal subgroup H isomorphic to C2 such

that G/H ∼= C2. For example, if H = 〈a〉 then G/H = {e = a, b = c} ∼= C2. There
are only two isomorphism types of irreducible representations of C2 = S2 and they are
both 1-dimensional: the trivial representation and the sign representation. Let’s take
ρ : G/H → (C×, ·) to be the sign representation ρ(e) = ρ(a) = 1, ρ(b) = ρ(c) = −1.
By Lemma 2.89, this lifts to a unique irreducible 1-dimensional representation V2 = C
with action of G given by ρ(e) = ρ(a) = 1, ρ(b) = ρ(c) = −1.

We get two more irreducible representations V3 = C and V4 = C by lifting the sign
representations from G/〈b〉 and G/〈c〉 respectively. At this point we have found all
the irreducible representations because the sum of squares of the dimensions of Vi is
12 + 12 + 12 + 12 = 4 = |G|.

Denote the character of Vi by χi. Then the character table of the Klein four group
is

e a b c
χ1 1 1 1 1
χ2 1 1 −1 −1
χ3 1 −1 1 −1
χ4 1 −1 −1 1.

Example 2.91. We compute the character table for complex representations of the
quaternion group

Q8 = {±1,±i,±j,±k}.

The conjugacy classes of Q8 are {1}, {−1}, {±i}, {±j} and {±k}. Since H =
Z(Q8) = {±1} is a normal subgroup, and Q8/H is isomorphic to the Klein four group,
we can lift the characters from the previous example.

This yields four characters as follows:

1 −1 ±i ±j ±k
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1

Because the above four representations have dimension 1 and their characters are
distinct they are not pairwise isomorphic; see Lemma 2.70. However we have not found
all the isomorphism types of irreducible representations of Q8 because 12+12+12+12 =
4 < 8 = |Q8|. In fact we see that in order to have equality we must add a a 2-
dimensional representation 12 + 12 + 12 + 12 + 22 = 8 = |Q8|. Denote χ5 the character
of this 2-dimensional representation.
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The row orthogonality relations applied to the table below

1 −1 ±i ±j ±k
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 x y z w,

yield 
2 + x+ 2y + 2z + 2w = 0

2 + x+ 2y − 2z − 2w = 0

2 + x− 2y + 2z − 2w = 0

2 + x− 2y − 2z + 2w = 0

with unique solution x = −2, y = z = w = 0.

Example 2.92. We compute the character table for complex representations of the
dihedral group D8. This is entirely analogous to Q8: the center of D8, Z(D8) = {1, r2},
has order two and the quotient of D8 by its center is isomorphic to the Klein four
group. Since these were the only facts we used in the previous example along with
|Q8| = |D8| = 8, the same arguments apply verbatim to show that the character table
of Q8 is also

{1} {r2} {r, r3} {l, lr2} {lr, lr3}
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 1 −1 1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0.

Remark 2.93. The above examples show that it is possible for two non-isomorphic
groups to have the same character table.

81



Chapter 3

Homological algebra

October 26, 2020
Homological algebra is the study of homology - a measure for the non exactness of

chain complexes which we shall define below.

3.1 Chain complexes and their homology

3.1.1 The category of chain complexes of R-modules

Let’s define “chain complex” carefully.

Definition 3.1. For a ring R, a chain complex of left R-modules is a pair consisting of

• a family of left R-modules indexed by Z, {Mi}i∈Z (Mi is in homological degree i)

• a family of R-module homomorphisms {di : Mi →Mi−1}i∈Z such that di−1◦di = 0
for all i, i.e., “d2 = 0”.

Such a pair is usually written as (M•, d) or (M•, d
M) or just M•. The map d (really,

the family of maps) is called the differential of the chain complex.

Example 3.2. Infinitely many of the modules Mi in a chain complex could be zero of
course. So, for example, a short exact sequence

0→M2 →M1 →M0 → 0

will be regarded as a chain complex with Mi = 0 for all i /∈ {0, 1, 2}.

Example 3.3. For those who have taken (or will take) a course in algebraic topology,
given a topological space X, we form a chain complex C•(X) := C•(X;Z) over the ring
Z, called the singular chain complex associated to X, as follows.

• Define Cn(X) to be the free Z-module with basis given by the set of all continuous
functions ∆n → X where ∆n is the standard topological n-simplex. (That is,
∆n := {(r0, . . . , rn) ∈ Rn+1 | ri ≥ 0,

∑
i ri = 0}.) For n < 0, Cn(X) := 0.
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• The map dn : Cn(X)→ Cn−1(X) is the unique homomorphism of abelian groups
sending a basis element g : ∆n → X to

∑n
i=0(−1)ig ◦ αni where αni : ∆n−1 → ∆n

is the map (r0, . . . , rn−1) 7→ (r0, . . . , ri−1, 0, ri, . . . , rn−1).

Since the singular chain complex associated to X is huge (the modules Cn are
usually not finitely generated), in practice it is more convenient to work with X being
a simplicial complex (union of simplices) and C•(X) being the simplicial chain complex
of X. This complex has Cn(X) = the free Z module with basis given by the n-
dimensional simplices of X and dn : Cn(X) → Cn−1(X) is given by sending an n-
simplex {r0, . . . , rn−1} to dn({r0, . . . , rn−1) =

∑n
i=0(−1)i{r0, . . . , r̂i, . . . , Rn} where the

hat indicates removing one vertex to get an n− 1-dimensional simplex.
For a very concrete example, let’s take X to be the following triangle

1

2 3.

This gives the simplicial chain complex

C•(X) : 0
d2−→ Z3 d1−→ Z3 d0−→ 0,

where the maps di = 0 for i 6= 0 and the map d1 is given by the following matrix

d1 =

 1 1 0
−1 0 1
0 −1 −1


with respect to the ordered bases {1, 2}, {1, 3}, {2, 3} and {1}, {2}, {3}. Here {i} de-
notes the map {i} : ∆0 → X which maps ∆0 to the vertex i of X and {i, j} denotes
the map {i, j} : ∆1 → X which maps ∆1 to the edge [i, j] of X.

Definition 3.4. A chain map from one chain complex of left R-modules (M•, d
M)

to another (N•, d
N) is a family of left R-module homomorphisms fi : Mi → Ni, for

i ∈ Z, such that dNi ◦ fi = fi−1 ◦ dMi for all i. We often write a chain map as just
f : (M•, d

M)→ (N•, d
N), or even just f : M• → N•.

Pictorially, a chain map is a commutative diagram of the form

· · · //Mi+1
//

��

Mi
//

��

Mi−1 //

��

· · ·

· · · // Ni+1
// Ni

// Ni−1 // · · ·

in which both rows are complexes and all squares commute.

Example 3.5. Straightforward examples of maps between chain complexes include:

83



• the identity map idM• : (M•, d
M)→ (M•, d

M), fi = idMi

• the zero map 0 : (M•, d
M)→ (N•, d

N), fi = 0

Example 3.6. If f : X → Y is a continuous map between topological spaces, there is
an induced chain map f∗ : (C•(X), d)→ (C•(Y ), d) between associated singular chain
complexes defined by composition with f in the evident way.

Theorem 3.7. For any ring R, chain complexes and chain maps of left R-modules
form an additive category, written 〈〈R-complexes〉〉.

• The rule for adding morphisms is (f + g)i = fi + gi.

• The rule for composing morphisms is given by component-wise composition: (f ◦
g)i := fi ◦ gi.

• The 0 object is the chain complex consisting entirely of 0 modules with 0 differ-
ential.

• Products in this category are given by direct sums of complexes, which are formed
componentwise, i,e, for the family of chain complexes (M•, d

M), (N•, d
N) the prod-

uct is the chain complex (M• ⊕N•, dM ⊕ dN) for which the modules are Mi ⊕Ni

and the differential is dMi ⊕ dNi =

[
dMi 0
0 dNi

]
: Mi ⊕Ni →Mi+1 ⊕Ni+1.

In fact, 〈〈R-complexes〉〉 is what’s known as an abelian category. I will not define
this term carefully, but basically such a category behaves like the category of S-modules
for a ring S in that there are notions of kernel, cokernel, etc. and the first, second,
third isomorphism theorems and similar results hold.

The kernel of a chain map f : (M•, d
M) → (N•, d

N) is the complex for which the
module indexed by i is Ker(fi) and whose differential is induced from dM by dMi |Ker(fi),
and similarly for images and cokernels.

We can define exact sequences in any abelian category and we shall do so in
〈〈R-complexes〉〉.

Definition 3.8. A short exact sequence of chain complexes is a sequence of chain
complexes of chain maps of the form

0→ (M ′
•, d
′)→ (M•, d)→ (M ′′

• , d
′′)→ 0

that is an exact sequence of R-modules in each degree. Pictorially, a s.e.s. of chain
complexes is a commutative diagram
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0

��

0

��

0

��
· · · //M ′

i+1
//

��

M ′
i

//

��

M ′
i−1

//

��

· · ·

· · · //Mi+1
//

��

Mi
//

��

Mi−1 //

��

· · ·

· · · //M ′′
i+1

//

��

M ′′
i

//

��

M ′′
i−1

//

��

· · ·

0 0 0

in which each row is a complex and each column is a short exact sequence of modules.
(One might add horizontal arrows between the 0 modules along the top and the bottom,
but they are redundant and just add clutter.)

October 28, 2020

3.1.2 Snake lemma

Proposition 3.9 (Snake Lemma). For a ring R, suppose

M ′ i //

f ′

��

M
p //

f
��

M ′′ //

f ′′

��

0

0 // N ′
j // N

q // N ′′

is a commutative diagram of left R-modules such that each row is an exact sequence.
Then there is an exact sequence of the form

Ker(f ′)
i|−→ Ker(f)

p|−→ Ker(f ′′)
∂−→ coker(f ′)

j−→ coker(f)
q−→ coker(f ′′).

which can be visualized in relation to the previous diagram as follows
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Ker(f ′) Ker(f) Ker(f ′′)

M ′ M M ′′ 0

0 N ′ N N ′′

coker(f ′) coker(f) coker(f ′′)

i| p|

i

f ′

p

f f ′′

j q

∂

∂

j q

Above i| and p| denote the restrictions of i and p to Ker(f) and Ker(g) respectively
and j and q are the quotients of j and q. E.g., the map q : coker(f)→ coker(f ′′) sends
q(n+ Im(f)) = q(n) + Im(f ′′).

The map ∂ is given as follows: For m′′ ∈ Ker(f ′′), pick m ∈ M such that p(m) =
m′′. Such an m exists, but is not unique, since p is onto. Then qf(m) = 0 and hence
f(m) = j(n′) for a (unique, since j is injective) element n′ ∈ N ′. We set

∂(m) = n′ + Im(f ′) ∈ coker(f ′).

Moreover, if i is injective then i| is injective and if q is surjective then q is surjective.
When both of these hold, they lead to an exact sequence

0→ Ker(f ′)
i|−→ Ker(f)

p|−→ Ker(f ′′)
∂−→ coker(f ′)

j−→ coker(f)
q−→ coker(f ′′)→ 0.

Proof. One needs to show:
• well-definedness of i| and p|, specifically the fact that the images of these maps

land in Ker(f) and Ker(f ′′) respectively.
To show this for i|, consider u ∈ Ker(f ′). Then i|(u) = i(u) and f(i(u)) =

j(f ′(u)) = j(0) = 0 by the commutativity of the given diagram. Thus i|(u) ∈ Ker(f)
as desired.
• well-definedness of j and q, specifically independence of coset representative.
To show this for j, consider n − ñ ∈ Im(f). Then we have q(n) − q((̃n)) = q(n −

ñ) ∈ q(Im(f)) = f ′′(Im(p)) ⊆ Im(f ′′) yields that q(n + Im(f)) = q(n) + Im(f ′′) =

q((̃n)) + Im(f ′′) = q(ñ+ Im(f)).
• well-definedness of ∂
(See Jill Clayborn in the opening scene from It’s My Turn https://www.youtube.

com/watch?v=etbcKWEKnvg explaining the construction of the map ∂ and the proof
of why it’s well-defined (independent of the choice of m), given below based on some
not-at-all annoying questioning from a student.)

To see that ∂(m′) is independent of the choice of m occurring in its construction,
suppose m1 and m2 satisfy p(m1) = m′′ = p(m2), and let n′1, n

′
2 be the unique elements
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satisfying j(n′1) = f(m1) and j(n′2) = f(m2). Then p(m1 − m2) = 0 and hence by
exactness of the top row, there is am′ such that i(m′) = m1−m2. By the commutativity
of the left square we get

j(f ′(m′)) = fi(m′) = f(m1)− f(m2) = j(n′1)− j(n′2) = j(n′1 − n′2).

Since j is injective, it follows that f ′(m′) = n′1 − n′2 and hence that n′1 + Im(f ′) =
n′2 + Im(f ′). So, we have proven ∂ is a well-defined function. The fact that it is an
R-map is proven similarly.
• exactness of the six-term sequence
The proof that the six-term sequence is indeed an exact sequence is tedious (al-

though no one step is difficult), and I’m going to skip most of it. Let’s just show that
Im(p|) = Ker(∂):

If m′′ ∈ Ker(f ′′) satisfies m′ = p(x) for some x ∈ Ker(f), then in the construction
of ∂ we may take m = x and it follows that f(m) = 0 and hence ∂(m′) = 0. This
proves Im(p|) ⊆ Ker(f ′′). If ∂(m′′) = 0, then in the construction n′ = f ′(m′) for some
m′. Then p(m− i(m′)) = p(m) = m′′ and f(m− i(m′)) = f(m)− jf ′(m′) = 0, which
proves that m′′ ∈ Im(p|). This proves the other containment.

The “moreover” part of the statement is clear since i| and q are obtained from i
and q respectively.

The snake lemma is very useful in computing homology leading to the long exact
sequence in Theorem 3.18.

October 30, 2020

3.1.3 Homology of a chain complex

Definition 3.10. Given a chain complex M• = (M•, d) of left R modules, its homology
is the sequence of left R-modules indexed by Z defined by

Hi(M•) = Hi(M•, d) :=
Ker(di : Mi →Mi−1)

Im(di+1 : Mi+1 →Mi)

for i ∈ Z. We also give names to the modules in the numerator and denominator above

Zi := Ker(di : Mi →Mi−1) is called the module of i-cycles

Bi := Im(di+1 : Mi+1 →Mi) is called the module of i-boundaries.

Remark 3.11. A chain complex M• is exact if and only if Hi(M•) = 0 for all i.

Example 3.12. For a module M , we write M [0] for the complex with M [0]i = 0 for
all i 6= 0 and M [0]0 = M . The differential is (necessarily) the 0 map in each degree.
The homology modules of M [0] is Hi(M [0]) = 0 for i 6= 0 and H0(M [0]) ∼= M .
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Example 3.13. The homology of a complex with just two non-zero modules located
in degrees 0 and 1,

· · · 0→M1
d1−→M0 → 0→ · · · ,

is Hi(M,d) = 0 for all i 6= 0, 1, H0(M,d) = coker(d1) and H1(M,d) = Ker(d1).

Example 3.14 (Homology groups in topology). The homology of the singular chain
complex C•(X) of a topological space X are known as the homology groups of X.

Let’s compute the homology groups of the simplicial complex X from Example 3.3
where the relevant chain complex is

· · · 0→ C1(X) = Z3 d1−→ C0(X) = Z3 → 0→ · · · ,

To compute the homology let’s perform row reduction on the matrix of the differ-
ential d1: 1 1 0
−1 0 1
0 −1 −1

 R1+R2→R2−−−−−−−→

1 1 0
0 1 1
0 −1 −1

 R2+R3→R3−−−−−−−→

1 1 0
0 1 1
0 0 0

 C2−C1−C3→C2−−−−−−−−−→

1 0 0
0 0 1
0 0 0

 .
The row and column operations amount to performing changes of basis on the free mod-
ules C0(X) = Z3 and C1(X) = Z3. The last matrix above gives a new description for
the differential d1 with respect to the ordered bases {1, 2}, {1, 3}−{1, 2}−{2, 3}, {2, 3}
and {1}, {1}+ {2}, {1}+ {2}+ {3}. We now see that

H1(C•(X)) = Ker(d1) = Z({1, 3} − {1, 2} − {2, 3}) ∼= Z

H0(C•(X)) = coker(d1) =
Z{1} ⊕ Z({1}+ {2})⊕ Z({1}+ {2}+ {3})

Z{1} ⊕ Z({1}+ {2})
∼= Z({1}+ {2}+ {3}) ∼= Z.

Now suppose that Y is the simplicial complex obtained by filling in the triangle X
with a 2-dimensional simplex. Then C•(Y ) is

· · · 0→ C2(Y ) = Z d2−→ C1(X) = Z3 d1−→ C0(X) = Z3 → 0→ · · · ,

where d2 =
[
1 −1 1

]T
with respect to the bases {1, 2, 3} and {1, 2}, {1, 3}, {2, 3}, i.e.

Im(d2) = Z({1, 2} − {1, 3}+ {2, 3}).
From the computations above we see that Ker(d1) = Z({1, 3} − {1, 2} − {2, 3}).

Hence H1(C•(Y )) = 0 since Ker(d1) = Im(d2) and H2(C•(Y )) = 0 because d2 is
injective.

The topological significance of the computations above is that

• the rank of H0 measures the number of connected components: both for X and
for Y there is one connected component and H0

∼= Z has rank one;
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• the rank of H1 measures the number of 1-dimensional “holes”: X has one such
hole (X is homotopic to the circle S1) and H1(C•(X)) ∼= Z but Y has no such
holes and H1(C•(Y ) = 0;

• the rank of H2 measures the number of 2-dimensional “holes” etc.

We see from this example that computing homology can be made into an algorithmic
procedure, however it is not something that one would typically want to do by hand.
We will turn our attention to alternate methods for computing homology below.

Definition 3.15 (Induced map in homology). Given a chain map f : (M•, d)→ (N•, d)
for each i write Hi(f) : Hi(M•) → Hi(N•) for the map induced by f in the following
manner: given z ∈ Ker(di : Mi →Mi−1), we define Hi(f)(z) = f(z).

Remark 3.16. The function Hi(f) is indeed a well-defined R-map: Note, first of all,
that for z ∈ Ker(di : Mi → Mi−1) we have di(fi(z)) = fi−1(di(z)) = fi−1(0) = 0, and
hence fi(z) ∈ Ker(di : Ni → Ni−1). Thus, we have a well-defined element fi(z) of
Hi(N•). Moreover, if z = y in Hi(M•) for elements y, z ∈ Ker(di : Mi → Mi−1), then
y − z = dMi+1(w) for some w ∈Mi+1. It follows that

fi(y)− fi(z) = fi(y − z) = fi(d
M
i+1(w)) = dNi+1(fi+1(w)),

since f is a chain map, and hence fi(y) = fi(z) holds in Hi(N•). This proves Hi(f) is
well-defined. It is easy to see that it is an R-module homomorphism.

Next we promote homology to being a functor.

Lemma 3.17. For each fixed i, Hi(−) is an additive functor

Hi(−) : 〈〈R-complexes〉〉 → 〈〈RMod〉〉 .

Recall that this means Hi(f ◦ g) = Hi(f) ◦ Hi(g), Hi(id) = id and Hi(f ± f ′) =
Hi(f)±Hi(f

′).

Proof. The three formulas listed above follow easily from Definition 3.15.

November 2, 2020

Long exact sequence in homology

Theorem 3.18 (Long exact sequence in homology). If 0 → M ′
•

j−→ M•
p−→ M ′′

• → 0 is
a short exact sequence of chain complexes of left R-modules, then there is a long exact
sequence of left R-modules of the form

· · · → Hi(M
′
•)

Hi(j)−−−→ Hi(M•)
Hi(p)−−−→ Hi(M

′′
• )

∂i−→ Hi−1(M
′
•)

Hi−1(j)−−−−→ Hi−1(M•)
Hi−1(p)−−−−→ · · ·
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also often drawn as

· · · Hi(M
′
•) Hi(M•) Hi(M

′′
• )

Hi−1(M
′
•) Hi−1(M•) Hi−1(M

′′
• )

Hi−2(M
′
•) Hi−2(M•) Hi−2(M

′′
• )

H0(M
′
•) H0(M•) H0(M

′′
• ) . . .

∂i

∂i−1

where the map ∂i is defined as follows:
Given z ∈ Ker(di : M ′′

i → M ′′
i−1), since p is onto, we may find a w ∈ Mi such that

pi(w) = z. For any choice of such a w, we have p(d(w)) = d(p(w)) = d(z) = 0 and
hence, by the exactness in the middle of the original s.e.s., there is a unique u ∈M ′

i−1
such that j(u) = d(w). We have jd(u) = d(j(u)) = d(d(w)) = 0 and thus, since j is
one-to-one, u ∈ Ker(di−1). We set ∂i(z) = u ∈ Hi−1(M

′
· ).

Proof. The theorem follows from several applications of the Snake Lemma:

• first consider the following complexes of kernels and cokernels respectively, which
are exact by the Snake Lemma

0→ Zn(M ′
•)→ Zn(M•)→ Zn(M ′′

• )

M ′
n/Bn(M ′

•)→Mn/Bn(M•)→M ′′
n/Bn(M ′′

• )→ 0

• next observe that since the boundaries Bn are contained in the kernel of the
differential dn and since the image of dn is contained in Zn, the universal mapping
property of the quotient gives that the differentials dn for the three complexes
induce vertical maps a follows

M ′
n/Bn(M ′

•) //

d
M′
n
��

Mn/Bn(M•) //

d
M
n
��

M ′′
n/Bn(M ′′

• ) //

d
M′′
n
��

0

0 // Zn−1(M
′
•) // Zn−1(M•) // Zn−1(M

′′
• )

• observe that the kernel of dn is Hn and the cokernel of dn is Hn−1 therefore the
Snake Lemma applied to the diagram in the previous bullet point yields a six
term exact sequence

Hn(M ′
•)→ Hn(M•)→ Hn(M ′′

• )
∂−→ Hn−1(M

′
•)→ Hn−1(M•)→ Hn−1(M

′′
• )

Comparing the description of ∂ given by the Snake Lemma and the description
of ∂n above one sees that these maps are the same.
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Example 3.19. The long exact sequence in homology is used in topology to compute
the homology groups of quotient spaces. Let X be the simplicial complex of Example
3.3 and let A be the subset formed by the three vertices. Then there is an obvious
inclusion A ⊆ X, which leads to an inclusion of chain complexes C•(A) ↪→ C•(X). Ler
D• be the cokernel of this inclusion, leading to a s.e.s of chain complexes

0→ C•(A)
i−→ C•(X)

π−→ D• → 0.

We could compute D• explicitly and find its homology. Instead, let’s compute the
homology of D• by using nothing but the l.e.s. in homology: for i < 0 or i ≥ 2 we
have s.e.s

0 = Hi(X)→ Hi(D•)→ Hi−1(A) = 0

which yield Hi(D•) = 0 for i ≥ 2 and i < 0. Now for the more interesting portion of
the l.e.s:

0 = H1(A)→ H1(X)→ H1(D•)→ H0(A)
H0(i)−−−→ H0(X)→ H0(D•)→ 0.

Substituting the known homology groups for X,A (see Example 3.14) we have:

0→ Z→ H1(D•)
∂1−→ Z3

H0(i)=
[
1 1 1

]
−−−−−−−−−−−→ Z→ H0(D•)→ 0.

Since the map H0(i) is surjective, we deduce H0(D•) = 0. Also the kernel of this
map is K = Z({1} − {2}) ⊕ Z({1} − {3}) ∼= Z2. By the exactness of the above l.e.s,
K = Im(∂1), so we can write a s.e.s.

0→ Z→ H1(D•)
∂1−→ K ∼= Z2 → 0.

Finally, since Z2 is free, hence projective, the s.e.s above splits and yields H1(D•) ∼=
Z⊕ Z2 ∼= Z3.

The importance of this computation to topology is that it recovers the (reduced)
homology groups of the quotient space X/A. This is defined as the space obtained
from X by collapsing all the points of A to a single point. In our example this results
in X/A being a bouquet of 3 circles.

Then the reduced homology groups of X/A (also called the relative homology

groups of X with respect to A) are given by H̃i(X/A) = Hi(X,A) = Hi(D•) ={
Z3 i = 1,

0 otherwise.
Finally, the reduced homology groups relate to the ordinary ho-

mology groups by H̃i(X/A) =

{
H0(X/A)/Z i = 0,

Hi(X/A) otherwise
, hence we deduce

Hi(X/A) =


Z i = 0,

Z3 i = 1,

0 otherwise.
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Corollary 3.20 (Two out of three exactness). If 0 → M ′
• → M• → M ′′

• → 0 is a
short exact sequence of chain complexes of left R-modules and if any two of the three
complexes are exact, then the third complex is also exact.

Proof. Recall that a complex is exact if and only if all its homology modules are equal
to 0. Now if two of the three given complexes are exact (say M• and M ′′

• are exact for
concreteness), it means that in the long exact sequence in homology we have two zeros
surrounding each of the homology modules of the third complex (M ′

•) as follows:

· · · Hi(p)−−−→ 0
∂i−→ Hi−1(M

′
•)

Hi−1(j)−−−−→ 0
Hi−1(p)−−−−→ · · ·

The presence of the 0 homology modules implies that ∂i = 0 = Hi−1(p), and the
exactness yields Hi−1(M

′
•) = Ker(Hi−1(j)) = Im(∂i) = 0 for any i ∈ Z. Thus M ′

• is
exact.

November 4, 2020

3.1.4 Comparing chain maps through homotopy

Definition 3.21. Suppose M• and N• are two chain complexes of R-modules and
f, g : M• → N• are two chain maps joining them. We say f and g are homotopic
(or sometimes chain homotopic), written f 'htpc g, if there is a family of R-maps
hi : Mi → Ni+1, i ∈ Z, such that

dNi+1 ◦ hi + hi−1 ◦ dMi = fi − gi

for all i. (Succinctly, dh+hd = f − g.) Such a family of maps {hi}i∈Z is called a chain
homotopy joining f to g. A chain map is called null-homotopic if f 'htpc 0.

Here is a picture of a chain homotopy

· · · //Mi+1
//

��||

Mi
//

fi−gi
��hi||

Mi−1 //

��||

· · ·

{{
· · · // Ni+1

// Ni
// Ni−1 // · · · .

The squares commute but the triangles do not. Rather, the sum of the two compositions
in each rhombus

•

��

// •

��
• // •

occuring in this diagram is equal to the difference of f and g.
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Example 3.22. If f, g : X → Y are continuous maps between topoogical spaces
that are homotopic in the sense of topology, then the induced maps on singular chain
complexes f∗, g∗ : C•(X)→ C•(Y ) are chain homotopic.

Example 3.23. I claim the chain map pictured below is null homotopic:

· · · // 0

��

// Z //

17
��

0 //

��

· · ·

· · · // Z 17 // Z // 0 // · · ·

A null-homotopy is given by the diagram

· · · // 0

��

//

~~

Z //

17
��

1

��

0 //

����

· · ·

· · · // Z 17 // Z // 0 // · · ·

The main point of chain homotopy is given by the following result:

Proposition 3.24. Homotopic chain maps induced the same map on homology: If
f and g are chain maps from (M•, d

M) to (N•, d
N) and they are homotopic, then

Hi(f) = Hi(g) for all i.
In particular, a null homotopic map induces the 0 map on homology.

Proof. We prove the second assertion first. Suppose f is null-homotopic. For any i, let
z ∈ Hi(M) be a class represented by an element z ∈ Ker(di : Mi → Mi−1). Since f is
null-homotopic, there is a h such that dNh+hdM = f . So f(z) = dN(h(z))+h(dM(z)) =
dN(h(z)) since d(z) = 0. This gives f(z) ∈ Im(d) and hence f(z) = 0 in Hi(N•).

If f 'htpc g, then f − g is null-homotopic, so that Hi(f − g) = 0, by what we just
proved. Since Hi is additive, we have 0 = Hi(f − g) = Hi(f)−Hi(g).

Example 3.25. The converse of this proposition is false. For example, the chain map
of Z-modules pictured as

· · · // 0

��

// 〈2〉Z/4 //

inc
��

0 //

��

· · ·

· · · // Z/4 2 // Z/4 // 0 // · · ·

induces the 0 map on all homology groups, but it is not null homotopic. Indeed, the
only possible homotopy would be 0 in all degrees except one, in which it would be a
map h0 : 〈2〉 → Z/4. The only possibilities for h0 are the 0 map and the inclusion
map. Neither works.

Remark 3.26. Homotopy is an equivalence relation on chain maps. The quotient of
〈〈R-complexes〉〉 by this equivalence relation is the homotopy category of R-complexes.
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3.2 Resolutions

3.2.1 Free and projective resolutions

Definition 3.27. A free resolution of an R-module M is a chain complex of the form

· · · → F3
d3−→ F2

d2−→ F1
d1−→ F0 → 0→ · · · ,

such that each Fi is a free R-module, along with a map π : F0 → M such that the
augmented sequence

· · · → F3
d3−→ F2

d2−→ F1
d1−→ F0

π−→M → 0→ · · ·

is an exact complex. (We allow for the possibility that Fi = 0 for some of the i’s.)
A projective resolution of an R-module M is a chain complex of the form

· · · → P3
d3−→ P2

d2−→ P1
d1−→ P0 → 0→ · · · ,

such that each Pi is a projective R-module, along with a map π : P0 → M such that
the augmented sequence

· · · → P3
d3−→ P2

d2−→ P1
d1−→ P0

π−→M → 0→ · · ·

is an exact complex. (We allow for the possibility that Pi = 0 for some of the i’s.)

We shall see below that free resolutions generalize the notion of presentation for
a module. An important fact is that all R modules have free, and hence projective,
resolutions.

Proposition 3.28. Every (left) R-module has a free resolution.

Proof. Given an R-module M and a subset S ⊆M that generates it, we may find a free
module F0 of rank equal to the cardinaltiy of S and a surjective R-map π : F0 � M ,
given by sending a basis of F0 bijectively onto S. Write Ω1

R(M) for the kernel of this
surjection, so that we have the s.e.s.

0→ Ω1
R(M)

ι−→ F0
π−→M → 0.

The module Ω1
R(M) is known as a module of first syzygies of M . Note that it is not

unique, but rather depends on the choice of generators of M . The module Ω1
R(M)

gives the collection of all relations on this set of generators.
Repeating this process, starting with Ω1

R(M) gives another surjective R-module
F1 � Ω1(M) with F1 free. This gives the right exact sequence

F1
g−→ F0

π−→M → 0
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where g is the composition of F1 � Ω1(M) ↪→ F0. (It is right exact since π is onto and
the image of g is the kernel of π, by construction.) A basis of F0 gives the generators of
M and a basis of F1 gives a set of generators on the relations among these generators
of M .

Why stop here? Let Ω2
R(M) = Ker(g) (the module of “second syzygies” of M) and

map a free module onto Ω2(M), to obtain the exact sequence

F2 → F1 → F0 →M → 0.

Repeating ad infinitum yields the exact sequence

· · · → F3
d3−→ F2

d2−→ F1
d1−→ F0 →M → 0,

with each Fi a free R-module. The kernel of dn is sometimes written Ωn
R(M) and

referred to as the module of n-th syzygies. (But, again, it depends on the choices of
generators made along the way.) A basis of F0 gives a list of generators of M , a basis
of F1 gives a list of generators of the module Ω1

R(M) of all relations on the chosen
generators of M , a basis of F2 gives a list of generators of the module Ω2

R(M) of all
relations among the relations on the generators of M , etc.

This construction terminates (i.e., Fi+1 = 0 for some i ≥ 0) if and only if for some
sequence of choices made along the way, Ωi

R(M) = Ker(Fi−1 → Fi−2) happens to be a
free module. In that case we obtain a finite resolution. However, not all modules have
finite resolutions.

Remark 3.29. Recall that M is finitely presented if F0 and F1 can both be taken to
have finite rank, say F0 = Rp, F1 = Rq. Then map F1 → F0 is given by a p× q matrix
A that “presents” M . The rows of A correspond to generators m1, . . . ,mp of M and
each column (a1,j, . . . , ap,j), for 1 ≤ j ≤ q, gives the relation a1,jm1 + · · ·+ ap,jmp = 0
among these generators. Moreover, every relation on these generators is an R-linear
combination of these q relations; i.e., if (b1, . . . , bp)

T is such that
∑
bimi = 0 then

(b1, . . . , bp)
T is an R-linear combination of the columns of A.
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Example 3.30. Let R = k[x, y] for a field k and M = (x, y). Then M is generated by
x and y and we have a surjection

R2 π−→M → 0

where π is given by the 1× 2 matrix (x, y). The module Ω1
R(M) is the submodule{[

f(x, y)
g(x, y)

]
| xf + yg = 0

}
of R2.
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If

[
f(x, y)
g(x, y)

]
belongs to Ω1(M), then xf(x, y) = −yg(x, y). Using that R is a UFD

and x, y are non-associate irreducible elements, it follows that g = xh and hence that
f = −yh, for some h ∈ R; that is, (f, g)T = h(−y, x)T and hence the kernel of π is
generated by the single (−y, x)T . This gives us the right exact sequence

R

−y
x


−−−−→ R2 (x,y)−−→M → 0

In fact, the map

[
−y
x

]
: R→ R2 is injective since R is a domain, and so the process

“stops” here. In other words, Ω1(M) is free of rank one in this example, and we have
the exact sequence

0→ R

−y
x


−−−−→ R2 (x,y)−−→M → 0.

Formally, we have that the complex

· · · → 0→ R

−y
x


−−−−→ R2 → 0→ · · ·

together with the map π : R2 (x,y)−−→ M form a free resolution of M . We will usually
just say, a bit inaccurately, that

· · · → 0→ R

−y
x


−−−−→ R2 (x,y)−−→M → 0

is a free resolution of M .

Since every free module is projective, every free resolution is a projective resolution,
but not vice versa. One might wonder why we talk about projective resolutions and not
just free ones. It turns out that the larger collection of projective resolutions enjoys
all of the same former properties as the collection of free resolutions, and modules
sometimes have “smaller” projective resolutions than free ones. This is illustrated by
Example 3.31 below; in that example, the module has a finite projective resolution but
no finite free resolution.

Example 3.31. Let R = Z[
√
−5]. Recall that I = (2, 1+

√
−5) is an ideal of R which,

when regarded as just a module, is projective but not free. If we set M = R/I, then

0→ I
ι−→ R

π−→M → 0

is a projective resolution, but not a free one. (Again, I am abusing terminology a bit.)

96



We can form a free resolution of M , of course, and it would start as

R2 (2,1+
√
−5)−−−−−−→ R→M → 0.

The module Ω2
R(M) contains the elements (−1−

√
−5, 2)T and (−3, 1−

√
−5)T .

It can in fact be shown that no free resolution of M terminates after a finite number
of steps.

Example 3.32. Let R = k[x, y]/(xy) and M = R/x. Then one can show that the
AnnR(x) = (y) and AnnR(y) = (x) and hence

· · · → R
x−→ R

y−→ R
x−→ R

π−→M → 0

is a free resolution of M . It can be shown that M does not admit any free or even
projective resolution with Pi = 0 for some i ≥ 0. That is, the R-module M has “infinite
projective dimension”.

3.2.2 Injective resolutions

Definition 3.33. For a ring R and R-module M , an injective resolution of M is
complex of the form

· · · → 0→ E0 d0−→ E1 d1−→ E2 d2−→ · · · ,

such that each Ei is injective for all i, together with an R-map M
i−→ E0 such that the

augmented sequence

0→M
i−→ E0 d0−→ E1 d1−→ E2 d2−→ · · ·

is an exact complex.

It is more difficult to motivate the concept of an injective resolution. But they exist.
To show this, we first need to show that for an arbitrary R-module M , an injective
module E0 exists such that M injects into E0.

Theorem 3.34. For any ring R and any R-module M , there is an injective R-module
E and a one-to-one R-module homomorphism i : M ↪→ E.

Proof. We first prove this for the case R = Z then bootstrap to the general case.
Suppose R = Z. I first show that for each 0 6= x ∈M , there is an injective R-module

Ex and a one-to-one R-module homomorphism ix : M → Ex such that ix(x) 6= 0. Let
N = Z · x be the subgroup of M generated by x. We first find an injective Z-module
Ex and a one-to-one homomorphism j : N ↪→ Ex: If |x| =∞, we take Ex = Q and let
j be the unique group homomorphism defined by j(x) = 1. If |x| = n < ∞, we take
Ex = Q/Z and let j be the unique group homomorphism defined by j(x) = 1/n. Since
Ex is injective, the map j extends to a map ix : M → Ex such that ix|N = j and hence
ix(x) = j(x) 6= 0.
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Now set E =
∏

x∈M Ex and define i : M → E to be the map whose x-th component
is ix. Then i is one-to-one, since for all x 6= 0, the x-th component of i(x) is non-zero.
Since a product of injective modules is injective, E is injective.

Now return to R being arbitrary. If we regard M as just an abelian group, then by
the special case R = Z there is a one-to-one homomorphism of Z-modules j : M ↪→ D
with D an injective Z-module. Apply HomZ(R,−) to this map to obtain the one-to-one
homomorphism

j∗ : HomZ(R,M) ↪→ HomZ(R,D).

of Z-modules. (It is one-to-one since HomZ(R,−) is left exact.) Since M is an R-
module, we have a canonical map

α : M → HomZ(R,M)

given by α(m)(r) := rm and it is a homomorphism of abelian groups. Moroever, α is
injective since α(m) = 0 implies 1Rm = 0.

Composing these maps gives the one-to-one homomorphism of abelian groups

β : M ↪→ HomZ(R,D) (3.2.1)

and tracking through the formulas shows that β(m)(r) = j∗(rm) = j(rm).
Since R is a Z−R-bimodule, the abelian group HomZ(R,M) is a left R-module via

the rule for scaling
(x · g)(r) := g(rx),

for any g ∈ HomZ(R,M), and r, x ∈ R. We note that β is an R-map since β(xm)(r) =
j(rxm) and (x · β(m))(r) = β(m)(rx) = j(rxm).

So (3.2.1) is a one-to-one homomorphism of left R-modules, and it remains to prove
HomZ(R,D) is an injective R-module.

For this I use the Hom-tensor adjointness isomorphism

HomR(−,HomZ(R,D)) ∼= HomZ(R⊗R −, D),

which is a natural isomorphism of functors from R-modules to abelian groups. Since
the functor R⊗R− is naturally isomorphic to the identity functor, this gives a natural
isomorphism

HomR(−,HomZ(R,D)) ∼= HomZ(−, D)

Since D is an injective Z-module, HomZ(−, D) is exact, and hence so too is
HomR(−,HomZ(R,D)). This proves HomZ(R,D) is an injective R-module.

November 9, 2020

Proposition 3.35. Every R-module admits an injective resolution.
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Proof. Given a module M , by a result above we can find a one-to-one R-map j : M ↪→
E0 with E0 injective. Let N = coker(j) = E1/ Im(j) and apply this result again
to obtain a one-to-one R-module N ↪→ E1 with E1 injective. Let E0 → E1 be the
composition of E0 � N ↪→ E1. Then we have a l.e.s 0 → N → E1 → E2. Repeating
this process (by taking the cokernel of E1 → E2 and injecting it into an injective
R-module, etc.), we build a (possibly never-ending) injective resolution of M .

Example 3.36. Let us find an injective resolution of Z as a module over itself. We
have the evident embedding Z ↪→ Q and we know Q is injective since it is divisible.
The cokernel is Q/Z, which is injective since it too is divisible. Thus

0→ Z→ Q→ Q/Z→ 0→ · · ·

is an injective resolution of Z.

Example 3.37. Let’s find an injective resolution of Z/n as a Z-module. We have

0→ Z/n→ Q/Z→ E1 → 0→ · · ·

where E1 is the quotient of Q/Z by the subgroup generated by 1/n+Z. In other words
E1 = Q

Z+Z· 1
n

. Then E1 is divisible and hence injective.

Remark 3.38. Warning! In general, quotients of injective modules need not be injective
and so things aren’t as simple as the above example indicates. There are actually very
few examples in which one can explicitly describe the injective resolution of a module.
But, as we shall see, it is valuable to know that injective resolutions exist even though
they can rarely be described explicitly.

3.2.3 Uniqueness of resolutions up to homotopy

As I have repeatedly mentioned, free, projective, and injective resolutions of modules
are not unique. For example, the construction outlined above to produce the free reso-
lution of a module depends on infinitely many choices, since we must choose generating
sets for M,Ω1

R(M),Ω2
R(M), . . . . However, there is a version of uniqueness that holds:

such resolutions are unique “up to homotopy”.

Theorem 3.39. Let M and N be R-modules, f : M → N an R-module homomor-
phism. Consider two complexes

P•︷ ︸︸ ︷
· · · → P2 → P1 → P0 →M → 0

· · · → Q2 → Q1 → Q0︸ ︷︷ ︸
Q•

→ N → 0

such that Pi is projective for all i and the second complex displayed above is exact.
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Then there is a chain map f̃ : P• → Q• causing the square diagram

P•

p∼
��

f̃ // Q•

q∼
��

M
f // N

of chain complexes to commute. Moreover, f̃ is unique up to homotopy: if f̃ ′ : P• → Q•
is another chain map causing this square to commute, then f̃ 'htpc f̃

′.

Proof. For existence, we need to construct maps f̃i : Pi → Qi for i ≥ 0 such that
q ◦ f̃0 = f ◦ p and dQi ◦ f̃i = f̃i−1 ◦ dPi for i ≥ 1. To construct f̃0, we merely use the
definition of projective and the diagram

P0

f◦p
��

∃f̃0

~~
Q0

q // N // 0.

Suppose we have consructed maps f̃0, . . . , f̃n for some n ≥ 0 so that dQi ◦f̃i = f̃i−1◦dPi for
1 ≤ i ≤ n. (When n = 0, the condition is vacuous.) Let Ωn+1

R (N) = Ker(Qn → Qn−1).
Use the definition of projective again with the diagram

Pn+1

f̃n◦dPn+1
��

∃f̃n+1

yy
Qn+1

dn+1|// Ωn+1
R (N) // 0

to contruct f̃n+1 such that dQn+1 ◦ f̃n+1 = f̃n ◦ dPn holds too. This proves existence.
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For uniqueness, suppose f̃ ′ is another such chain map. Observe that f̃−f̃ ′ is a chain

map from P• → Q• that extends the zero map from M to N . Thus, it suffices to prove
that if g : P• → Q• is a chain map such that qg = 0, then g is null homotopic. That is,
we need to show there are maps hi : Pi → Qi+1 for i ≥ 0 such that dQi+1◦hi+hi−1◦dPi = gi
for all i ≥ 0. (In the latter equation, when i = 0 we have h−1 = 0.)

Since q ◦ g0 = 0, the image of g0 is contained in Ker(q) = Im(dQ1 ) and so since

P0 is projective, there is a map h0 : P0 → Q1 such that (dQ1 |Im(dQ1 )) ◦ h0 = g0|Im(dQ1 )

and hence dQ1 ◦ h0 = g0 as needed. Suppose maps h0, . . . , hn have be constructed
for n ≥ 0, and consider the map gn+1 − hn ◦ dPn+1 : Pn+1 → Qn. By induction the

image of this map is contained in Im(dQn+1) and so, since Pn+1 is projective, there

is a map hn+1 : Pn+1 → Qn+2 such that dQn+2 ◦ hn+1 = gn+1 − hn ◦ dPn+1 and hence

dQn+2 ◦ hn+1 + hn ◦ dPn+1 = gn+1.

We now give a way to compare chain complexes:
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Definition 3.40. Given two chain complexes (M•, d) and (N•, d), a chain map f :

M• → N• is called a homotopy equivalence, written f : M•
'−→ N•, if there is a chain

map g : N• → M• such that both compositions are homotopic to the identity map:
f ◦ g 'htpc idN and g ◦ f 'htpc idM .

Lemma 3.41. If f : M• → N• is a homotopy equivalence, then the induced map
in homology Hi(f) : Hi(M•) → Hi(N•) is an isomorphism for each i. Indeed, using
Proposition 3.24 we see that Hi(f) ◦ Hi(g) = Hi(f ◦ g) = Hi(idN) = idHi(M•) and
Hi(g) ◦Hi(f) = Hi(g ◦ f) = Hi(idM) = idHi(N•).

Definition 3.42. A chain map f : M• → N• such that Hi(f) is an isomorphism for
each i ∈ Z is called a quasi-isomorphism and denoted f : M•

∼−→ N•. Moreover M• and
N• are called quasi-isomorphic complexes denoted M• ' N•.

Any homotopy equivalence is a quasi-isomorphism. But there exist quasi-isomorphisms
that are not homotopy equivalences.

Example 3.43. Let M be an R-module and let

· · · → P2 → P1 → P0 → 0→ · · ·

along with π : P0 � M form a projective resolution of M . We may interpret this as
an example of a quasi-isomorphism: The map π induces a chain map

π : P• →M [0]

which is the map π in degree 0 and (necessarily) the zero map in all other degrees. (By
abuse of notation, we call the chain map π too.) Here is a picture of the chain map π:

· · · // P2
//

��

P1
//

��

P0
//

��

0 //

��

· · ·

· · · // 0 // 0 //M // 0 // · · · .
On homology we have Hi(P•) = 0 for all i 6= 0 and Hi(M [0]) = 0 for all i 6= 0, so that
Hi(π) is an isomorphism, vacuouly, for all i 6= 0. In degree 0, the map

H0(π) : H0(P•)→ H0(M)

is the isomorphism π : coker(d0) = P0/ Im(d0) = P0/Ker(π)
∼=−→M induced by π. So π

is indeed a quasi-isomorphism.
However, I clam that π is not a homotopy equivalence in general. If it were, there

would be a chain map g : M → P• such that π ◦ g 'htpc idM (and also for the other
composition). Note that the chain map g is really just a map g0 : M → P0. Let h be
a homotopy realizing π ◦ g 'htpc idM . Since M = M [0] is only non-zero in degree 0, h
has to be the zero map. It follows that π ◦ g = idM and hence the composition

M
g0−→ P0

π−→M

is the identify. That is, M is isomorphic to a summand of P0 and hence M itself is
projective. But, of course M is an arbitrary module so it need not be projective.
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Corollary 3.44. Any two projective resolutions of the same module are homotopy
equivalent: if p : C•

∼−→ M and q : Q•
∼−→ M are two projective resolutions of a module

M , then there is a homotopy equivalence g : P•
'−→ Q• such that the triangle diagram

of chain complexes
P•

p

∼ !!
g'

��

M

Q•

q
∼

>>

commutes. Morever, g is unique up to homotopy.

Proof. Applying the previous result to the identity map on M gives a chain map
g : P• → Q• such that q ◦ g = p. Moreover, g is unique up to homotopy by the
uniqueness clause of the previous result.

By interchanging the roles of P• and Q• we get a chain map f : Q• → P• such that
p ◦ f = q. The composition f ◦ g is a chain endomorphism of P• such that p ◦ f ◦ g = p.
Since we also have p ◦ idP• = p, the uniqueness clause of the previous result gives that
f ◦ g is homotopic to idC• . Similarly, g ◦ f is homotopic to idQ• .

I’ll skip the proof of the following two statements. Both the statements and the
proofs are given by flipping the orientation of all the arrows involved in the previous
two statements and proofs.

Theorem 3.45. Let M and N be R-modules, f : M → N an R-module homomor-
phism, and i : M

∼−→ E• and j : N
∼−→ F · injective resolutions. Then there is a chain

map f̃ : E• → F · causing the square diagram

M
i
∼
//

f
��

E•

f̃
��

N
j

∼
// F ·

of chain complexes to commute. Moreover, f̃ is unique up to homotopy.

Corollary 3.46. Any two injective resolutions of the same module are homotopy equiv-
alent via a chain map that is unique up to homotopy.

3.3 Derived functors

3.3.1 Definition on objects and examples

Left derived functors

Definition 3.47. Let R and S be rings and F : 〈〈RMod〉〉 → 〈〈SMod〉〉 be a right exact
covariant functor. For each j ≥ 0 and R-module M , we define an S-module LjF (M),

102



known as the j-th left derived functor of F (evaluated at M) as follows: choose a
projective resolution π : P•

∼−→ M of M , apply F to P• to obtain the complex F (P•)
(with differential given by F (dP )), and set

LjF (M) := Hj(F (P•)).

November 13, 2020

Proposition 3.48. The modules LjF (M) are independent, up to a canonical isomor-
phism, of the choice of projective resolution involved in their definition.

Proof. Let P• and Q• be resolutions of M . Then by Corollary 3.44 there is a unique

homotopy equivalence g : P•
'htpc−−−→ Q• causing the evident triangle to commute. Since

F is additive, it takes idM to idM and commutes with + and compositions so it follows
that F (g) : F (P•) → F (Q•) is also a homotopy equivalence. Taking homology thus
gives an isomorphism

Hj(F (P•))
∼=−→ Hj(F (Q•)).

So, LjF (M) is well-defined up to a canonical isomorphism.

Remark 3.49. To be truly precise, Definition 3.47 should say: Given F , upon choosing,
once and for all, a projective resolution of each R-module, these definitions determine
a functor LjF (−) for each j ≥ 0. Given another choice of projective resolutions we
technically would get a different functor LjF (−) for each j. But, for each j, the two
functors so obtained are naturally isomorphic in a canonical way, as shown (partially)
by the Proposition above.

The Tor functor

Definition 3.50. For a ring R, right R-module N and left R-module M , we define

TorRj (N,M) := Lj(N ⊗R −)(M)

to be the j-th left derived functor of the functor N ⊗R− : 〈〈RMod〉〉 → 〈〈Z-modules〉〉.
So, for each j, TorRj (N,M) is an abelian group. When R is commutative, N ⊗R− can

be viewed as taking values in 〈〈RMod〉〉 and hence TorRj (N,M) is an R-module.

Explicitly,

ToriR(N,M) = Hj(· · ·
idN⊗d3−−−−→ N ⊗R P2

idN⊗d2−−−−→ N ⊗R P1
idN⊗d1−−−−→ N ⊗R P0 → 0→ · · · )

where P•
∼−→M is a projective resolution of M .
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Example 3.51. Let’s compute TorZj (N,Z/n) for any Z-module N and integers n ≥ 1,
and j.

We have the projective resolution · · · → 0 → Z n−→ Z π−→ Z/n → 0 of Z/n and so
TorRj (N,Z/n) is the homology of the complex

· · · 0→ N ⊗Z Z
idN⊗n−−−−→ N ⊗Z Z→ 0

(where the two non-zero terms lie in degrees 0 and 1). This complex is isomorphic to
the complex

· · · 0→ N
n−→ N → 0

and hence
TorR0 (N,Z/n) ∼= N/nN ∼= N ⊗Z Z/n

(as the Proposition below tells us),

TorR1 (N,Z/n) ∼= Ker(N
n−→ N) = {x ∈ N | n · x = 0},

and
TorRj (N,Z/n) = LjF (Z/n) = 0

for all j /∈ {0, 1}.
Note that TorR1 (N,Z/n) is the n-torsion submodule of N — this explains the no-

tation Tor.

Returning to the general situation of a right exact (covariant) functor F , let’s
compute a “formula” for the 0th left derived functor L0F (M).

Proposition 3.52. For any right exact functor F and R-module M , there is a canon-
ical isomorphism

L0F (M) ∼= F (M)

In particular,
TorR0 (N,M) ∼= N ⊗RM

for all right R-modules N and left R-modules M .

Proof. Let P•
∼−→ M be a projective resolution for M . Since P1

d1−→ P0
p−→ M → 0 is

right exact, so is

F (P1)
F (d1)−−−→ F (P0)

F (p)−−→ F (M)→ 0.

The homology in degree 0 of F (P•) is the cokernel of F (P1)
F (d1)−−−→ F (P0), i.e., F (M).

This proves both statements.

104



Example 3.53. Let R = k[x, y] for a field k and let M be an R-module. Let’s compute
TorR∗ (M,R/(x, y)). The kernel of the canonical surjection R � R/(x, y) is the ideal
(x, y) and from before we saw how to resolve (x, y) freely. This gives the resolution

· · · → 0→ R

−y
x


−−−−→ R2 (x,y)−−→ R→ R/(x, y)→ 0.

It follows that TorR∗ (M,R/(x, y)) is the homology of the complex

· · · → 0→M

−y
x


−−−−→M⊕2 (x,y)−−→M → 0→ · · · .

So TorR2 (M,R/(x, y)) = {m ∈ M | xm = 0 = ym}. The module TorR1 (M,R/(x, y)) is
a bit more complicated: It consists of pairs (m,n) in M ⊕M such that xm + yn =
0, modulo the “obvious” pairs that satisfy this condition, namely those of the form
(−yt, xt) for some t ∈M .

Proposition 3.54. If F is a flat right R-module, then TorRj (F,M) = 0 for all j 6= 0
and all left R-modules M .

Proof. This holds since F ⊗R − is an exact functor. In detail, if P• is a projective
resolution of M then P•

p−→ M → 0 is an exact complex. Applying the exact functor

F ⊗R − yields the exact complex F ⊗R P•
idF⊗p−−−→ F ⊗RM . This gives that

TorRj (F,M) = Hj(F ⊗R P ) =

{
F ⊗RM j = 0

0 j 6= 0.

Remark 3.55. It is also true that TorRj (N,F ) = 0 for all j 6= 0 whenever F is flat. This
will follow from the balancedness of Tor, a property to be stated later.

Remark 3.56. The converse of Proposition 3.54 is also true, namely if TorRj (F,M) = 0
for all j 6= 0 and all R-modules M , then F is a flat R-module. We will prove this later.

November 16, 2020

Right derived functors

Definition 3.57. Let R and S be rings and F : 〈〈RMod〉〉 → 〈〈SMod〉〉 be a left exact
covariant functor. For each j ≥ 0 and R-module M , we define an S-module RjF (M),
called the j-th right derived functor of F (evaluated on M) as follows: Choose an
injective resolution i : M

∼−→ E• of M , apply F to E• to obtain the complex F (E•),
and set

RjF (M) = Hj(F (E•)) =
Ker(F (Ej)

F (dj)−−−→ F (Ej+1))

Im(F (Ej−1)
F (dj−1)−−−−→ F (Ej))

.
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Definition 3.58. Let R and S be rings and G : 〈〈RMod〉〉 → 〈〈SMod〉〉 be a left
exact contra-variant functor. (Recall this means that G is additive and takes right
exact sequences to left exact sequences.) For each j ≥ 0 and R-module M , we define
an S-module RjG(M), called the j-th right derived functor of G (evaluated at M as
follows: Choose a projective resolution p : P•

∼−→M of M , apply G to P• to obtain the
complex G(P•). Since G is contravariant, this complex takes the form

· · · → 0→ G(P0)
G(d0)−−−→ G(P1)

G(d1)−−−→ G(P2)
G(d2)−−−→ · · ·

We set

RjF (M) = Hj(F (P•)) =
Ker(G(Pj)

G(dj+1)−−−−→ G(Pj+1)

Im(G(Pj−1)
G(dj)−−−→ G(Pj)

.

The following summarizes properties analogous to those worked out carefully above
for right exact covariant functors:

Proposition 3.59. Let R, S, F and G be as in the definitions above.

• The modules RjF (M) and RjG(M) are independent, up to canonical isomor-
phism, of the choice of injective/projective resolution.

• We have canonical isomorphisms R0F (M) ∼= F (M) and R0G(M) ∼= G(M).

The Ext functor

Definition 3.60. For a pair of left R-modules M and N , we write

ExtjR(M,N)I = Rj HomR(M,−)(N)

where F in Definition 3.57 is taken to be the left-exact covariant functor F := HomR(M,−).
We define

ExtjR(M,N)II = Rj HomR(−, N)(M)

where G in Definition 3.58 is taken to be the left exact contravariant functor G :=
HomR(−, N).

Both ExtjR(M,N)I and ExtjR(M,N)II are abelian groups in general and R-modules
when R is commutative.

Definition 3.61. By the balancedness of Ext, which I will formally state later, there
is a canonical isomorphism ExtjR(M,N)I ∼= ExtjR(M,N)II . Then one just writes

ExtjR(M,N) := ExtjR(M,N)I = ExtjR(M,N)II .

For now I’ll keep the superscripts.
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Example 3.62. Let’s compute Ext∗Z(Z/m,Z/n)I and Ext∗Z(Z/m,Z/n)II .
For the latter, we start with the free resolution · · · 0 → Z m−→ Z → Z/m → 0 of

Z/m and apply HomZ(−,Z/n) to obtain

· · · → 0→ HomZ(Z,Z/n)
m−→ HomZ(Z,Z/n)→ 0

which is isomorphic to
· · · → 0→ Z/n m−→ Z/n→ 0.

The two non-zero homology modules are both isomorphic to Z/g where g = gcd(m,n).
So

ExtiZ(Z/m,Z/n)II ∼=

{
Z/g i = 0, 1

0 i ≥ 2.

For the former, we will use the following fact: For any integer j there is a short
exact sequence

0→ Z/j 17→1/n−−−−→ Q/Z j−→ Q/Z→ 0.

This holds since Q/Z is divisible and the kernel of multiplicaition by j is { i
j
| 0 ≤ i ≤

j − 1}, which is generated by 1/n.
In particular, we have an injective resolution

0→ Z/n→ Q/Z n−→ Q/Z→ 0→ · · ·

of Z/n. Applying HomZ(Z/m,−) gives

0→ HomZ(Z/m,Q/Z)
n−→ HomZ(Z/m,Q/Z)→ 0→ · · · .

Now, the only elements of Q/Z have have order a multiple of m are the elements j
m

+Z
for 0 ≤ j < m, and they form a cyclic subgroup of order m. It follows that

HomZ(Z/m,Q/Z) ∼= HomZ(Z/m,Z/m) ∼= Z/m

and that the previous complex is isomorphic to

· · · → 0→ Z/m n−→ Z/m→ 0→ · · ·

This gives

ExtiZ(Z/m,Z/n)I ∼=

{
Z/g i = 0, 1

0 i ≥ 2.

November 18, 2020
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3.3.2 Definition on maps and long exact sequence

Definition 3.63. Given a right exact functor F : 〈〈RMod〉〉 → 〈〈SMod〉〉, R-modules
M and N , an R-map f : M → N , and an integer j ≥ 0, we define an S-module
homomorphism

LjF (f) : LjF (M)→ LjF (N)

as follows: Given projective resolutions p : P•
∼−→ M and q : Q•

∼−→ M , apply Theorem
3.39 to obtain a chain map f̃ : P• → Q• such that q ◦ f̃ = f ◦ p. Then F (f̃) : F (P•)→
F (Q•) is a chain map and hence it induces a map on homology

LjF (M) = Hj(F (P•))
F (f̃)−−→ Hj(F (Q•)) = LjF (M)

which is, by definition, LjF (f).

We will take the following fact on faith.

Proposition 3.64. The rules introduced above make LjF (−), for each j ≥ 0, into an
additive covariant functor LjF (−) : 〈〈RMod〉〉 → 〈〈SMod〉〉.

Likewise we define RjF on morphisms for both covariant and contravariant left
exact functors. I will define the latter, leaving the former to your imagination.

Definition 3.65. Given a left exact contravariant functor G : 〈〈RMod〉〉 → 〈〈SMod〉〉,
R-modules M and N , an R-map f : M → N , and an integer j ≥ 0, we define an
S-module homomorphism

RjG(f) : RjF (N)→ RjF (M)

as follows: Given projective resolutions p : P•
∼−→ M and q : Q•

∼−→ M , apply Theorem
3.39 to obtain a chain map f̃ : P• → Q• such that q ◦ f̃ = f ◦ p. Then G(f̃) : G(Q•)→
G(P•) is a chain map and hence it induces a map on homology

RjF (N) = Hj(G(Q•)
F (f̃)−−→ Hj(G(P•)) = LjR(M)

which is, by definition, RjG(f).

We have a similar fact.

Proposition 3.66. The rules introduced above make RjG(−), for each j ≥ 0, into an
additive contravariant functor RjG(−) : 〈〈RMod〉〉 → 〈〈SMod〉〉.
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Long exact sequence of derived functors

Akin to how a shot exact sequence of complexes gives rise to a long exact sequence
in homology (see Theorem 3.18), short exact sequences of R-modules give rise to long
exact sequences involving derived functors.

Theorem 3.67. Let F : 〈〈RMod〉〉 → 〈〈SMod〉〉 be a right exact additive covariant
functor for some rings R and S. Given a s.e.s. of left R-modules 0 → M ′ → M →
M ′′ → 0 there is a long exact sequence of the form

· · ·Li+1F (M ′)→ Li+1F (M)→ Li+1F (M ′′)→ LiF (M ′)→ LiF (M)→ LiF (M ′′)→ Li−1F (M ′) · · ·

also pictured as

· · · Li+1F (M ′
•) Li+1F (M•) Li+1F (M ′′

• )

LiF (M ′
•) LiF (M•) LiF (M ′′

• )

Li−1F (M ′
•) Li−1F (M•) Li−1F (M ′′

• )

L0F (M ′
•) = F (M ′) L0F (M•) = F (M) L0F (M ′′

• ) = F (M ′′)→ 0.

∂i

∂i−1

Proof. For the existence of such a long exact sequence, we apply the Horseshoe Lemma
(a result we shall not prove - see Lemma 10.53 on p.839 of Rotman’s book Advanced
Modern Algebra 2nd edition for a proof) to obtain from projective resolutions P ′•

∼−→M ′

and P ′′•
∼−→ M ′′ a projective resolution P•

∼−→ M that makes the short exact sequence
of chain complexes pictured below exact:

0 // P ′•
ĩ //

p′∼
��

P•
q̃

∼
//

p

��

P ′′• //

p′∼
��

0

0 //M ′ i //M
q //M ′′ // 0.

By defintion, LqF (M ′) = Hq(F (P ′•)) etc.
I claim that

0→ F (P•)→ F (P ′•)→ F (P ′′• )→ 0

is a short exact sequence of chain complexes. For each i,

0→ P ′i → Pi → P ′′i → 0

is a split exact sequence since P ′′i is projective. Since applying an additive functor to a
split eaxct sequence yields a split eaxct sequence by a midterm problem, the sequence

0→ F (P ′i )→ F (Pi)→ F (P ′′i )→ 0
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is exact (since it is split exact). This proves the claim.
The desired long exact sequence follows since short exact sequnces of chain com-

plexes induce long exact sequences on homology by Theorem 3.18.

Example 3.68. Let X be a right R-module and 0→M ′ →M →M ′′ → 0 a s.e.s. of
left R-modules. Then there is a long exact sequence of abelian groups of the form

· · · → TorR2 (X,M ′)→ TorR2 (X,M)→ TorR2 (X,M ′′)

→ TorR1 (X,M ′)→ TorR1 (X,M)→ TorR1 (X,M ′′)

→ X ⊗RM ′ → X ⊗RM → X ⊗RM ′′ → 0.

If R is commutative, this becomes a long exact sequence of R-modules.

The long exact sequence of Tor allows us to prove the converse to Proposition 3.54

Proposition 3.69. If F is a right R-module such that TorRj (F,M) = 0 for all j 6= 0
and all left R-modules M , then F is flat.

Proof. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of R-modules. The
long exact sequence of Tor from Example 3.68 with X = F is really a short exact
sequence as follows due to the hypothesis:

0 = TorR1 (F,M ′′)→ F ⊗RM ′ → F ⊗RM → F ⊗RM ′′ → 0.

This shows that the functor F ⊗R − is left exact and hence F is flat.

November 20, 2020
Similar arguments to those given above prove:

Theorem 3.70. Suppose 0 → M ′ → M → M ′′ → 0 is a short exact sequence of left
R-modules. If F : 〈〈RMod〉〉 → 〈〈SMod〉〉 is a left exact covariant functor there is a
long exact sequence

0→ F (M ′)→ F (M)→ F (M ′′)→ R1F (M ′)→ R1F (M)→ R1F (M ′′)→ R2F (M ′)→ · · ·

and if F is a left exact contravariant functor there is along exact suquenece

0→ F (M ′′)→ F (M)→ F (M ′)→ R1F (M ′′)→ R1F (M)→ R1F (M ′)→ R2F (M ′′)→ · · · .

Example 3.71. Let X be a left R-module and 0 → M ′ i−→ M
p−→ M ′′ → 0 a s.e.s. of

left R-modules. Then there are long exact sequence of abelian groups

0→HomR(X,M ′)
i∗−→ HomR(X,M)

p∗−→ HomR(X,M ′′)

→ Ext1R(X,M ′)I → Ext1R(X,M)I → Ext1R(X,M ′′)I →
→ Ext2R(X,M ′)I → Ext2R(X,M)I → Ext2R(X,M ′′)I →

· · ·
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and

0→HomR(M ′′, X)
p∗−→ HomR(M,X)

i∗−→ HomR(M ′′, X)

→ Ext1R(M ′′, X)II → Ext1R(M,X)II → Ext1R(M ′, X)II →
→ Ext2R(M ′′, X)II → Ext2R(M,X)II → Ext2R(M ′, X)II →

· · · .

Remark 3.72. In the long exact sequences above the maps that are singled out with
notation are

i∗(f) = HomR(X, i)(f) = i ◦ f
p∗(f) = HomR(X, p)(f) = p ◦ f
i∗(g) = HomR(i,X)(g) = i ◦ g
p∗(g) = HomR(X, p)(g) = p ◦ g.

We can use Ext to characterize projective and injective modules as follows:

Proposition 3.73. Let R be a ring and let M be a left R-module. Then the following
are equivalent:

1. M is projective

2. ExtiR(M,N) = 0 for all i ≥ 1 and all left R-modules N

3. Ext1R(M,N) = 0 for all left R-modules N

Proof. (1)⇒ (2) If M is projective then a projective resolution of M is given by

P• : · · · → 0→ 0→M → 0,

i.e. P0 = M and Pi = 0 for i ≥ 1 and the map π : P0 = M → M is idM . Applying
HomR(−, N) for an arbitrary left R-module N gives

Homr(P•, N) : HomR(0, N)→ HomR(M,N)→ HomR(0, N)→ HomR(0, N)→ · · · ,

i.e., 0→ HomR(M,N)→ 0→ 0→ · · · ,
thus ExtiR(M,N) = 0 for all i ≥ 1 and all left R-modules N .

(2)⇒ (3) is clear.
(3) ⇒ (1) follows because Ext1R(M,N) = 0 for all left R-modules N implies that

the functor HomR(M,−) is eaxct. In detail, consider a s.e.s of left R-modules

0→ N ′ → N → N ′′ → 0.

Then the corresponding l.e.s. shows that the sequence remains exact after applying
HomR(M,−) since Ext1R(M,N ′) = 0:

0→ HomR(M,N ′)→ HomR(M,N)→ HomR(M,N ′′)→ Ext1R(M,N ′) = 0.

Now Proposition 1.105 (2)⇒ (1) yields that M is projective.
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Proposition 3.74. Let R be a ring and let N be a left R-module. Then the following
are equivalent:

1. N is injective

2. ExtiR(M,N) = 0 for all i ≥ 1 and all left R-modules M

3. Ext1R(M,N) = 0 for all left R-modules M

Proof. The proof is very similar to the previous one. For (1) ⇒ (2) one observes
that N has an injective resolution 0 → N → 0 → 0 → · · · with only one non zero
injective module in it. For (3) ⇒ (1) one uses the l.e.s. of ExtR(−, N) to show that
the functor HomR(−, N) is exact and then Proposition 1.112 applies to conclude that
N is injective.

Balancedness

Recall we defined TorRj (M,N) as the j-th right derived functor of M ⊗R − evaluated
at N . Let’s temporarily rename this by introducing a superscript “I”:

TorRj (M,N)I := Lj(M ⊗R −)(N).

Now define
TorRj (M,N)II := Lj(−⊗R N)(M),

so that TorRj (M,N)II = Hj(P• ⊗R N) where P•
∼−→M is a projective resolution of M .

The following theorem shows that the above functors are naturally isomorphic. In
practical terms, this says that we can compute TorRj (M,N) using either a projective
resolution of M or a projective resolution of N . (Of course we will use whichever is
easier to come by, understand or work with in a given situation).

This result is not easy to prove. We will take it on faith.

Theorem 3.75 (Balancedness of Tor and Ext). Let R be a ring.

1. Given a right R-module M and a left R-module N , there is an isomorphism

TorRj (M,N)I ∼= TorRj (M,N)II

of abelian groups that is natural in both arguments. If R is commutative, it is an
isomorphisms of R-modules. We write this common abelian group (or R-module)
as just TorRj (M,N).

2. Given left R-modules M and N , there is an isomorphism

ExtjR(M,N)I ∼= ExtjR(M,N)II

of abelian groups that is natural in both arguments. If R is commutative, it is an
isomorphisms of R-modules. We write this common abelian group (or R-module)
as just ExtjR(M,N).
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Using this we can state a more fully fleshed out characterization for flat modules.

Proposition 3.76. Let R be a commutative ring and let F be an R-module. The
following are equivalent:

1. N is flat

2. TorRi (F,N) = 0 for all i ≥ 1 and all R-modules N

3. TorRi (F,N) = 0 for all R-modules N

4. TorRi (M,F ) = 0 for all i ≥ 1 and for all R-modules M

5. TorR1 (M,F ) = 0 for all R-modules M .

Proof. We have proven (1)⇒ (2) in Proposition 3.54 and (3)⇒ (1) in Proposition 3.69.
Together with (2)⇒ (3), which is obvious, this shows that (1) ⇐⇒ (2) ⇐⇒ (3).

To see that (1)⇒ (4), one argues similarly to Proposition 3.54, but uses a projective
resolution for M to compute TorRi (M,F ). In detail, given P•

∼−→ M a projective
resolution of M , the complex P•⊗R F → 0 is exact everywhere except for homological
degree 0 since the functor − ⊗R F is exact due to the flatness of F . This yields that
TorRi (M,F ) = 0 for all i ≥ 1 and for all R-modules M .

To see that (5) ⇒ (1), one takes a s.e.s of R-modules 0 → M ′ → M → M ′′ → 0
and uses the following l.e.s of derived functors for −⊗R F :

0→M ′⊗RF →M⊗RF →M ′′⊗RF → TorR1 (M ′, F )→ TorR1 (M,F )→ TorR1 (M ′′, F )→ · · ·

Since TorR1 (M ′, F ) = 0, this yields a s.e.s

0→M ′ ⊗R F →M ⊗R F →M ′′ ⊗R F → 0

thus proving that the functor −⊗R F is exact and hence F is flat.
Since (4)⇒ (5) is obvious, this shows that (1) ⇐⇒ (4) ⇐⇒ (5).

3.3.3 Where next?

If you are interested in learning more about homological algebra, Charles Weibel’s
textbook “An Introduction To Homological Algebra” is the gold standard reference for
this topic. It gives a modern prespective and is written by an expert. But it may be
a bit rough going for beginners, the treatment being at times quite terse. Much more
user friendly and still very thorough is the second edition of Joseph Rotman’s book of
the same name (which is different from the recommended textbook for this course).
Like everything by Rotman, it’s a wonderful and enlightening read, with occasional
tendencies towards verbosity.
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