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Abstract. We introduce the Laplace transform for an arbitrary time scale. Two partic-
ular choices of time scales, namely the reals and the integers, yield the concepts of the
classical Laplace transform and of the classical Z-transform. Other choices of time scales
yield new concepts of our Laplace transform, which can be applied to find solutions of
higher order linear dynamic equations with constant coeffficients. We present several use-
ful properties of our Laplace transform and offer formulas for the Laplace transforms of
many elementary functions, among them results for the convolution of two functions on a
time scale, which is introduced in this paper as well.

1. Introduction

A time scale is a closed subset of the reals. In this paper the symbol T denotes a time
scale which is unbounded above and contains zero.

Definition 1.1. We define the Laplace Transform of a regulated function x : T → C by

(1.1) L{x}(z) =
∫ ∞

0
x(t)e	z(σ(t))∆t for z ∈ D{x},

where D{x} consists of all z ∈ C for which the improper integral exists and for which
1 + µ(t)z 6= 0 for all t ∈ T.

All expressions occuring in Definition 1.1 which are related to the time scales calculus
are introduced in Section 2 below. At this point we want the reader only to know that

• if T = R, then σ(t) = t, µ(t) ≡ 0, 	z = −z, eα(t) = eαt, and
∫∞
0 f(t)∆t =∫∞

0 f(t)dt;
• if T = Z, then σ(t) = t+1, µ(t) ≡ 1, 	z = − z

1+z , eα(t) = (1+α)t, and
∫∞
0 f(t)∆t =∑∞

t=0 f(t).
Hence, clearly, if T = R, our Laplace transform is the classical Laplace transform, while if
T = Z, our Laplace transform is

L{x}(z) =
∞∑

t=0

x(t)
(

1− z

1 + z

)t+1

=
∞∑

t=0

x(t)
(z + 1)t+1

=
Z{x}(z + 1)

z + 1
,
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Table 1. Laplace Transforms

x 1 hk eα ua coshα sinhα cosα sinα

L{x}(z) 1
z

1
zk+1

1
z−α

e	z(a)
z

z
z2−α2

α
z2−α2

z
z2+α2

α
z2+α2

x eα sinβ/(1+µα) eα cosβ/(1+µα) eα sinhβ/(1+µα) eα coshβ/(1+µα)

L{x}(z) β
(z−α)2+β2

z−α
(z−α)2+β2

β
(z−α)2−β2

z−α
(z−α)2−β2

where Z{x}(z) =
∑∞

t=0 x(t)/zt is the classical Z-transform (see e.g., [7, Section 3.7]). These
remarks explain the “unification” property of our Laplace transform, which is also shared
by Hilger’s Laplace transform (which is different from ours) introduced in [6, Section 6]
(but with formulas much more complicated than ours). However, his Laplace transform
may not work unless the time scales is either R or hZ = {hk| k ∈ Z}, h > 0, while our
Laplace transform is defined for an arbitrary time scale T. E.g., when applying our Laplace
transform to the particular time scale {qk| k ∈ Z} ∪ {0}, q > 1, we can use it to solve
higher order linear q-difference equations with constant coefficients. The fact that this
“extension” property is achieved by the Laplace transform as introduced in Definition 1.1
above, emphasizes that our definition is the most “natural” one.

The set up of this paper is as follows: Section 2 contains a very brief introduction into the
time scales calculus as well as some preliminaries on the exponential function, which occurs
in the definition of the Laplace transform in (1.1). In Section 3 we prove the following two
theorems.

Theorem 1.1. If x : T → C is such that x∆ is regulated, then

(1.2) L{x∆}(z) = zL{x}(z)− x(0)

for all z ∈ D{x} such that limt→∞ {x(t)e	z(t)} = 0.

Again, at this point it is sufficient to know that x∆ = x′ (the usual derivative) if T = R
and that x∆ = ∆x (the usual forward difference) if T = Z.

Theorem 1.2. If x : T → C is regulated and X(t) =
∫ t
0 x(τ)∆τ for t ∈ T, then

L{X}(z) =
1
z
L{x}(z)

for all z ∈ D{x} \ {0} such that limt→∞ {X(t)e	z(t)} = 0.

Next, in Section 4, we calculate the Laplace transforms of several important functions,
among them the generalized exponential, hyperbolic, trigonometric, and polynomial func-
tions. Table 1 shows Laplace transforms of those elementary functions; for the notation
we refer to Section 4. It is also remarkable that we obtain “universal” formulas which are
independent of the underlying time scales structure (and this is not the case in [6]). This
fact even might be an indication to assume that the classical Z-transform is not the “most
natural” one, but that the modified Z-transform defined by Z̃{x}(z) = Z{x}(z +1)/(z +1)
is. One “pragmatic” argument for this last statement is that with our Laplace transform
one only has to “know one table” instead of two or more. Finally, in Section 5, we make
an attempt to introduce the convolution of two functions defined on the same time scale.
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This might seem to be an unsuccessful project as the difference of two elements in T is
not necessarily back in T (unless T = R or T = hZ), but we illustrate a way on how to
avoid this dilemma and introduce convolutions of elementary functions with an arbitrary
regulated function. Then we are able to prove the following result.

Theorem 1.3 (Convolution Theorem). Let f : T → C be a generalized exponential, hyper-
bolic, trigonometric, or polynomial function, and let g : T → C be regulated. Then, subject
to a certain limit condition,

(1.3) L{f ∗ g} = L{f} · L{g} on D{f ∗ g}.

2. Preliminaries

The calculus of measure chains (and a time scale is a special case of a measure chain)
was introduced by Stefan Hilger in [5]. It serves to unify continuous and discrete analysis
and to extend those areas to cases “in between”. In this section we will only give a brief
overview on the calculus as it is needed for the rest of this paper; for further reading in this
relatively new area of research we refer to [1–5].

Again, in this paper T denotes a closed subset of the reals which is unbounded above
and which contains 0. The (forward) jump operator σ and the graininess µ are defined by
σ(t) = inf{s ∈ T : s > t} and µ(t) = σ(t)− t, t ∈ T, respectively. For a function f : T → C
we define the derivate f∆(t) to be the number, if it exists, with the property that for all ε > 0
there exists a neighborhood U of t such that |f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|
for all s ∈ U , and this then defines a function f∆ : T → C. Three important formulas are

(2.1) fσ = f + µf∆, (fg)∆ = f∆g + fσg∆,

(
f

g

)∆

=
f∆g − fg∆

ggσ
,

where fσ := f ◦σ. A function f defined on T is called regulated if its right-sided limits exist
(and are finite) at points t ∈ T with σ(t) = t and if its left-sided limits exist (and are finite)
at points t ∈ T with sup{s ∈ T : s < t} = t. Hilger’s main existence theorem [3, Theorem 6]
says that regulated functions possess pre-antiderivatives, and using such an antiderivative
F of f , i.e., a continuous F with F∆ = f on a set D where T \ D is countable and does
not contain any points t with σ(t) > t, it is possible to define

∫ b
a f(t)∆t by F (b) − F (a)

whenever a, b ∈ T. Next, a function f defined on T is called regressive if 1 + µ(t)f(t) 6= 0
for all t ∈ T. A standard result [3, Theorem 8] is that the initial value problem

y∆ = p(t)y, y(t0) = 1

has a unique solution provided t0 ∈ T and p is regulated and regressive. This unique solution
is denoted by ep(·, t0). In this paper we will also write ep(t) = ep(t, 0). Some useful formulas
are

(2.2) eσ
p = (1 + µp)ep, epeq = ep⊕q,

ep

eq
= ep	q,

where p ⊕ q := p + q + µpq and p 	 q = (p − q)/(1 + µq). We remark that the set of all
regulated and regressive functions is an Abelian group under the addition ⊕.
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3. Laplace Transform

After having studied the preceding Section 2, the reader may now fully understand our
Definition 1.1. Of course linearity of L (i.e., L{αf +βg} = αL{f}+βL{g}) is now obvious.
To derive further results on the Laplace transform, the following auxiliary result is crucial.

Lemma 3.1. If z ∈ C is regressive, then

eσ
	z =

e	z

1 + µz
.

Proof. By the first property mentioned in (2.1), the short calculation

eσ
	z = [1 + µ(	z)] e	z =

[
1− µ

z

1 + µz

]
e	z =

e	z

1 + µz

shows the correctness of our claim. �

Example 3.1. We now shall find the Laplace transform of x(t) ≡ 1. Consider∫ ∞

0
e	z(σ(t))∆t =

∫ ∞

0

e	z(t)
1 + µ(t)z

∆t

=
1
−z

∫ ∞

0
(	z)(t)e	z(t)∆t

=
1
−z

∫ ∞

0
e∆
	z(t)∆t,

where we assume z 6= 0 and where we applied Lemma 3.1 for the first equal sign. Hence
D{1} consists of all regressive z ∈ C \ {0} for which limt→∞ e	z(t) exists, and for those
z ∈ D{1} with limt→∞ e	z(t) = 0 we have

L{1}(z) =
1
z
.

Proof of Theorem 1.1. We assume that limt→∞{x(t)e	z(t)} = 0 holds and use the product
rule as presented in (2.1) to obtain∫ ∞

0
x∆(t)e	z(σ(t))∆t =

∫ ∞

0

{
[xe	z]∆(t)− x(t)e∆

	z(t)
}

∆t

= −x(0)−
∫ ∞

0
x(t)(	z)(t)e	z(t)∆t

= −x(0) + z

∫ ∞

0
x(t)

e	z(t)
1 + µ(t)z

∆t

= −x(0) + z

∫ ∞

0
x(t)e	z(σ(t))∆t,

where we have used again Lemma 3.1 for the last equal sign. Thus, if z ∈ D{x}, then
z ∈ D{x∆}, too, and formula (1.2) follows. �

Example 3.2. Under suitable assumptions we find

L{x∆∆}(z) = z2L{x}(z)− zx(0)− x∆(0)
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using the above Theorem 1.1. Corresponding formulas for higher order derivatives can be
derived similarly.

Proof of Theorem 1.2. This result follows now immediately by applying Theorem 1.1 to X.
Note that X∆ = x and X(0) = 0 according to some remarks in Section 2. �

4. Examples and Applications

In this section we verify some of the formulas given in Table 1 and illustrate with an
example how our Laplace transform can be used in finding solutions of higher order linear
dynamic equations with constant coefficients on an arbitrary time scale.

Example 4.1. Let α ∈ C be regressive. We shall now find the Laplace transform of eα.
Assuming z 6= α, we apply (2.2) and Lemma 3.1 to obtain∫ ∞

0
eα(t)e	z(σ(t))∆t =

∫ ∞

0
eα(t)

e	z(t)
1 + µ(t)z

∆t

=
∫ ∞

0

eα	z(t)
1 + µ(t)z

∆t

=
1

α− z

∫ ∞

0

α− z

1 + µ(t)z
eα	z(t)∆t

=
1

α− z

∫ ∞

0
(α	 z)(t)eα	z(t)∆t

=
1

α− z

∫ ∞

0
e∆
α	z(t)∆t.

Thus the formula given in Table 1 holds provided limt→∞ eα	z(t) = 0.

Example 4.2. If −µα is regressive, then we define the hyperbolic functions

coshα =
eα + e−α

2
and sinhα =

eα − e−α

2
(as functions of two variables; but as before we also will use e.g. coshα(t) = coshα(t, 0)). By
linearity and under suitable assumptions we have e.g.

L{coshα}(z) =
1

z−α + 1
z+α

2
=

z

z2 − α2
.

The formula for sinhα and those for the trigonometric functions defined by, assuming µα is
regressive,

cosα =
eiα + e−iα

2
and sinα =

eiα − e−iα

2i
,

are easy to verify.

Example 4.3. In [2, Section 3], the generalized polynomials

h0(t, s) ≡ 1, hk+1(t, s) =
∫ t

s
hk(τ, s)∆τ for k ∈ N0
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are introduced. Let hk(t) = hk(t, 0). We claim that

(4.1) L{hk}(z) =
1
zk

if z is regressive with lim
t→∞

{hk(t)e	z(t)} = 0

holds for all k ∈ N0. By Example 3.1, (4.1) holds for k = 0. Assuming that (4.1) holds for
k = m ∈ N0, we find that

L{hm+1}(z) =
1
z
L{hm}(z) =

1
z

1
zm

=
1

zm+1

provided z 6= 0 is regressive and satisfies limt→∞{hm+1(t)e	z(t)} = 0 (which implies
limt→∞{hm(t)e	z(t)} = 0), where we used the relation

hm+1(t) =
∫ t

0
hm(τ)∆τ

and applied Theorem 1.2. Hence (4.1) holds for k = m+1, and this establishes our original
claim.

Example 4.4. Let a ∈ T, a > 0, and ua(t) = 0 for t ∈ T, t < a, while ua(t) = 1 for t ∈ T,
t ≥ a. We find ∫ ∞

0
ua(t)e	z(σ(t))∆t =

∫ ∞

a
e	z(σ(t))∆t =

e	z(a)
z

provided z is regressive and satisfies limt→∞ e	z(t) = 0 (for the last equal sign compare
with the calculation in Example 3.1).

Example 4.5. As a specific example how the Laplace transform can be applied to find
solutions of initial value problems, consider

(4.2) y∆∆∆ + y∆ = e1(t), y(0) = y∆(0) = y∆∆(0) = 0.

Take the Laplace transform on both sides to arrive at

z3L{y}(z) + zL{y}(z) =
1

z − 1
,

and hence

L{y}(z) =
1

(z3 + z)(z − 1)
= −1

z
+

1
2

z − 1
+

1
2z − 1

2

z2 + 1

so that y(t) = −1 + 1
2e1(t) + 1

2 cos1(t) − 1
2 sin1(t), and this y is easily verified to be the

solution of (4.2). E.g., if T = Z2 = {k2| k ∈ Z}, then y can be determined using

e1(t) = (
√

t)!2
√

t, ei(t) =

√
t∏

k=1

[1 + (2n− 1)i], and e−i(t) =

√
t∏

k=1

[1− (2n− 1)i].
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5. Convolutions

Suppose α ∈ C is regressive and g : T → C is regulated. By [4, Theorem 4.2], the unique
solution of the initial value problem

y∆ − αy = g(t), y(0) = 0

is given by y(t) =
∫ t
0 eα(t, σ(τ))g(τ)∆τ . This motivates the following definition.

Definition 5.1. For regressive α ∈ C and regulated g : T → C we define the convolution
of eα and g by

(5.1) (eα ∗ g)(t) =
∫ t

0
eα(t, σ(τ))g(τ)∆τ.

Proof of Theorem 1.3 (for f = eα). With y = f ∗ g we have by Theorem 1.1

L{g}(z) = L{y∆ − αy}(z) = zL{y}(z)− αL{y}(z) = (z − α)L{y}(z)

so that, provided z 6= α,

L{f ∗ g}(z) = L{y}(z) =
1

z − α
L{g}(z) = L{eα}(z)L{g}(z) = L{f}(z)L{g}(z)

if z ∈ D{y} such that limt→∞ eα	z(t) = 0. �

Convolutions of hyperbolic and trigonometric functions (and also of generalized polyno-
mials) with another regulated function g are now defined in a similar manner as in (5.1):

(coshα ∗g)(t) =
∫ t

0
coshα(t, σ(τ))g(τ)∆τ

and so on. It is easy to verify that Theorem 1.3 holds for those cases as well (use induction
for the generalized polynomials and linearity together with what we already have shown for
the other cases). Observe that we avoid the occurance of t − τ in those definitions, which
would be ambiguous since as pointed out earlier a general time scale need not contain the
difference of two of its elements. An open question remains on how to define convolution
with two arbitrary regulated functions. However, for the purpose of solving higher order
linear dynamic equations with constant coefficients on time scales, the material presented
in this section is sufficient.
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