## Publications

32. F. Scabbia, C. Gasparrini, M. Zaccariotto, U. Galvanetto, A. Larios, F.Bobaru

*Moving interfaces in peridynamic diffusion models and influence of discontinuous initial conditions: Numerical stability and convergence*(submitted)

31. M. Enlow, A. Larios, J. Wu,

*Algebraic calming for the 2D Kuramoto-Sivashinsky equations*(submitted) [arXiv]

30. E. Carlson, A. Larios, E. S. Titi,

*Super-exponential convergence rate of a nonlinear continuous data assimilation algorithm: The 2D Navier-Stokes equations paradigm.*(submitted) [arXiv]

29. A. Larios, Y. Pei, C. Victor,

*The second-best way to do sparse-in-time continuous data assimilation: Improving convergence rates for the 2D and 3D Navier-Stokes equations.*(submitted) [arXiv]

28. A. Farhat, A. Larios, V. R. Martinez, J. P. Whitehead,

*Identifying the body force from partial observations of a 2D incompressible velocity field.*(submitted) [arXiv]

27. J. Zhao, A. Larios, F. Bobaru,

*Construction of a peridynamic model for viscous flow.*J. Comp. Physics

**468**(2022) Paper No. 111509, 16 pp. [SSRN]

26. T. Franz, A. Larios, C. Victor,

*The Bleeps, the Sweeps, and the Creeps: Convergence Rates for Dynamic Observer Patterns via Data Assimilation for the 2D Navier-Stokes Equations.*Comput. Methods Appl. Mech. Engrg.,

**392**(2022) Paper No. 114673, 19 pp. [arXiv]

25. E. Carlson, J. Hudson, A. Larios, V. R. Martinez, E. Ng, J. P. Whitehead,

*Dynamically learning the parameters of a chaotic system using partial observations.*Discrete Contin. Dyn. Syst.

**42**(2022), no.~8, 3809-3839 [arXiv]

24. S. Jafarzadeh, F Mousavi, A. Larios, F. Bobaru,

*A general and fast convolution-based method for peridynamics: Applications to elasticity and brittle fracture.*Comput. Methods Appl. Mech. Engrg.,

**392**(2022) Paper No. 114666, 36 pp. [arXiv]

23. E. Carlson, L. Van Roekel, H. Godinez, M. Petersen, A. Larios,

*Exploring a New Computationally Efficient Data Assimilation Algorithm For Ocean Models.*(submitted)

22. A. Larios, M. M. Rahman, K. Yamazaki,

*Regularity criteria for the Kuramoto-Sivashinsky equation in dimensions two and three.*J. Nonlinear Sci.

**32**(6) (2022), 1–33. [arXiv]

21. E. Carlson, A. Larios.

*Sensitivity analysis for the 2D Navier-Stokes equations with applications to continuous data assimilation.*J. Nonlin. Sci.,

**31**, 5, (2021). [arXiv]

20. S. Jafarzadeh, L. Wang. A. Larios, F. Bobaru,

*A fast convolution-based method for peridynamic transient diffusion in arbitrary domains.*Comput. Methods Appl. Mech. Engrg.,

**375**, Paper No. 113633, (2021). [arXiv]

19. M. Gardner, A. Larios, L.G. Rebholz, D. Vargun, C. Zerfas,

*Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations.*AIMS Electronic Research Archive.

**29**, no. 1 (2021), 2223-2247.

18. A. Larios, C. Victor,

*Continuous data assimilation with a moving cluster of data points for a reaction diffusion equation: A computational study.*Commun. Comp. Phys.

**29**(2021), 1273-1298. [arXiv]

17. A. Larios, K. Yamazaki,

*On the well-posedness of an anisotropically-reduced two-dimensional Kuramoto-Sivashinsky equation.*Physica D.

**411**(2020), 1-14. [arXiv]

16. S. Jafarzadeh, A. Larios, F. Bobaru,

*Efficient solutions for nonlocal diffusion problems via boundary-adapted spectral methods*J. Peridynam. Nonlocal Modeling.

**2**, no. 1 (2020), 85-110. [arXiv]

15. E. Carlson, J. Hudson, A. Larios,

*Parameter recovery and sensitivity analysis for the 2D Navier-Stokes equations via continuous data assimilation.*SIAM J. Sci. Comput.

**42**, no. 1 (2020), 250-270. [arXiv]

14. A. Larios, Y. Pei,

*Nonlinear continuous data assimilation.*(submitted) [arXiv]

13. A. Larios, Y. Pei,

*Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data.*Evol. Equ. Control Theory.

**9**(2020), no. 3, 733–751. [arXiv]

12. A. Larios, L. G. Rebholz, C. Zerfas,

*Global in time stability and accuracy of IMEX-FEM data assimilation schemes for the Navier-Stokes equations.*Comput. Methods Appl. Mech. Engrg.

**345**(2019), 1077–1093. [arXiv]

11. A. Larios, Y. Pei, L. G. Rebholz,

*Global well-posedness of the velocity-vorticity-Voigt model of the 3D Navier-Stokes equations.*J. Differential Equations 2

**66**(2019), no. 5, 2435–2465. [arXiv]

10. A. Biswas, J. Hudson, A. Larios, and Y. Pei,

*Continuous data assimilation for the magnetohydrodynamic equations in 2D using one component of the velocity and magnetic fields.*Asymptotic Anal.

**108**(2018), no. 1-2, 1-43. [pdf]

9. A. Larios, B. Wingate, M. Petersen, E. S. Titi,

*The Euler-Voigt equations and a computational investigation of the finite-time blow-up of solutions to the 3D Euler Equations*Theor. Comp. Fluid Dyn.

**3**, no.~1 (2018), 23-34. [arXiv]

8. A. Larios, Y. Pei,

*On the local well-posedness and a Prodi-Serrin type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion.*J. Differential Equations.

**263**(2017), no. 2, 1419-1450. [arXiv]

7. A. Biswas, C. Foias, and A. Larios,

*On the attractor for the semi-dissipative Boussinesq equations.*Ann. Inst. H. Poincaré Anal. Non Linéaire.

**34**(2017), no. 2, 381-405. [arXiv]

6. A. Larios, E.S. Titi,

*Some paradigms on the effect Of boundary conditions on the global regularity and singularity of non-linear partial differential equations.*Recent progress in the theory of the Euler and Navier-Stokes equations, 96–125, London Math. Soc. Lecture Note Ser., 430, Cambridge Univ. Press, Cambridge, 2016.[arXiv]

5. J.-L. Guermond, A. Larios, T. Thompson,

*Validation of an entropy-viscosity model for large eddy simulation.*Direct and Large-Eddy Simulation IX, ERCOFTAC Series,

**20**(2015), 43-48. [pdf] [link]

4. A. Larios and E.S. Titi,

*Higher-order global regularity of an inviscid Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations.*J. Math. Fluid Mech.

**16**(2014), no. 1, 59-76. [pdf]

3. A. Larios, E. Lunasin, and E.S. Titi,

*Global well-posedness for the 2D Boussinesq system without heat diffusion and with either anisotropic viscosity or inviscid Voigt-α regularization.*J. Differential Equations.

**255**(2013) 2636-2654. [pdf]

2. P. Kuberry, A. Larios, L.G. Rebholz, N.E. Wilson,

*Numerical approximation of the Voigt regularization of incompressible Navier-Stokes and magnetohydrodynamic flows,*Computers & Mathematics with Applications

**64**(8) (2012), 2647-2662. [pdf]

1. A. Larios and E.S. Titi,

*On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models*, Discrete and Continuous Dynamical Systems B,

**14**(2) (2010), 603-627.

*(An invited article for a special issue in honor of Professor P. Kloeden on the occasion of his 60th birthday)*[pdf]