# A New Proof of Mercer's Extension Theorem

Vrej Zarikian (USNA)

(joint with Jan Cameron and David Pitts)

AMS Central Section Meeting, UNL, 16 October 2011

## Theorem (Mercer '91)

Let  $\mathcal{A}_i\subseteq (\mathcal{M}_i,\mathcal{D}_i)$  be Cartan bimodule algebras and  $\theta:\mathcal{A}_1\to\mathcal{A}_2$  be a Cartan bimodule isomorphism. Then there exists a  $\star$ -isomorphism  $\pi:\mathcal{M}_1\to\mathcal{M}_2$  such that  $\pi|_{\mathcal{A}_1}=\theta.$ 

### Normalizers

Let  $\mathcal C$  be a unital  $C^\star$ -algebra and  $\mathcal D\subseteq \mathcal C$  be a unital abelian  $C^\star$ -subalgebra. Then

• 
$$UN(C, D) = \{u \in U(C) : u D u^* = D\}$$

• 
$$\mathit{GN}(\mathcal{C}, \mathcal{D}) = \{ v \in \mathcal{C} : v \text{ is a partial isometry and } v \, \mathcal{D} \, v^\star, v^\star \, \mathcal{D} \, v \subseteq \mathcal{D} \}$$

• 
$$N(C, D) = \{x \in C : x D x^*, x^* D x \subseteq D\}$$

### Normalizers

Let  $\mathcal C$  be a unital  $C^\star$ -algebra and  $\mathcal D\subseteq \mathcal C$  be a unital abelian  $C^\star$ -subalgebra. Then

• 
$$UN(C, D) = \{u \in U(C) : u D u^* = D\}$$

• 
$$GN(C, D) = \{ v \in C : v \text{ is a partial isometry and } v D v^*, v^* D v \subseteq D \}$$

• 
$$N(C, D) = \{x \in C : x D x^*, x^* D x \subseteq D\}$$

#### Note:

- ullet  $UN(\mathcal{C},\mathcal{D})$  is a group
- $\mathit{GN}(\mathcal{C},\mathcal{D})$  and  $\mathit{N}(\mathcal{C},\mathcal{D})$  are \*-semigroups
- $\bullet \ \ \textit{U}(\mathcal{D}) \subseteq \textit{UN}(\mathcal{C},\mathcal{D}) \subseteq \textit{GN}(\mathcal{C},\mathcal{D}) \subseteq \textit{N}(\mathcal{C},\mathcal{D})$

# Cartan Subalgebras

## Definition (Cartan subalgebra)

Let  $\mathcal M$  be a von Neumann algebra. We say that  $\mathcal D\subseteq \mathcal M$  is a Cartan subalgebra if the following conditions hold:

- **3** There exists a normal faithful conditional expectation  $\mathbb{E}: \mathcal{M} \to \mathcal{D}$ .

# Cartan Subalgebras

### Definition (Cartan subalgebra)

Let  $\mathcal M$  be a von Neumann algebra. We say that  $\mathcal D\subseteq \mathcal M$  is a **Cartan subalgebra** if the following conditions hold:

- $oldsymbol{0}$   $\mathcal{D}$  is a MASA in  $\mathcal{M}$ .
- **3** There exists a normal faithful conditional expectation  $\mathbb{E}: \mathcal{M} \to \mathcal{D}$ .

### Example

 $D_n(\mathbb{C}) \subseteq M_n(\mathbb{C})$  is a Cartan subalgebra. Indeed,

 $UN(M_n(\mathbb{C}), D_n(\mathbb{C})) = \{PV : P \in M_n(\mathbb{C}) \text{ permutation matrix, } V \in D_n(\mathbb{T})\}.$ 

# The Feldman-Moore Construction ('77)

### Inputs:

- X, a standard Borel space
- R, a countable Borel equivalence relation on X
- ullet  $\mu$ , a probability measure on X which is quasi-invariant for R
- s, a normalized 2-cocycle on R

# The Feldman-Moore Construction ('77)

#### Inputs:

- X, a standard Borel space
- R, a countable Borel equivalence relation on X
- ullet  $\mu$ , a probability measure on X which is quasi-invariant for R
- s, a normalized 2-cocycle on R

### Output:

- $\bullet$   $\,\nu,$  right counting measure on R relative to  $\mu$
- $L^2(R, \nu)$ , a separable Hilbert space
- $\mathbf{M}(R,s)\subseteq B(L^2(R,\nu))$ , a von Neumann algebra consisting of certain bounded Borel functions  $T:R\to\mathbb{C}$  acting on  $L^2(R,\nu)$  by twisted matrix multiplication:

$$T\xi(x,y) = \sum_{zRx} T(x,z)\xi(z,y)s(x,z,y), \ \xi \in L^2(R,\nu), \ (x,y) \in R$$

•  $\mathbf{D}(R,s) = \{T \in \mathbf{M}(R,s) : T(x,y) = 0 \text{ if } x \neq y\}, \text{ a Cartan subalgebra of } \mathbf{M}(R,s)$ 

# a 5 Extension Theorem

The Feldman-Moore Representation Theorem

### Theorem (Feldman, Moore '77)

Let  $\mathcal M$  be a von Neumann algebra with separable predual and  $\mathcal D\subseteq \mathcal M$  be a Cartan subalgebra. Then there exists X, R,  $\mu$ , and s such that  $\mathcal M\cong \mathbf M(R,s)$ , with  $\mathcal D\cong \mathbf D(R,s)$ .

## Cartan Bimodule Algebras

### Definition (Cartan bimodule algebra)

Let  $\mathcal M$  be a von Neumann algebra with separable predual and  $\mathcal D\subseteq\mathcal M$  be a Cartan subalgebra. We say that  $\mathcal D\subseteq\mathcal A\subseteq\mathcal M$  is a **Cartan bimodule algebra** if the following conditions hold:

- **①**  $\mathcal{A}$  is a  $\sigma$ -weakly closed (non-self-adjoint) subalgebra.
- $W^{\star}(\mathcal{A}) = \mathcal{M}.$

## Cartan Bimodule Algebras

#### Definition (Cartan bimodule algebra)

Let  $\mathcal M$  be a von Neumann algebra with separable predual and  $\mathcal D\subseteq\mathcal M$  be a Cartan subalgebra. We say that  $\mathcal D\subseteq\mathcal A\subseteq\mathcal M$  is a **Cartan bimodule algebra** if the following conditions hold:

- **1**  $\mathcal{A}$  is a  $\sigma$ -weakly closed (non-self-adjoint) subalgebra.

### Example

$$D_4(\mathbb{C})\subseteq\left\{egin{bmatrix} a_{11}&a_{12}&0&a_{14}\0&a_{22}&0&0\0&a_{32}&a_{33}&0\0&0&0&a_{44} \end{bmatrix}:a_{ij}\in\mathbb{C}
ight\}\subseteq M_4(\mathbb{C})$$

is a Cartan bimodule algebra.

## The Spectral Theorem for Bimodules

## Theorem (Muhly, Saito, Solel '88)

Let  $A \subseteq (\mathcal{M}, \mathcal{D})$  be a Cartan bimodule algebra. Then there exists a unique Borel set  $\Gamma(A) \subseteq R$  such that

$$\mathcal{A}\cong\{T\in \mathbf{M}(R,s):T(x,y)=0\ \text{for all}\ (x,y)\notin\Gamma(A)\}.$$

In fact,  $\Gamma(A)$  is a reflexive and transitive relation which generates R.

## The Spectral Theorem for Bimodules

### Theorem (Muhly, Saito, Solel '88)

Let  $A\subseteq (\mathcal{M},\mathcal{D})$  be a Cartan bimodule algebra. Then there exists a unique Borel set  $\Gamma(A)\subseteq R$  such that

$$\mathcal{A} \cong \{T \in \mathbf{M}(R,s) : T(x,y) = 0 \text{ for all } (x,y) \notin \Gamma(A)\}.$$

In fact,  $\Gamma(A)$  is a reflexive and transitive relation which generates R.

#### Corollary (abundance of normalizers)

Let  $A \subseteq (\mathcal{M}, \mathcal{D})$  be a Cartan bimodule algebra. Then

$$\overline{span}^{\sigma}(GN(A, \mathcal{D})) = A$$
.

## Cartan Bimodule Isomorphisms

### Definition (Cartan bimodule isomorphism)

Let  $A_i \subseteq (\mathcal{M}_i, \mathcal{D}_i)$ , i = 1, 2, be Cartan bimodule algebras. We say that  $\theta : A_1 \to A_2$  is a **Cartan bimodule isomorphism** if the following conditions hold:

- $oldsymbol{0}$   $\theta$  is an isometric isomorphism.
- $\theta(\mathcal{D}_1) = \mathcal{D}_2.$

## Cartan Bimodule Isomorphisms

### Definition (Cartan bimodule isomorphism)

Let  $A_i \subseteq (\mathcal{M}_i, \mathcal{D}_i)$ , i = 1, 2, be Cartan bimodule algebras. We say that  $\theta : A_1 \to A_2$  is a **Cartan bimodule isomorphism** if the following conditions hold:

- $oldsymbol{0}$   $\theta$  is an isometric isomorphism.
- $\theta(\mathcal{D}_1) = \mathcal{D}_2.$

#### Example

Let  $\alpha, \beta, \gamma \in \mathbb{R}$ . Then

$$\begin{bmatrix} a_{11} & a_{12} & 0 & a_{14} \\ 0 & a_{22} & 0 & 0 \\ 0 & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{bmatrix} \mapsto \begin{bmatrix} a_{11} & e^{i\alpha}a_{12} & 0 & e^{i\beta}a_{14} \\ 0 & a_{22} & 0 & 0 \\ 0 & e^{i\gamma}a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

is a Cartan bimodule isomorphism.

## Mercer's Representation Theorem

### Theorem (Mercer '91)

Let  $\mathcal{A}_i\subseteq (\mathcal{M}_i,\mathcal{D}_i)$ , i=1,2, be a Cartan bimodule algebras and let  $\theta:\mathcal{A}_1\to\mathcal{A}_2$  be an Cartan bimodule isomorphism. Then there exists a Borel isomorphism  $\tau:X_1\to X_2$  and a Borel function  $m:\Gamma(\mathcal{A}_2)\to\mathbb{T}$  such that the following conditions hold:

- $(\tau \times \tau)(\Gamma(\mathcal{A}_1)) = \Gamma(\mathcal{A}_2).$
- **3**  $\theta(T)(x,y) = m(x,y)T(\tau^{-1}(x),\tau^{-1}(y)), T \in A_1, (x,y) \in \Gamma(A_2).$

## Mercer's Representation Theorem

## Theorem (Mercer '91)

Let  $\mathcal{A}_i\subseteq (\mathcal{M}_i,\mathcal{D}_i)$ , i=1,2, be a Cartan bimodule algebras and let  $\theta:\mathcal{A}_1\to\mathcal{A}_2$  be an Cartan bimodule isomorphism. Then there exists a Borel isomorphism  $\tau:X_1\to X_2$  and a Borel function  $m:\Gamma(\mathcal{A}_2)\to \mathbb{T}$  such that the following conditions hold:

- $(\tau \times \tau)(\Gamma(\mathcal{A}_1)) = \Gamma(\mathcal{A}_2).$

#### Example

$$\begin{bmatrix} a_{11} & e^{i\alpha}a_{12} & 0 & e^{i\beta}a_{14} \\ 0 & a_{22} & 0 & 0 \\ 0 & e^{i\gamma}a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{bmatrix} = \begin{bmatrix} 1 & e^{i\alpha} & 0 & e^{i\beta} \\ 0 & 1 & 0 & 0 \\ 0 & e^{i\gamma} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} a_{11} & a_{12} & 0 & a_{14} \\ 0 & a_{22} & 0 & 0 \\ 0 & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{bmatrix}$$

## Theorem (Mercer '91)

Let  $\mathcal{A}_i\subseteq (\mathcal{M}_i,\mathcal{D}_i)$  be Cartan bimodule algebras and  $\theta:\mathcal{A}_1\to\mathcal{A}_2$  be a Cartan bimodule isomorphism. Then there exists a  $\star$ -isomorphism  $\pi:\mathcal{M}_1\to\mathcal{M}_2$  such that  $\pi|_{\mathcal{A}_1}=\theta.$ 

### Theorem (Mercer '91)

Let  $\mathcal{A}_i \subseteq (\mathcal{M}_i, \mathcal{D}_i)$  be Cartan bimodule algebras and  $\theta: \mathcal{A}_1 \to \mathcal{A}_2$  be a Cartan bimodule isomorphism. Then there exists a  $\star$ -isomorphism  $\pi: \mathcal{M}_1 \to \mathcal{M}_2$  such that  $\pi|_{\mathcal{A}_1} = \theta$ .

### Proof.

Extend  $m:\Gamma(\mathcal{A}_2)\to\mathbb{T}$  in Mercer's Representation Theorem to  $\overline{m}:R_2\to\mathbb{T}$  in an appropriate way and define

$$\pi(T)(x,y) = \overline{m}(x,y)T(\tau^{-1}(x),\tau^{-1}(y)), \ T \in \mathcal{M}_1, \ (x,y) \in R_2.$$



### Theorem (Mercer '91)

Let  $\mathcal{A}_i \subseteq (\mathcal{M}_i, \mathcal{D}_i)$  be Cartan bimodule algebras and  $\theta: \mathcal{A}_1 \to \mathcal{A}_2$  be a Cartan bimodule isomorphism. Then there exists a  $\star$ -isomorphism  $\pi: \mathcal{M}_1 \to \mathcal{M}_2$  such that  $\pi|_{\mathcal{A}_1} = \theta$ .

#### Proof.

Extend  $m:\Gamma(\mathcal{A}_2)\to\mathbb{T}$  in Mercer's Representation Theorem to  $\overline{m}:R_2\to\mathbb{T}$  in an appropriate way and define

$$\pi(T)(x,y) = \overline{m}(x,y)T(\tau^{-1}(x),\tau^{-1}(y)), \ T \in \mathcal{M}_1, \ (x,y) \in R_2.$$

#### Example

$$m = \begin{bmatrix} 1 & e^{i\alpha} & 0 & e^{i\beta} \\ 0 & 1 & 0 & 0 \\ 0 & e^{i\gamma} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \overline{m} = \begin{bmatrix} 1 & e^{i\alpha} & e^{i(\alpha-\gamma)} & e^{i\beta} \\ e^{-i\alpha} & 1 & e^{-i\gamma} & e^{-i(\alpha-\beta)} \\ e^{-i(\alpha-\gamma)} & e^{i\gamma} & 1 & e^{-i(\alpha-\beta-\gamma)} \\ e^{-i\beta} & e^{i(\alpha-\beta)} & e^{i(\alpha-\beta-\gamma)} & 1 \end{bmatrix}$$

### On the other hand...

$$\begin{bmatrix} a_{11} & e^{i\alpha}a_{12} & 0 & e^{i\beta}a_{14} \\ 0 & a_{22} & 0 & 0 \\ 0 & e^{i\gamma}a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{bmatrix} = U \begin{bmatrix} a_{11} & a_{12} & 0 & a_{14} \\ 0 & a_{22} & 0 & 0 \\ 0 & a_{32} & a_{33} & 0 \\ 0 & 0 & 0 & a_{44} \end{bmatrix} U^{\star},$$

where

$$U = \begin{bmatrix} e^{i\alpha} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{i\gamma} & 0 \\ 0 & 0 & 0 & e^{i(\alpha-\beta)} \end{bmatrix}.$$

# Norming Subalgebras

## Definition (Pop, Sinclair, Smith '00)

Let  $\mathcal A$  be a unital operator algebra and  $\mathcal D\subseteq \mathcal A$  be a unital  $C^\star$ -subalgebra. We say that  $\mathcal D$  norms  $\mathcal A$  if for all  $X\in M_n(\mathcal A)$ , we have that

$$\|X\| = \sup\{\|RXC\| : R \in \mathsf{Ball}(M_{1,n}(\mathcal{D})), \ C \in \mathsf{Ball}(M_{n,1}(\mathcal{D}))\}.$$

# Norming Subalgebras

## Theorem (Pop, Sinclair, Smith '00)

- ◆ Any unital C\*-algebra norms itself.
- ② Any MASA norms B(ℋ).
- $\bullet$  A unital C\*-algebra is normed by the scalars if and only if it is abelian.
- **1** If  $\mathcal{N} \subseteq \mathcal{M}$  is a finite-index inclusion of  $II_1$  factors, then  $\mathcal{N}$  norms  $\mathcal{M}$ .

## Norming Subalgebras

### Theorem (Pop, Sinclair, Smith '00)

- Any unital C\*-algebra norms itself.
- **②** Any MASA norms B(ℋ).
- A unital C\*-algebra is normed by the scalars if and only if it is abelian.
- **1** If  $\mathcal{N} \subseteq \mathcal{M}$  is a finite-index inclusion of  $II_1$  factors, then  $\mathcal{N}$  norms  $\mathcal{M}$ .

#### Theorem (Sinclair, Smith '98)

Let  $\mathcal{A} \subseteq \mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$  be von Neumann algebras. Suppose there exists an abelian von Neumann algebra  $\mathcal{B} \subseteq \mathcal{M}'$  such that  $C^{\star}(\mathcal{A},\mathcal{B})$  is cyclic. Then  $\mathcal{A}$  norms  $\mathcal{M}$ .

# Cartan Subalgebras are Norming

### Corollary (Cameron, Pitts, Z.)

Let  $\mathcal M$  be a von Neumann algebra with separable predual and  $\mathcal D\subseteq\mathcal M$  be a Cartan subalgebra. Then  $\mathcal D$  norms  $\mathcal M$ .

# Cartan Subalgebras are Norming

### Corollary (Cameron, Pitts, Z.)

Let  $\mathcal M$  be a von Neumann algebra with separable predual and  $\mathcal D\subseteq \mathcal M$  be a Cartan subalgebra. Then  $\mathcal D$  norms  $\mathcal M$ .

### Proof.

From Feldman-Moore,  $\mathbf{M}(R,s)$  has a cyclic and separating vector, and so there exists an anti-unitary  $J:L^2(R,\nu)\to L^2(R,\nu)$  such that  $J\,\mathbf{M}(R,s)J=\mathbf{M}(R,s)'$ . Also  $W^\star(\mathbf{D}(R,s),J\,\mathbf{D}(R,s)J)$  is a MASA in  $B(L^2(R,\nu))$ , and therefore is cyclic, so that  $C^\star(\mathbf{D}(R,s),J\,\mathbf{D}(R,s)J)$  is cyclic as well. By Sinclair and Smith,  $\mathbf{D}(R,s)$  norms  $\mathbf{M}(R,s)$ .

## Pitts' Automatic Complete-Boundedness Theorem

### Theorem (Pitts '08)

Let  $\mathcal A$  and  $\mathcal B$  be operator algebras and  $\theta: \mathcal A \to \mathcal B$  be a bounded isomorphism. If  $\mathcal B$  contains a norming  $C^*$ -subalgebra, then  $\theta$  is completely bounded and

$$\|\theta\|_{cb} \le \|\theta\| \|\theta^{-1}\|^4$$
.

## Pitts' Automatic Complete-Boundedness Theorem

### Theorem (Pitts '08)

Let A and B be operator algebras and  $\theta: A \to B$  be a bounded isomorphism. If B contains a norming  $C^*$ -subalgebra, then  $\theta$  is completely bounded and

$$\|\theta\|_{cb} \le \|\theta\| \|\theta^{-1}\|^4$$
.

#### Remark

Pitts' theorem relies crucially on the following remarkable theorem of Pisier/Haagerup ('78/'83): Let  $\mathcal C$  be a  $C^*$ -algebra and  $\rho:\mathcal C\to B(\mathcal H)$  be a bounded homomorphism. Then

$$\|\rho_{n,1}(C)\| \le \|\rho\|^2 \|C\|, \ C \in M_{n,1}(C)$$

and

$$\|\rho_{1,n}(R)\| \leq \|\rho\|^2 \|R\|, \ R \in M_{1,n}(C).$$

#### Definition

Let  $\mathcal C$  be a unital  $\mathcal C^*$ -algebra and  $\mathcal D\subseteq \mathcal C$  be a unital  $\mathcal C^*$ -subalgebra. We say that  $(\mathcal C,\mathcal D)$  has the **unique pseudo-expectation property** if there exists a unique ucp map  $\mathbb E:\mathcal C\to I(\mathcal D)$  such that  $\mathbb E\mid_{\mathcal D}=\operatorname{id}.$ 

#### Definition

Let  $\mathcal C$  be a unital  $\mathcal C^*$ -algebra and  $\mathcal D\subseteq \mathcal C$  be a unital  $\mathcal C^*$ -subalgebra. We say that  $(\mathcal C,\mathcal D)$  has the **unique pseudo-expectation property** if there exists a unique ucp map  $\mathbb E:\mathcal C\to I(\mathcal D)$  such that  $\mathbb E\mid_{\mathcal D}=\mathrm{id}$ .

### Example

 $(B(\ell^2),\ell^\infty)$  has the unique pseudo-expectation property.

#### Definition

Let  $\mathcal C$  be a unital  $\mathcal C^*$ -algebra and  $\mathcal D\subseteq \mathcal C$  be a unital  $\mathcal C^*$ -subalgebra. We say that  $(\mathcal C,\mathcal D)$  has the **unique pseudo-expectation property** if there exists a unique ucp map  $\mathbb E:\mathcal C\to I(\mathcal D)$  such that  $\mathbb E\mid_{\mathcal D}=\operatorname{id}$ .

### Example

 $(B(\ell^2),\ell^\infty)$  has the unique pseudo-expectation property.

### Theorem (Pitts '11)

Let  $(\mathcal{C},\mathcal{D})$  be a regular MASA inclusion, i.e.,  $\mathcal{D}\subseteq\mathcal{C}$  is a MASA and  $\overline{\operatorname{span}}(\mathsf{N}(\mathcal{C},\mathcal{D}))=\mathcal{C}$ . Then  $(\mathcal{C},\mathcal{D})$  has the unique pseudo-expectation property.

#### Definition

Let  $\mathcal C$  be a unital  $\mathcal C^*$ -algebra and  $\mathcal D\subseteq \mathcal C$  be a unital  $\mathcal C^*$ -subalgebra. We say that  $(\mathcal C,\mathcal D)$  has the **unique pseudo-expectation property** if there exists a unique ucp map  $\mathbb E:\mathcal C\to I(\mathcal D)$  such that  $\mathbb E\mid_{\mathcal D}=\operatorname{id}$ .

### Example

 $(B(\ell^2),\ell^\infty)$  has the unique pseudo-expectation property.

### Theorem (Pitts '11)

Let  $(\mathcal{C},\mathcal{D})$  be a regular MASA inclusion, i.e.,  $\mathcal{D}\subseteq\mathcal{C}$  is a MASA and  $\overline{\operatorname{span}}(\mathsf{N}(\mathcal{C},\mathcal{D}))=\mathcal{C}$ . Then  $(\mathcal{C},\mathcal{D})$  has the unique pseudo-expectation property.

#### **Proposition**

Suppose  $(\mathcal{C}, \mathcal{D})$  has the unique pseudo-expectation property. If  $\mathcal{D} \subseteq \mathcal{C}_1 \subseteq \mathcal{C}$  is a  $C^*$ -subalgebra, then  $(\mathcal{C}_1, \mathcal{D})$  has the unique pseudo-expectation property.

## The Unique Pseudo-Expectation Property + Faithfulness

#### Proposition

Suppose  $(\mathcal{C},\mathcal{D})$  has the unique pseudo-expectation property and  $\mathbb{E}:\mathcal{C}\to I(\mathcal{D})$  is faithful. If  $\pi:\mathcal{C}\to B(\mathcal{H})$  is a unital  $\star$ -homomorphism and  $\pi|_{\mathcal{D}}$  is faithful, then  $\pi$  is faithful.

## The Unique Pseudo-Expectation Property + Faithfulness

#### Proposition

Suppose  $(\mathcal{C},\mathcal{D})$  has the unique pseudo-expectation property and  $\mathbb{E}:\mathcal{C}\to I(\mathcal{D})$  is faithful. If  $\pi:\mathcal{C}\to B(\mathcal{H})$  is a unital  $\star$ -homomorphism and  $\pi|_{\mathcal{D}}$  is faithful, then  $\pi$  is faithful.

#### Proof.

We may assume  $\mathcal{D} \subseteq \pi(\mathcal{C})$  and  $\pi|_{\mathcal{D}} = \mathrm{id}$ . By injectivity, there exists a ucp map  $\Phi: \pi(\mathcal{C}) \to I(\mathcal{D})$  such that  $\Phi|_{\mathcal{D}} = \mathrm{id}$ . Then  $\Phi \circ \pi: \mathcal{C} \to I(\mathcal{D})$  is a ucp map such that  $(\Phi \circ \pi)|_{\mathcal{D}} = \mathrm{id}$ , and so  $\Phi \circ \pi = \mathbb{E}$ . If  $\pi(x) = 0$ , then

$$\mathbb{E}(x^*x) = \Phi(\pi(x^*x)) = \Phi(\pi(x)^*\pi(x)) = 0.$$

Since  $\mathbb{E}$  is faithful, x = 0.



# The Unique Pseudo-Expectation Property + Faithfulness

#### Proposition

Suppose  $(\mathcal{C},\mathcal{D})$  has the unique pseudo-expectation property and  $\mathbb{E}:\mathcal{C}\to I(\mathcal{D})$  is faithful. If  $\pi:\mathcal{C}\to B(\mathcal{H})$  is a unital  $\star$ -homomorphism and  $\pi|_{\mathcal{D}}$  is faithful, then  $\pi$  is faithful.

#### Proof.

We may assume  $\mathcal{D}\subseteq\pi(\mathcal{C})$  and  $\pi|_{\mathcal{D}}=$  id. By injectivity, there exists a ucp map  $\Phi:\pi(\mathcal{C})\to I(\mathcal{D})$  such that  $\Phi|_{\mathcal{D}}=$  id. Then  $\Phi\circ\pi:\mathcal{C}\to I(\mathcal{D})$  is a ucp map such that  $(\Phi\circ\pi)|_{\mathcal{D}}=$  id, and so  $\Phi\circ\pi=\mathbb{E}$ . If  $\pi(x)=0$ , then

$$\mathbb{E}(x^*x) = \Phi(\pi(x^*x)) = \Phi(\pi(x)^*\pi(x)) = 0.$$

Since  $\mathbb{E}$  is faithful, x = 0.

### Corollary

Suppose  $(\mathcal{C},\mathcal{D})$  has the unique pseudo-expectation property and  $\mathbb{E}:\mathcal{C}\to I(\mathcal{D})$  is faithful. If  $\mathcal{D}\subseteq\mathcal{A}\subseteq\mathcal{C}$  is a unital operator algebra, then  $C^*_{\text{env}}(\mathcal{A})=C^*(\mathcal{A})$ .



Step 1: Nice properties of  $\theta$ 

 $oldsymbol{0}$   $\theta$  is complete isometry.

 $oldsymbol{0}$   $\theta$  is complete isometry.

### Proof.

Since  $\mathcal{D}_2$  norms  $\mathcal{M}_2$ , it norms  $\mathcal{A}_2$ . By Pitts' Automatic Complete-Boundedness Theorem,

$$\|\theta\|_{cb} \le \|\theta\| \|\theta^{-1}\|^4 = 1.$$

Likewise, since  $\mathcal{D}_1$  norms  $\mathcal{M}_1$ , it norms  $\mathcal{A}_1$ , and so

$$\|\theta^{-1}\|_{cb} \le \|\theta^{-1}\| \|\theta\|^4 = 1.$$

 $oldsymbol{0}$   $\theta$  is complete isometry.

### Proof.

Since  $\mathcal{D}_2$  norms  $\mathcal{M}_2$ , it norms  $\mathcal{A}_2$ . By Pitts' Automatic Complete-Boundedness Theorem,

$$\|\theta\|_{cb} \le \|\theta\| \|\theta^{-1}\|^4 = 1.$$

Likewise, since  $\mathcal{D}_1$  norms  $\mathcal{M}_1$ , it norms  $\mathcal{A}_1$ , and so

$$\|\theta^{-1}\|_{cb} \le \|\theta^{-1}\| \|\theta\|^4 = 1.$$

**2**  $\theta$  is  $\sigma$ -weakly continuous.

 $oldsymbol{0}$   $\theta$  is complete isometry.

#### Proof.

Since  $\mathcal{D}_2$  norms  $\mathcal{M}_2$ , it norms  $\mathcal{A}_2$ . By Pitts' Automatic Complete-Boundedness Theorem,

$$\|\theta\|_{cb} \le \|\theta\| \|\theta^{-1}\|^4 = 1.$$

Likewise, since  $\mathcal{D}_1$  norms  $\mathcal{M}_1$ , it norms  $\mathcal{A}_1$ , and so

$$\|\theta^{-1}\|_{cb} \le \|\theta^{-1}\| \|\theta\|^4 = 1.$$

2  $\theta$  is  $\sigma$ -weakly continuous.

#### Proof.

Mercer's Representation Theorem.

 $oldsymbol{0}$   $\theta$  is complete isometry.

#### Proof.

Since  $\mathcal{D}_2$  norms  $\mathcal{M}_2$ , it norms  $\mathcal{A}_2$ . By Pitts' Automatic Complete-Boundedness Theorem.

$$\|\theta\|_{cb} \le \|\theta\| \|\theta^{-1}\|^4 = 1.$$

Likewise, since  $\mathcal{D}_1$  norms  $\mathcal{M}_1$ , it norms  $\mathcal{A}_1$ , and so

$$\|\theta^{-1}\|_{cb} \le \|\theta^{-1}\| \|\theta\|^4 = 1.$$

2  $\theta$  is  $\sigma$ -weakly continuous.

#### Proof.

Mercer's Representation Theorem.

 $\bullet$  is complete isometry.

#### Proof.

Since  $\mathcal{D}_2$  norms  $\mathcal{M}_2$ , it norms  $\mathcal{A}_2$ . By Pitts' Automatic Complete-Boundedness Theorem.

$$\|\theta\|_{cb} \le \|\theta\| \|\theta^{-1}\|^4 = 1.$$

Likewise, since  $\mathcal{D}_1$  norms  $\mathcal{M}_1$ , it norms  $\mathcal{A}_1$ , and so

$$\|\theta^{-1}\|_{cb} \le \|\theta^{-1}\| \|\theta\|^4 = 1.$$

2  $\theta$  is  $\sigma$ -weakly continuous.

#### Proof.

Mercer's Representation Theorem.

#### Proof.

Mercer's Representation Theorem.

## Step 2: Replace weak with norm

#### Define:

- $A_i^{\circ} = \overline{span}(GN(A_i, \mathcal{D}_i))$ , a unital operator algebra
- ullet  $\mathcal{M}_i^\circ = C^\star(\mathcal{A}_i^\circ)$ , a unital  $C^\star$ -algebra
- $\theta^{\circ} = \theta|_{\mathcal{A}_{1}^{\circ}} : \mathcal{A}_{1}^{\circ} \to \theta(\mathcal{A}_{1}^{\circ}) \subseteq \mathcal{A}_{2}$ , a completely isometric isomorphism

## Step 2: Replace weak with norm

#### Define:

- $\mathcal{A}_{i}^{\circ} = \overline{span}(GN(\mathcal{A}_{i}, \mathcal{D}_{i}))$ , a unital operator algebra
- ullet  $\mathcal{M}_i^\circ = \mathcal{C}^\star(\mathcal{A}_i^\circ)$ , a unital  $\mathcal{C}^\star$ -algebra
- $\theta^{\circ} = \theta|_{\mathcal{A}_{1}^{\circ}} : \mathcal{A}_{1}^{\circ} \to \theta(\mathcal{A}_{1}^{\circ}) \subseteq \mathcal{A}_{2}$ , a completely isometric isomorphism

### Note that:

- $\mathcal{D}_i \subseteq \mathcal{A}_i^{\circ} \subseteq \mathcal{M}_i^{\circ}$
- $\mathcal{D}_i \subseteq \mathcal{M}_i^{\circ}$  is a MASA
- $\overline{span}(GN(\mathcal{M}_i^{\circ}, \mathcal{D}_i)) = \mathcal{M}_i^{\circ}$
- $\bullet$   $(\mathcal{M}_i^{\circ}, \mathcal{D}_i)$  has the unique pseudo-expectation property
- The unique ucp map  $\mathbb{E}_i: \mathcal{M}_i^{\circ} \to \mathcal{D}_i$  such that  $\mathbb{E}_i \mid_{\mathcal{D}_i} = \mathsf{id}$  is faithful
- $C_{\text{env}}^{\star}(\mathcal{A}_{i}^{\circ}) = \mathcal{M}_{i}^{\circ}$
- $\overline{\mathcal{A}_{i}^{\circ}}^{\sigma} = \mathcal{A}_{i}$
- $\overline{\mathcal{M}_{i}^{\circ}}^{\sigma} = \mathcal{M}_{i}$
- $\theta^{\circ}(\mathcal{A}_{1}^{\circ}) = \mathcal{A}_{2}^{\circ}$

## Step 2: Replace weak with norm

#### Define:

- $A_i^{\circ} = \overline{span}(GN(A_i, \mathcal{D}_i))$ , a unital operator algebra
- ullet  $\mathcal{M}_i^\circ = C^\star(\mathcal{A}_i^\circ)$ , a unital  $C^\star$ -algebra
- $\theta^{\circ} = \theta|_{\mathcal{A}_{1}^{\circ}} : \mathcal{A}_{1}^{\circ} \to \theta(\mathcal{A}_{1}^{\circ}) \subseteq \mathcal{A}_{2}$ , a completely isometric isomorphism

### Note that:

- $\mathcal{D}_i \subseteq \mathcal{A}_i^{\circ} \subseteq \mathcal{M}_i^{\circ}$
- $\mathcal{D}_i \subseteq \mathcal{M}_i^{\circ}$  is a MASA
- $\overline{span}(GN(\mathcal{M}_{i}^{\circ}, \mathcal{D}_{i})) = \mathcal{M}_{i}^{\circ}$
- ullet  $(\mathcal{M}_i^\circ, \mathcal{D}_i)$  has the unique pseudo-expectation property
- The unique ucp map  $\mathbb{E}_i: \mathcal{M}_i^{\circ} \to \mathcal{D}_i$  such that  $\mathbb{E}_i \mid_{\mathcal{D}_i} = \mathsf{id}$  is faithful
- $C_{\text{env}}^{\star}(A_i^{\circ}) = M_i^{\circ}$
- $\bullet \ \overline{\mathcal{A}_i^{\circ}}^{\sigma} = \mathcal{A}_i$
- $\overline{\mathcal{M}_{i}^{\circ}}^{\sigma} = \mathcal{M}_{i}$
- $\theta^{\circ}(\mathcal{A}_{1}^{\circ}) = \mathcal{A}_{2}^{\circ}$

#### In fact:

•  $(\mathcal{M}_i^{\circ}, \mathcal{D}_i)$  is a  $C^{\star}$ -diagonal in the sense of Kumjian ('86)



# Step 3: Extend $\theta^{\circ}$ to $\pi^{\circ}$

There exists a unique \*-isomorphism  $\pi^\circ:\mathcal{M}_1^\circ\to\mathcal{M}_2^\circ$  which extends  $\theta^\circ:\mathcal{A}_1^\circ\to\mathcal{A}_2^\circ$ .

# Step 3: Extend $\theta^{\circ}$ to $\pi^{\circ}$

There exists a unique \*-isomorphism  $\pi^\circ: \mathcal{M}_1^\circ \to \mathcal{M}_2^\circ$  which extends  $\theta^\circ: \mathcal{A}_1^\circ \to \mathcal{A}_2^\circ$ .

#### Proof.

Since  $\theta^{\circ}: \mathcal{A}_{1}^{\circ} \to \mathcal{A}_{2}^{\circ}$  is a completely isometric isomorphism, there exists a unique  $\star$ -isomorphism  $\pi^{\circ}: C_{\text{env}}^{\star}(\mathcal{A}_{1}^{\circ}) \to C_{\text{env}}^{\star}(\mathcal{A}_{2}^{\circ})$  such that  $\pi^{\circ}|_{\mathcal{A}_{1}^{\circ}} = \theta^{\circ}$ . But  $C_{\text{env}}^{\star}(\mathcal{A}_{1}^{\circ}) = \mathcal{M}_{1}^{\circ}$ .



# Step 4: Define an implementing unitary for $\pi^{\circ}$

There exists a cyclic and separating vector  $\xi_1$  for  $\mathcal{M}_1 \subseteq B(\mathcal{H}_1)$  and a cyclic vector  $\xi_2$  for  $\mathcal{M}_2 \subseteq B(\mathcal{H}_2)$  such that

$$\mathcal{M}_1^{\circ} \xi_1 \to \mathcal{M}_2^{\circ} \xi_2 : x \xi_1 \mapsto \pi^{\circ}(x) \xi_2$$

is isometric. Thus there exists a unitary  $U:\mathcal{H}_1 \to \mathcal{H}_2$  such that

$$\pi^{\circ}(x) = UxU^{\star}, \ x \in \mathcal{M}_{1}^{\circ}.$$

# Step 4: Define an implementing unitary for $\pi^{\circ}$

There exists a cyclic and separating vector  $\xi_1$  for  $\mathcal{M}_1 \subseteq B(\mathcal{H}_1)$  and a cyclic vector  $\xi_2$  for  $\mathcal{M}_2 \subseteq B(\mathcal{H}_2)$  such that

$$\mathcal{M}_1^{\circ} \xi_1 \to \mathcal{M}_2^{\circ} \xi_2 : x \xi_1 \mapsto \pi^{\circ}(x) \xi_2$$

is isometric. Thus there exists a unitary  $U:\mathcal{H}_1 o \mathcal{H}_2$  such that

$$\pi^{\circ}(x) = UxU^{\star}, \ x \in \mathcal{M}_{1}^{\circ}.$$

#### Proof.

Straightforward but a little tedious.



## Step 5: Conclusion

Define

$$\pi(x) = UxU^*, x \in \mathcal{M}_1.$$

Then  $\pi:\mathcal{M}_1\to\mathcal{M}_2$  is a  $\sigma$ -weakly continuous  $\star$ -isomorphism such that  $\pi|_{\mathcal{M}_1^\circ}=\pi^\circ$ . Since

$$\pi|_{\mathcal{A}_1^{\circ}}=\pi^{\circ}|_{\mathcal{A}_1^{\circ}}=\theta^{\circ}=\theta|_{\mathcal{A}_1^{\circ}}$$

and  $\theta$  is  $\sigma\text{-weakly continuous,}$ 

$$\pi|_{\mathcal{A}_1} = \theta.$$

### **Future Directions**

- Rely less on Feldman-Moore. In particular, eliminate the use of Mercer's Representation Theorem.
- ② Prove Mercer's Extension Theorem in the norm context. ✓ (Pitts)
- Study (characterize?) the unique pseudo-expectation property.

### **Thanks**

Thanks for your attention!

Questions?