

Aperiodicity Conditions in Topological k -Graphs

Sarah E. Wright

The College of the Holy Cross

2011 Fall Central Sectional Meeting of the AMS

University of Nebraska, Lincoln

Special Session ~ Recent Progress in Operator Algebras

October 15, 2011

What's Going On Here?

1 Graph Algebras

2 Topological k -Graphs

3 Aperiodicity Conditions

4 Proof of Equivalence

5 Example(s)

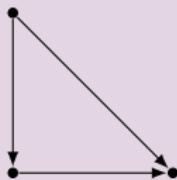
What's a Graph Algebra?

What's a Graph Algebra?

Begin with a
directed graph

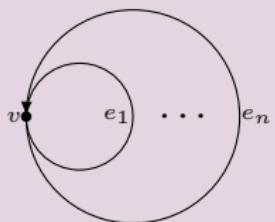
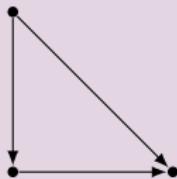
What's a Graph Algebra?

Begin with a
directed graph



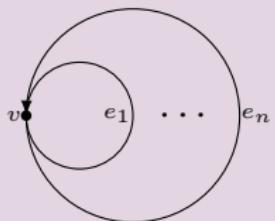
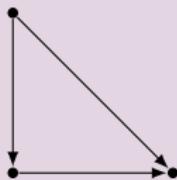
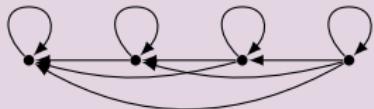
What's a Graph Algebra?

Begin with a
directed graph



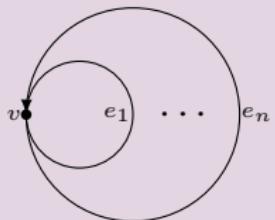
What's a Graph Algebra?

Begin with a
directed graph

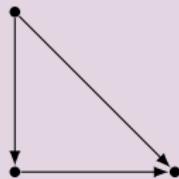
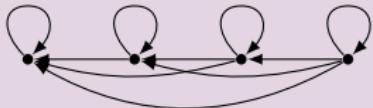


What's a Graph Algebra?

Begin with a directed graph

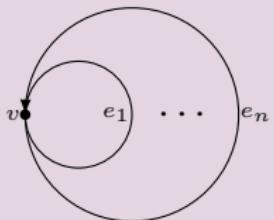
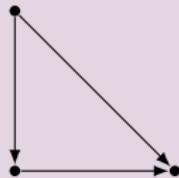
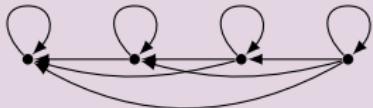


Define projections
 $\{P_v \mid v \in E^0\}$



What's a Graph Algebra?

Begin with a directed graph



Define projections

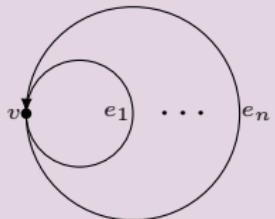
$$\{P_v \mid v \in E^0\}$$

and partial isometries

$$\{S_e \mid e \in E^1\}$$

What's a Graph Algebra?

Begin with a directed graph

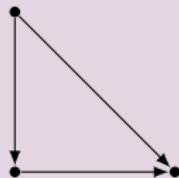


Define projections

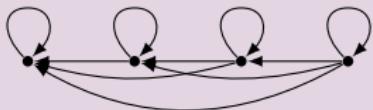
$$\{P_v \mid v \in E^0\}$$

and partial isometries

$$\{S_e \mid e \in E^1\}$$

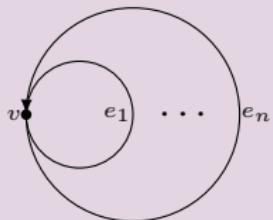


Use Cuntz-Krieger Realations



What's a Graph Algebra?

Begin with a directed graph

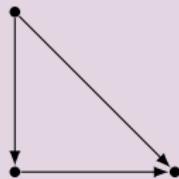


Define projections

$$\{P_v \mid v \in E^0\}$$

and partial isometries

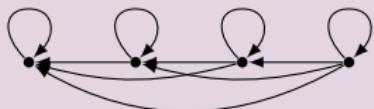
$$\{S_e \mid e \in E^1\}$$



Use Cuntz-Krieger Relations

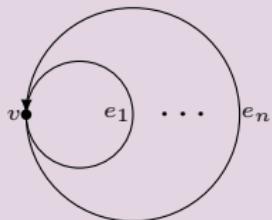
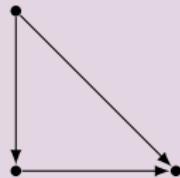
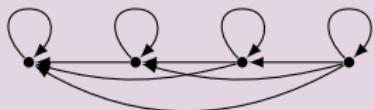
$$S_e^* S_e = P_{s(e)} \text{ and}$$

$$P_v = \sum_{r(e)=v} S_e S_e^*$$



What's a Graph Algebra?

Begin with a directed graph



Define projections
 $\{P_v \mid v \in E^0\}$

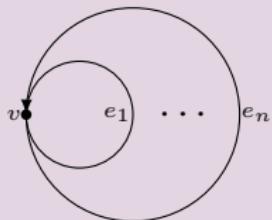
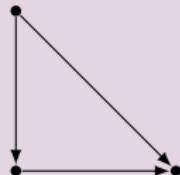
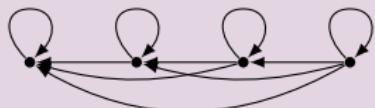
and partial isometries
 $\{S_e \mid e \in E^1\}$

Use Cuntz-Krieger Relations

$$S_e^* S_e = P_{s(e)} \text{ and} \\ P_v = \sum_{r(e)=v} S_e S_e^*$$

What's a Graph Algebra?

Begin with a directed graph



Define projections
 $\{P_v \mid v \in E^0\}$

and partial isometries
 $\{S_e \mid e \in E^1\}$

Use Cuntz-Krieger Relations

$$S_e^* S_e = P_{s(e)} \text{ and} \\ P_v = \sum_{r(e)=v} S_e S_e^*$$

Build a C^* -algebra

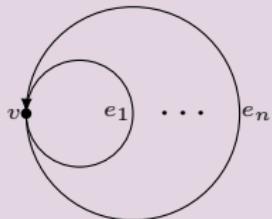
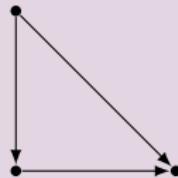
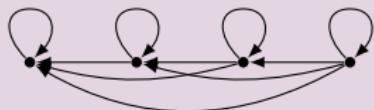
$$C^*(\mathcal{E}_n) = \mathcal{O}_n$$

$$C^*(E) = M_4(\mathbb{C})$$

$$C^*(F) = C(S_q^7)$$

What's a Graph Algebra?

Begin with a directed graph



Define projections
 $\{P_v \mid v \in E^0\}$

and partial isometries
 $\{S_e \mid e \in E^1\}$

Use Cuntz-Krieger Relations

$$S_e^* S_e = P_{s(e)} \text{ and} \\ P_v = \sum_{r(e)=v} S_e S_e^*$$

Build a C^* -algebra

$$C^*(\mathcal{E}_n) = \mathcal{O}_n$$

$$C^*(E) = M_4(\mathbb{C})$$

$$C^*(F) = C(S_q^7)$$

What do the combinatorics of the graph tell us about the C^* -algebra?

Why do I Care About Graph Algebras?

Why do I Care About Graph Algebras?

Graph algebras provide a rich class of accessible examples. They include:

Why do I Care About Graph Algebras?

Graph algebras provide a rich class of accessible examples. They include:

- The Toeplitz and Cuntz-Krieger algebras

Why do I Care About Graph Algebras?

Graph algebras provide a rich class of accessible examples. They include:

- The Toeplitz and Cuntz-Krieger algebras
- The compact operators and $C(\mathbb{T})$

Why do I Care About Graph Algebras?

Graph algebras provide a rich class of accessible examples. They include:

- The Toeplitz and Cuntz-Krieger algebras
- The compact operators and $C(\mathbb{T})$
- All AF-algebras (up to ME)

Why do I Care About Graph Algebras?

Graph algebras provide a rich class of accessible examples. They include:

- The Toeplitz and Cuntz-Krieger algebras
- The compact operators and $C(\mathbb{T})$
- All AF-algebras (up to ME)
- All SPIN algebras with free K_1 -group (up to ME)

Why do I Care About Graph Algebras?

Graph algebras provide a rich class of accessible examples. They include:

- The Toeplitz and Cuntz-Krieger algebras
- The compact operators and $C(\mathbb{T})$
- All AF-algebras (up to ME)
- All SPIN algebras with free K_1 -group (up to ME)
-

Why do I Care About Graph Algebras?

Graph algebras provide a rich class of accessible examples. They include:

- The Toeplitz and Cuntz-Krieger algebras
- The compact operators and $C(\mathbb{T})$
- All AF-algebras (up to ME)
- All SPIN algebras with free K_1 -group (up to ME)

•

•

Why do I Care About Graph Algebras?

Graph algebras provide a rich class of accessible examples. They include:

- The Toeplitz and Cuntz-Krieger algebras
- The compact operators and $C(\mathbb{T})$
- All AF-algebras (up to ME)
- All SPIN algebras with free K_1 -group (up to ME)

•
•
•

So... Aperiodicity is Important?

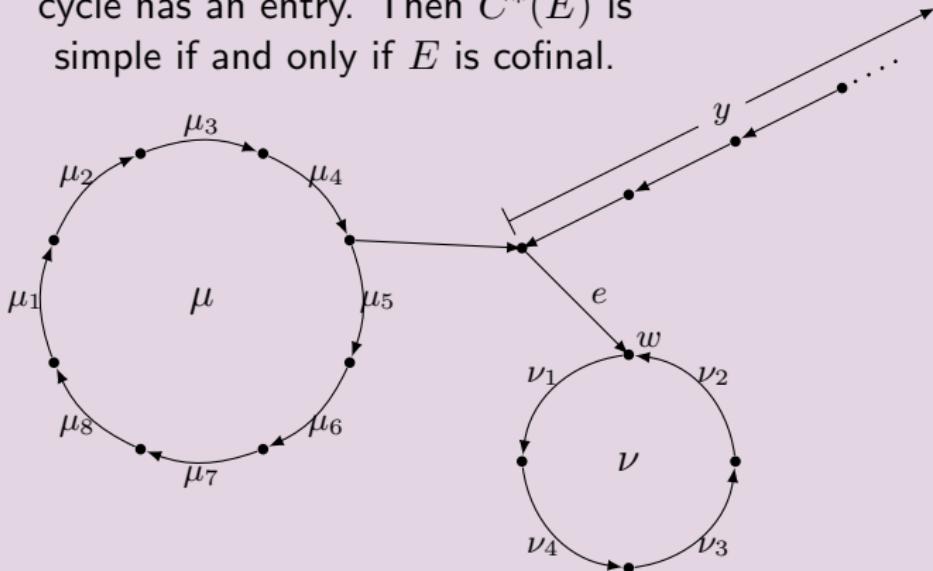
Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.

So... Aperiodicity is Important?

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.

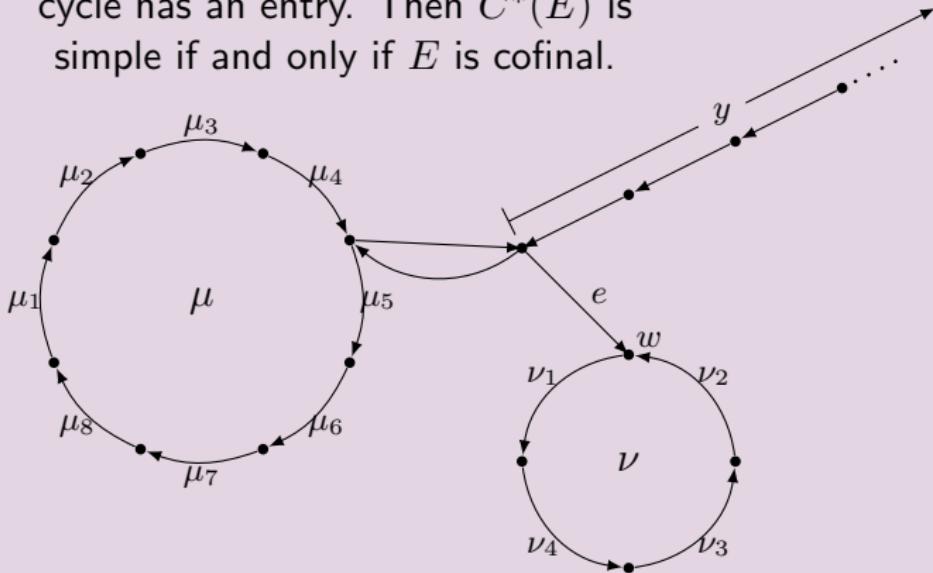
So... Aperiodicity is Important?

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.



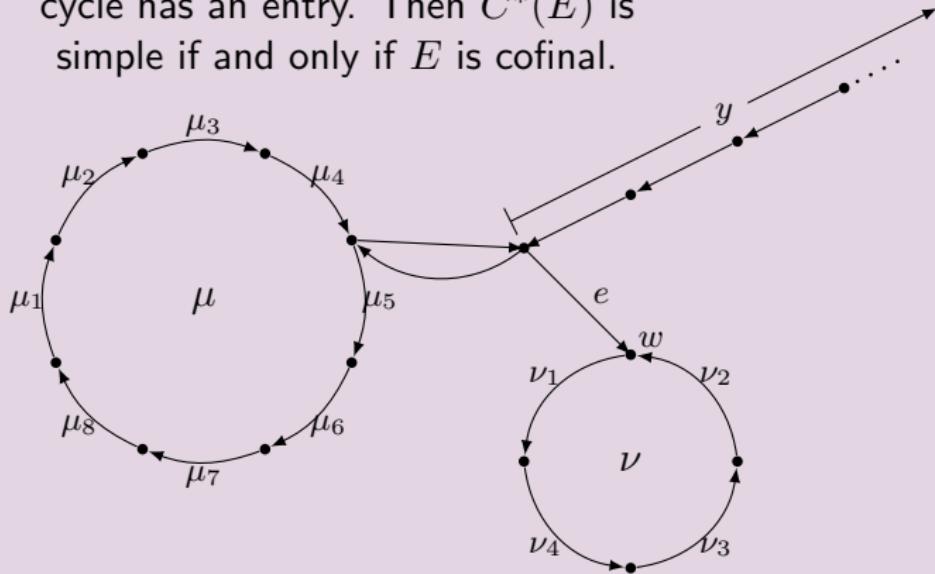
So... Aperiodicity is Important?

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.



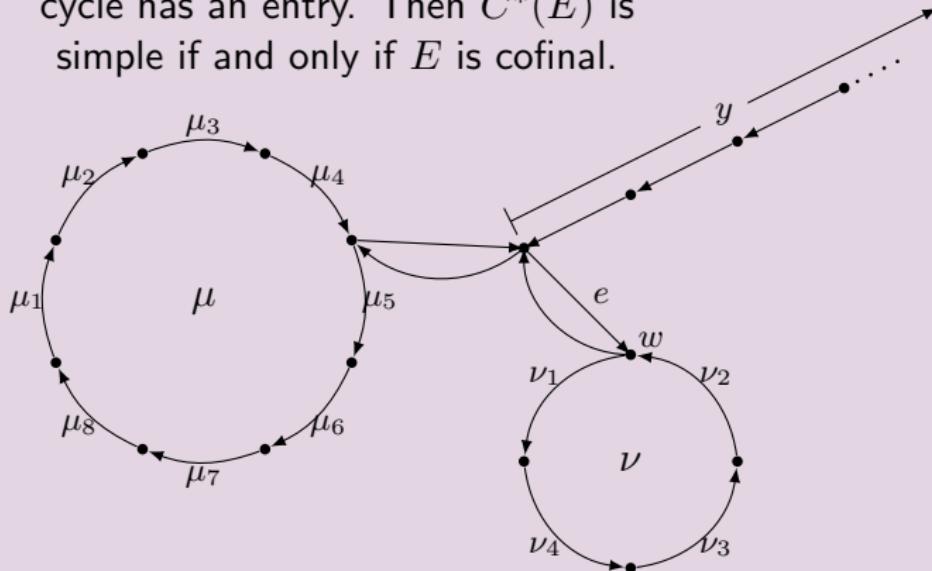
So... Aperiodicity is Important?

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.



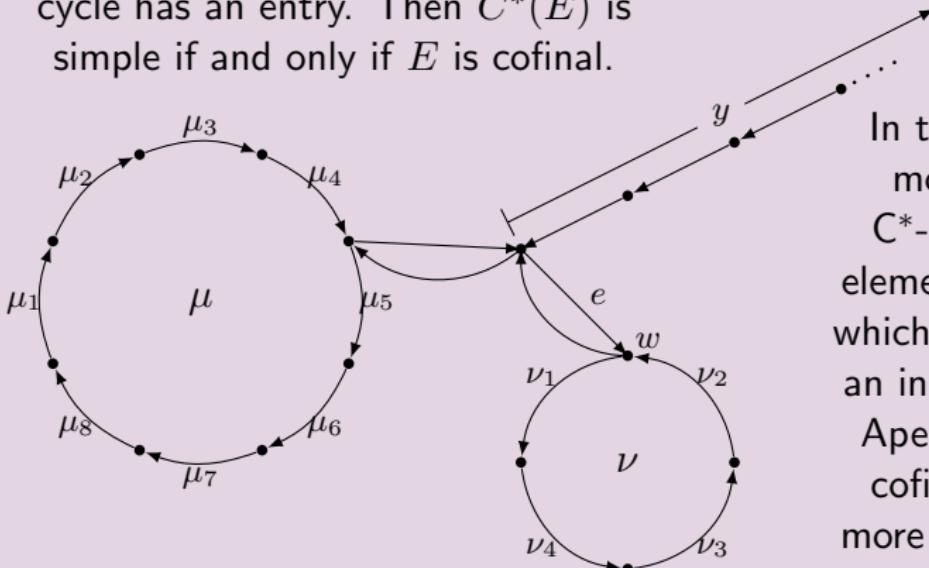
So... Aperiodicity is Important?

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.



So... Aperiodicity is Important?

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.



In the groupoid model of the C^* -algebra, the elements are paths which differ only by an initial segment. Aperiodicity and cofinality cause more infinite paths to be “related”.

Topological k -Graphs

For $k \in \mathbb{N}$, a **topological k -graph** is a pair (Λ, d) consisting of a category $\Lambda = (\text{Obj}(\Lambda), \text{Mor}(\Lambda), r, s)$ and a functor $d : \Lambda \rightarrow \mathbb{N}^k$, called the **degree map**, which satisfy:

- 1 $\text{Obj}(\Lambda)$ and $\text{Mor}(\Lambda)$ are second countable, locally compact Hausdorff spaces;
- 2 $r, s : \text{Mor}(\Lambda) \rightarrow \text{Obj}(\Lambda)$ are continuous and s is a local homeomorphism;
- 3 Composition $\circ : \Lambda \times_c \Lambda \rightarrow \Lambda$ is continuous and open, where $\Lambda \times_c \Lambda$ has the relative topology inherited from the product topology on $\Lambda \times \Lambda$;
- 4 d is continuous, where \mathbb{N}^k is given the discrete topology;
- 5 The unique factorization property: For all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$, there exists unique $(\mu, \nu) \in \Lambda \times_c \Lambda$ such that $\lambda = \mu\nu$, $d(\mu) = m$ and $d(\nu) = n$.

Topological k -Graphs

For $k \in \mathbb{N}$, a **topological k -graph** is a pair (Λ, d) consisting of a **category** $\Lambda = (\text{Obj}(\Lambda), \text{Mor}(\Lambda), r, s)$ and a **functor** $d : \Lambda \rightarrow \mathbb{N}^k$, called the **degree map**, which satisfy:

- 1 $\text{Obj}(\Lambda)$ and $\text{Mor}(\Lambda)$ are second countable, locally compact Hausdorff spaces;
- 2 $r, s : \text{Mor}(\Lambda) \rightarrow \text{Obj}(\Lambda)$ are continuous and s is a local homeomorphism;
- 3 Composition $\circ : \Lambda \times_c \Lambda \rightarrow \Lambda$ is continuous and open, where $\Lambda \times_c \Lambda$ has the relative topology inherited from the product topology on $\Lambda \times \Lambda$;
- 4 d is continuous, where \mathbb{N}^k is given the discrete topology;
- 5 The **unique factorization property** : For all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$, there exists unique $(\mu, \nu) \in \Lambda \times_c \Lambda$ such that $\lambda = \mu\nu$, $d(\mu) = m$ and $d(\nu) = n$.

Topological k -Graphs

For $k \in \mathbb{N}$, a **topological k -graph** is a pair (Λ, d) consisting of a category $\Lambda = (\text{Obj}(\Lambda), \text{Mor}(\Lambda), r, s)$ and a functor $d : \Lambda \rightarrow \mathbb{N}^k$, called the **degree map**, which satisfy:

- 1 $\text{Obj}(\Lambda)$ and $\text{Mor}(\Lambda)$ are **second countable, locally compact Hausdorff spaces**;
- 2 $r, s : \text{Mor}(\Lambda) \rightarrow \text{Obj}(\Lambda)$ are **continuous** and s is a **local homeomorphism**;
- 3 Composition $\circ : \Lambda \times_c \Lambda \rightarrow \Lambda$ is **continuous and open**, where $\Lambda \times_c \Lambda$ has the relative topology inherited from the product topology on $\Lambda \times \Lambda$;
- 4 d is **continuous**, where \mathbb{N}^k is given the discrete topology;
- 5 The **unique factorization property**: For all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$, there exists unique $(\mu, \nu) \in \Lambda \times_c \Lambda$ such that $\lambda = \mu\nu$, $d(\mu) = m$ and $d(\nu) = n$.

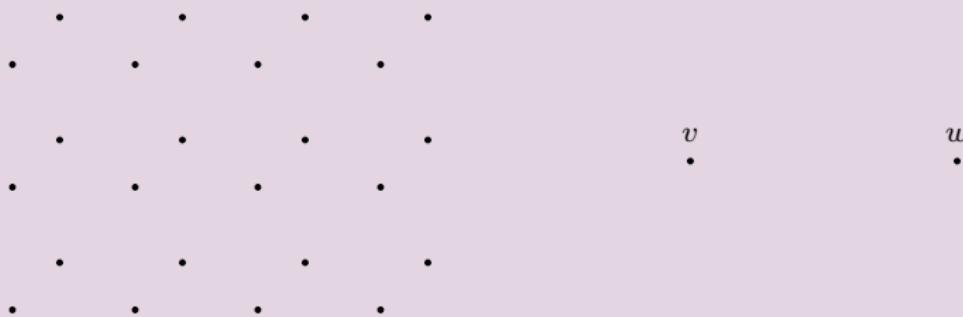
Visualizing Higher Rank Graphs

Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons

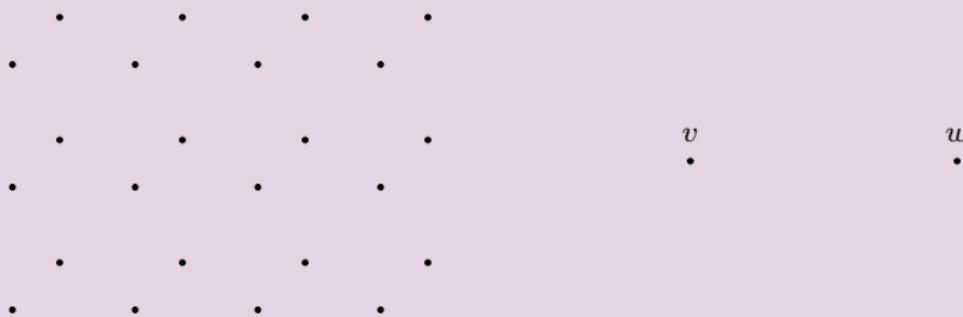
Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist of the vertices



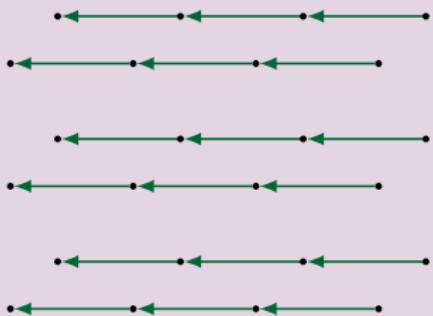
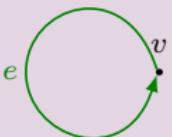
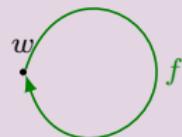
Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist of the vertices and edges of shape e_i



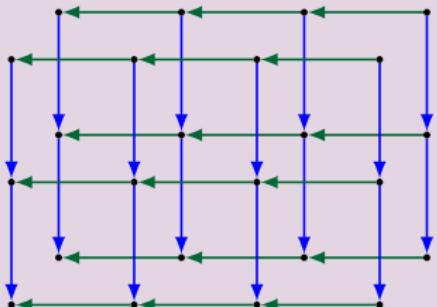
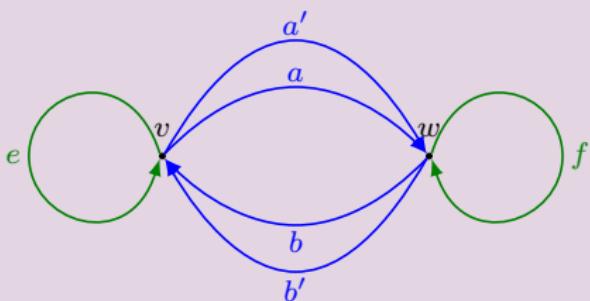
Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist of the vertices and edges of shape e_i



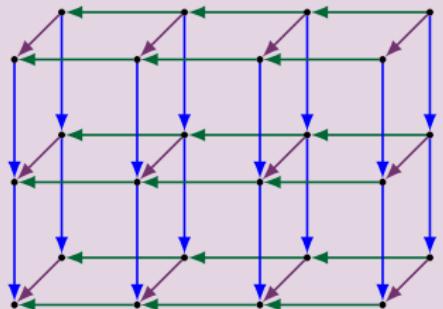
Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist of the vertices and edges of shape e_i



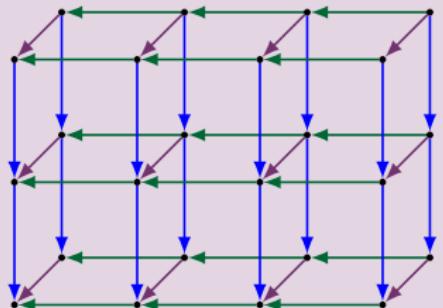
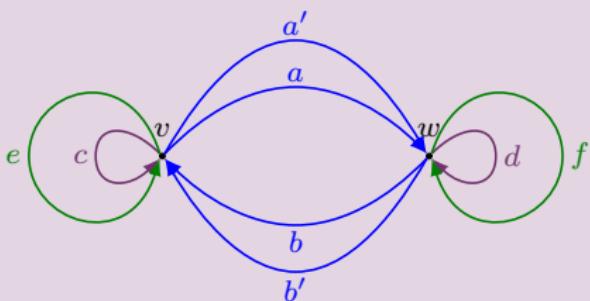
Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist of the vertices and edges of shape e_i



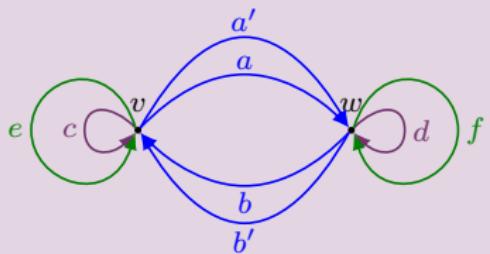
Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist of the vertices and edges of shape e_i , and giving the appropriate factorization rules if necessary.



$$da = a'c, fa = a'e, bd = cb', bf = eb'$$

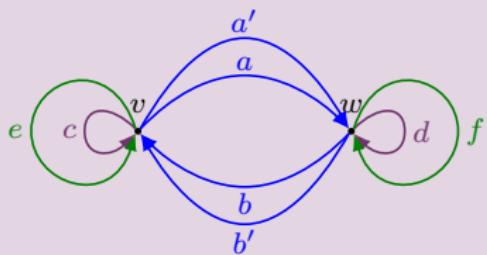
Infinite Paths



$$\begin{aligned} da &= a'c, \quad fa = a'e, \\ bd &= cb', \quad bf = eb' \end{aligned}$$

Infinite Paths

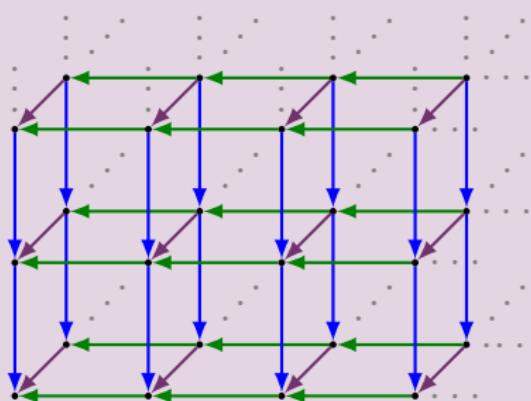
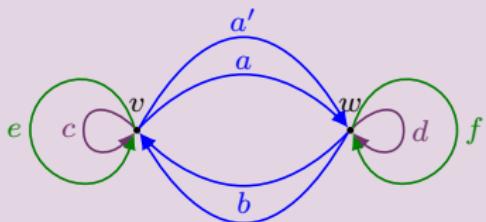
An infinite path in a k -graph is an infinite k -dimensional commutative diagram



$$\begin{aligned} da &= a'c, \quad fa = a'e, \\ bd &= cb', \quad bf = eb' \end{aligned}$$

Infinite Paths

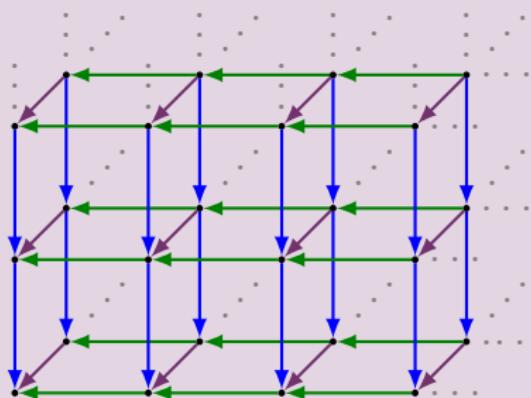
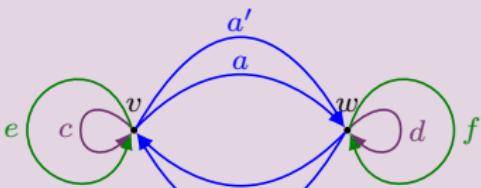
An infinite path in a k -graph is an infinite k -dimensional commutative diagram



$$\begin{aligned} da &= a'c, & fa &= a'e, \\ bd &= cb', & bf &= eb' \end{aligned}$$

Infinite Paths

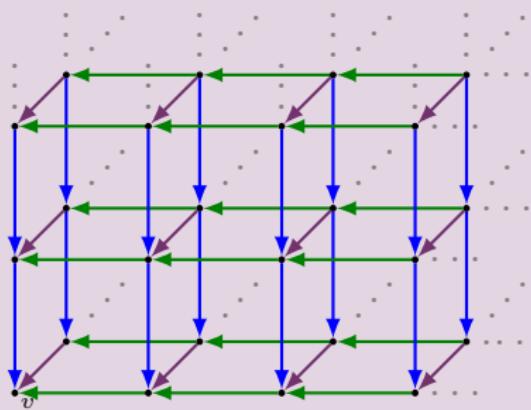
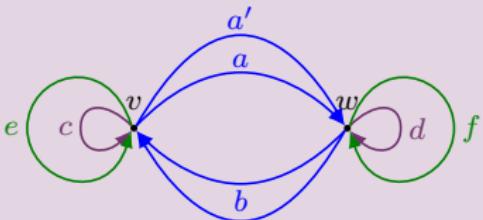
An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$da = a'c, fa = a'e, \\ bd = cb', bf = eb'$$

Infinite Paths

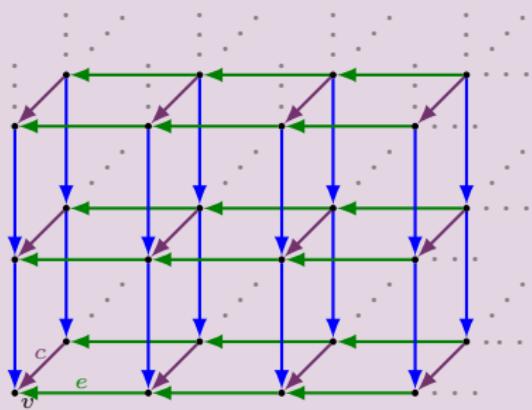
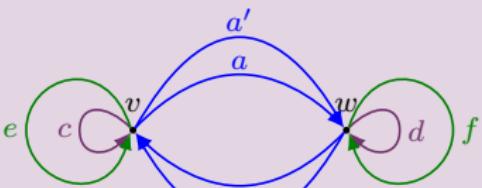
An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$da = a'c, fa = a'e, \\ bd = cb', bf = eb'$$

Infinite Paths

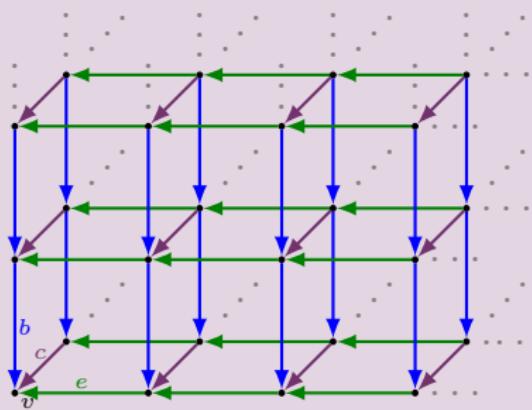
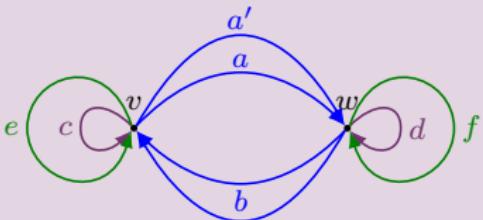
An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$da = a'c, fa = a'e, \\ bd = cb', bf = eb'$$

Infinite Paths

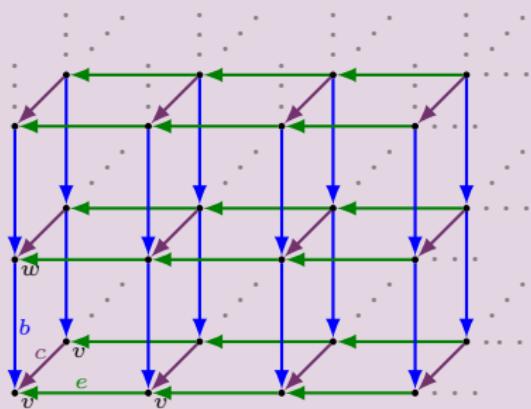
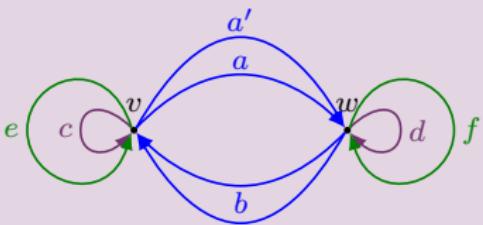
An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$\begin{aligned} da &= a'c, & fa &= a'e, \\ bd &= cb', & bf &= eb' \end{aligned}$$

Infinite Paths

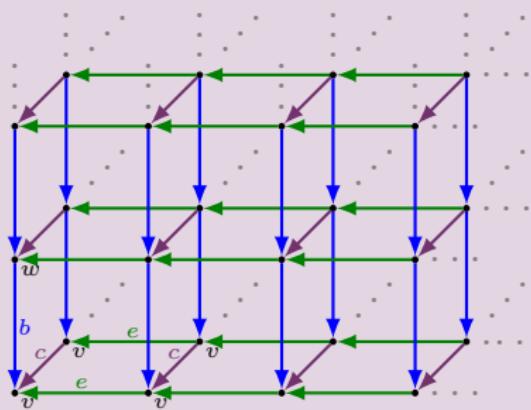
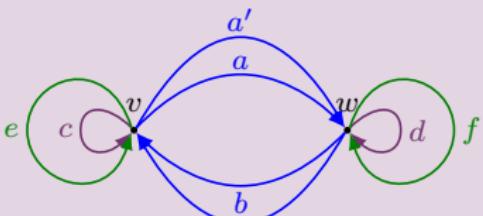
An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$da = a'c, fa = a'e, \\ bd = cb', bf = eb'$$

Infinite Paths

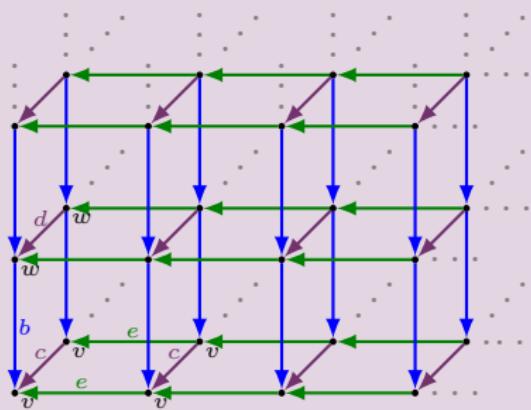
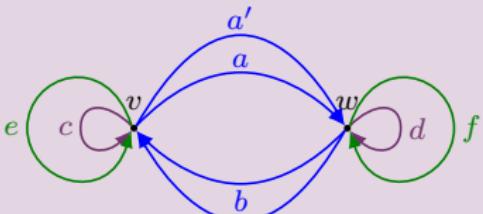
An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$\begin{aligned} da &= a'c, \quad fa = a'e, \\ bd &= cb', \quad bf = eb' \end{aligned}$$

Infinite Paths

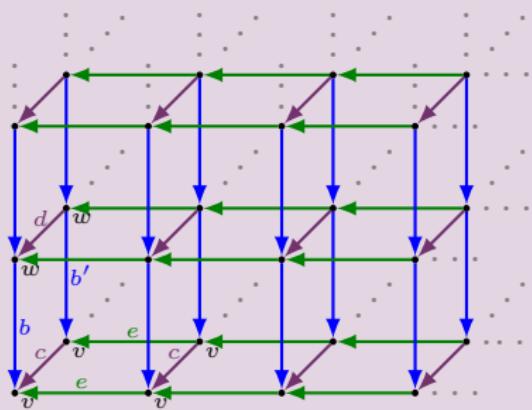
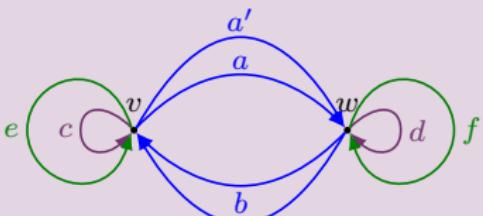
An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$\begin{aligned} da &= a'c, & fa &= a'e, \\ bd &= cb', & bf &= eb' \end{aligned}$$

Infinite Paths

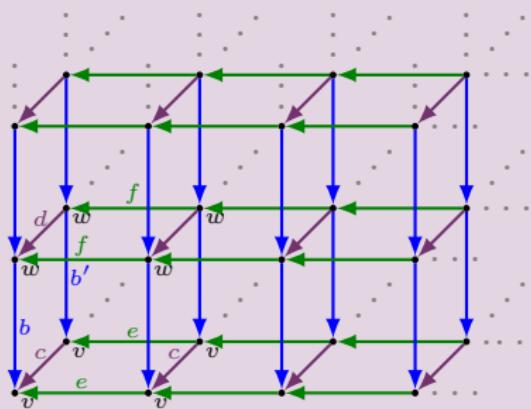
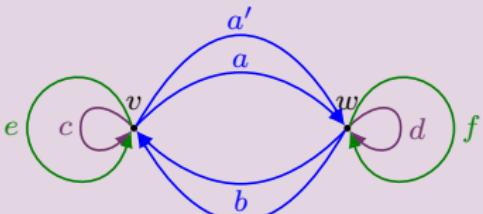
An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$da = a'c, fa = a'e, \\ bd = cb', bf = eb'$$

Infinite Paths

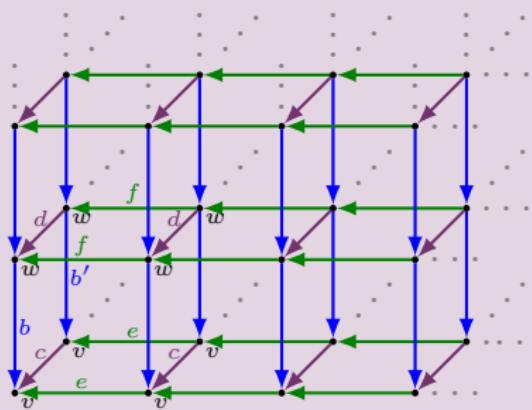
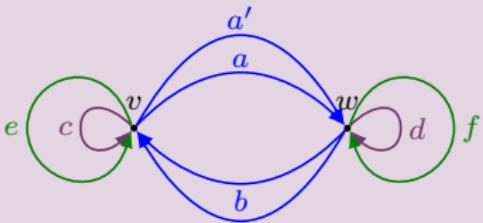
An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$da = a'c, fa = a'e, \\ bd = cb', bf = eb'$$

Infinite Paths

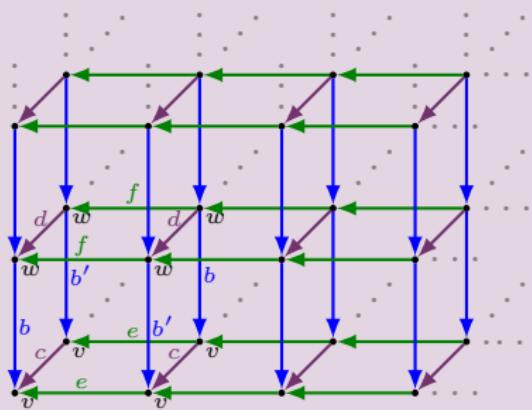
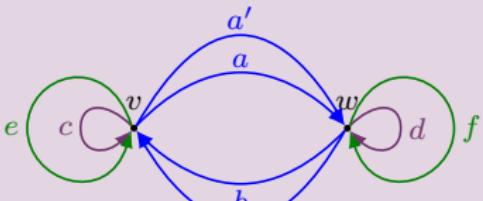
An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$da = a'c, fa = a'e, \\ bd = cb', bf = eb'$$

Infinite Paths

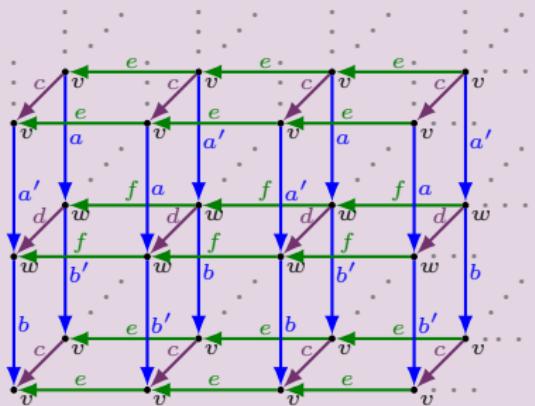
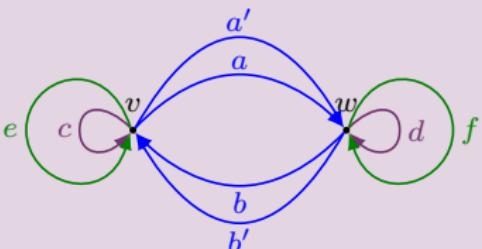
An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$da = a'c, fa = a'e, \\ bd = cb', bf = eb'$$

Infinite Paths

An infinite path in a k -graph is an infinite k -dimensional commutative diagram which is labeled with edges from the 1-skeleton in a way which respects the unique factorization property, and the range and source maps.



$$da = a'c, \ fa = a'e, \\ bd = cb', \ bf = eb'$$

The Shift Map

We can shift an infinite path of a k graph, x , using the shift map σ .

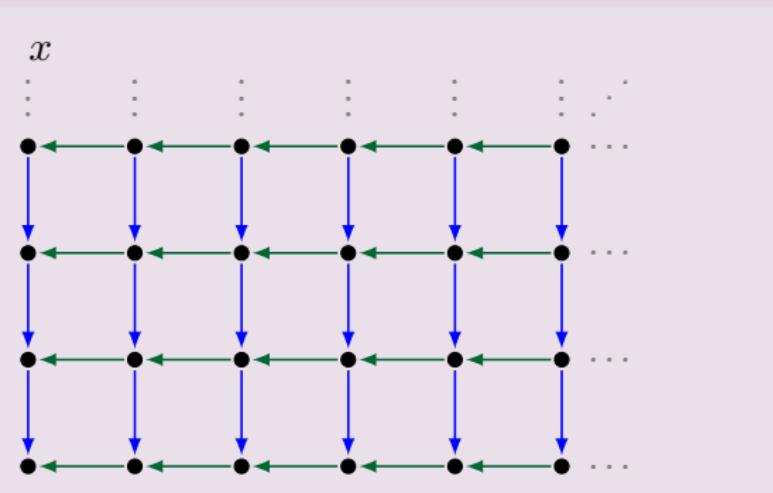
The Shift Map

We can shift an infinite path of a k graph, x , using the shift map σ . $\sigma^n(x)$ is the infinite path obtained by removing the initial segment of degree n from x .

The Shift Map

We can shift an infinite path of a k graph, x , using the shift map σ . $\sigma^n(x)$ is the infinite path obtained by removing the initial segment of degree n from x .

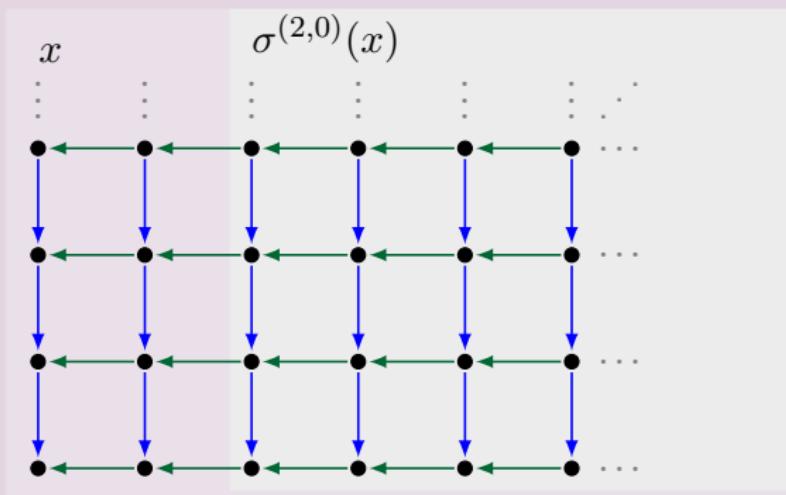
For x below,



The Shift Map

We can shift an infinite path of a k graph, x , using the shift map σ . $\sigma^n(x)$ is the infinite path obtained by removing the initial segment of degree n from x .

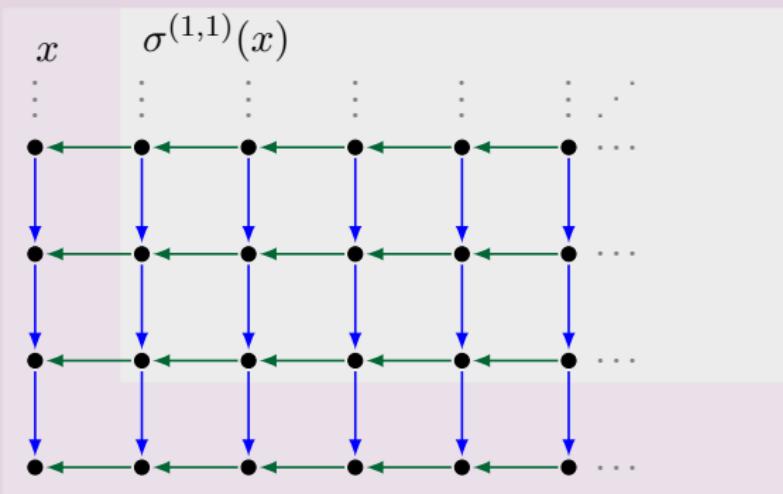
For x below, this is $\sigma^{(2,0)}(x)$.



The Shift Map

We can shift an infinite path of a k graph, x , using the shift map σ . $\sigma^n(x)$ is the infinite path obtained by removing the initial segment of degree n from x .

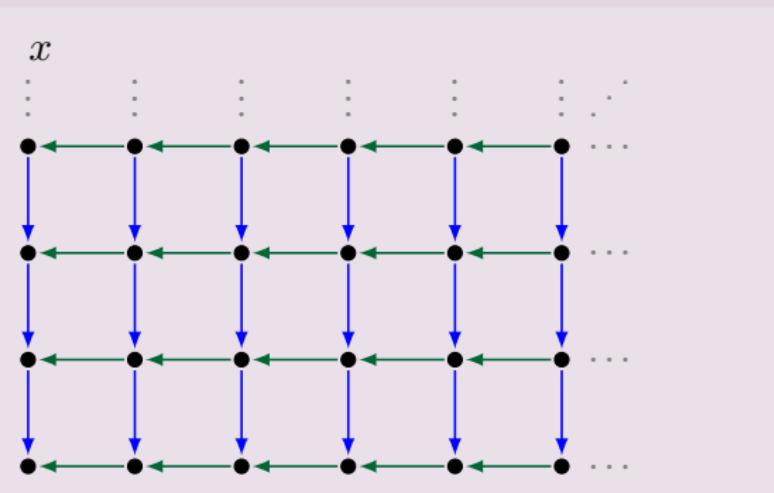
For x below, this is $\sigma^{(1,1)}(x)$.



The Shift Map

We can shift an infinite path of a k graph, x , using the shift map σ . $\sigma^n(x)$ is the infinite path obtained by removing the initial segment of degree n from x .

For x below,



We say that a path x is **aperiodic** if $\sigma^m x = \sigma^n x$ only when $m = n$.

Yeend's Condition (A)

Definition

We say a topological k -graph (Λ, d) is **aperiodic**, or satisfies Condition (A), if for every open set $V \subseteq \Lambda^0$ there exists an infinite aperiodic path $x \in V\Lambda$.

Proposition (Yeend, 2007)

Suppose Λ is a compactly aligned topological k -graph that satisfies Condition (A). Then, \mathcal{G}_Λ is topologically principal.

Theorem

Let (Λ, d) be a compactly aligned topological k -graph and V be any nonempty open subset of Λ^0 . The following conditions are equivalent.

Theorem

Let (Λ, d) be a compactly aligned topological k -graph and V be any nonempty open subset of Λ^0 . The following conditions are equivalent.

(A) There exists an aperiodic path $x \in V\partial\Lambda$.

Theorem

Let (Λ, d) be a compactly aligned topological k -graph and V be any nonempty open subset of Λ^0 . The following conditions are equivalent.

- (A) There exists an aperiodic path $x \in V\partial\Lambda$.
- (B) For any pair $m \neq n \in \mathbb{N}^k$ there exists a path $\lambda_{V,m,n} \in V\Lambda$ such that $d(\lambda) \geq m \vee n$ and

$$\lambda(m, m + d(\lambda) - (m \vee n)) \neq \lambda(n, n + d(\lambda) - (m \vee n)). \quad (\star)$$

Theorem

Let (Λ, d) be a compactly aligned topological k -graph and V be any nonempty open subset of Λ^0 . The following conditions are equivalent.

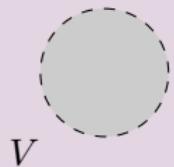
- (A) There exists an aperiodic path $x \in V\partial\Lambda$.
- (B) For any pair $m \neq n \in \mathbb{N}^k$ there exists a path $\lambda_{V,m,n} \in V\Lambda$ such that $d(\lambda) \geq m \vee n$ and

$$\lambda(m, m + d(\lambda) - (m \vee n)) \neq \lambda(n, n + d(\lambda) - (m \vee n)). \quad (\star)$$

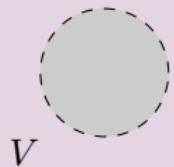
- (C) There is a vertex $v \in V$ and paths $\alpha, \beta \in \Lambda$ with $s(\alpha) = s(\beta) = v$ such that there exists a path $\tau \in s(\alpha)\Lambda$ with $\text{MCE}(\alpha\tau, \beta\tau) = \emptyset$.

Visualizing the Conditions

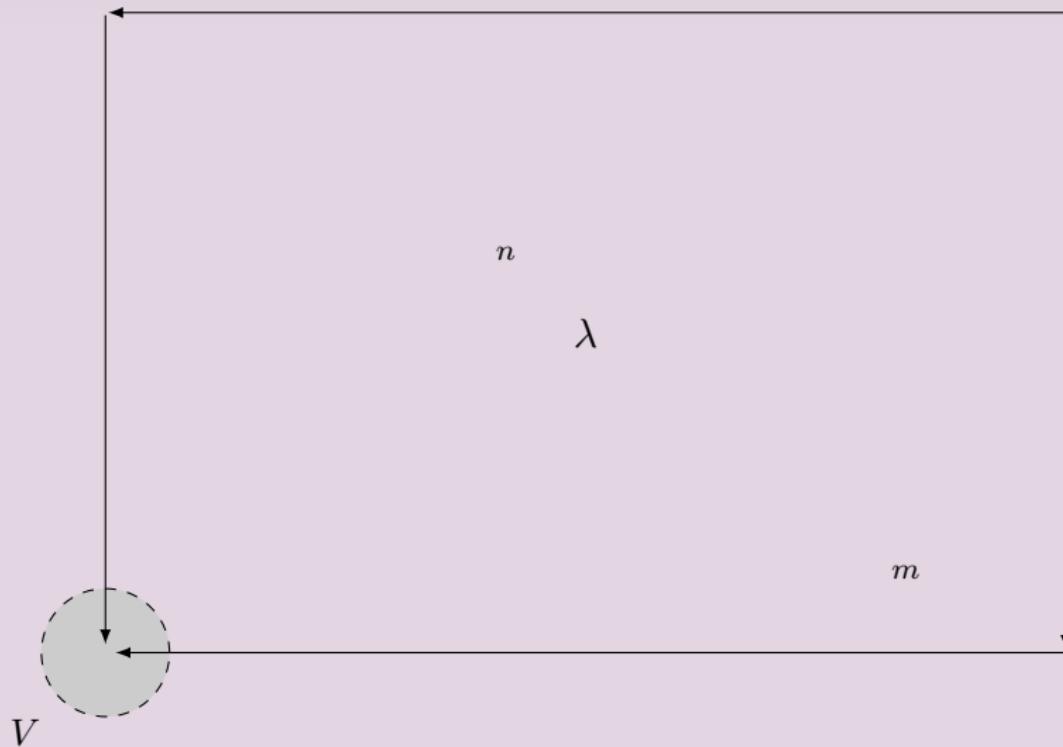
Visualizing the Conditions



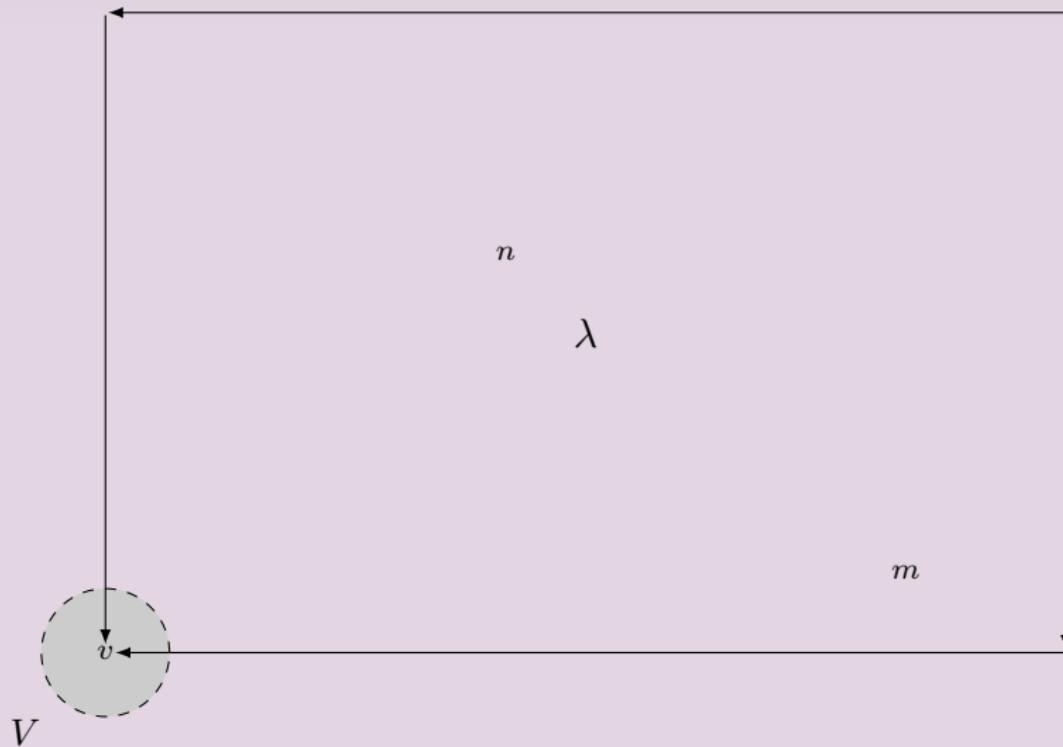
Visualizing the Conditions

 n  m

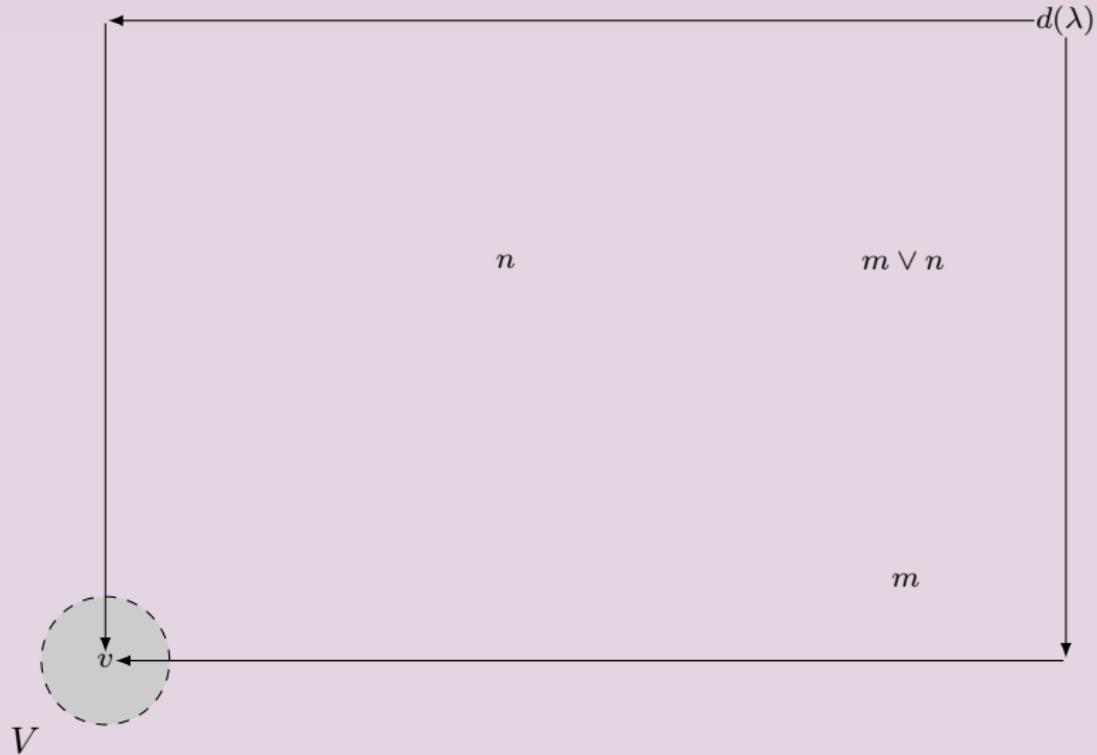
Visualizing the Conditions



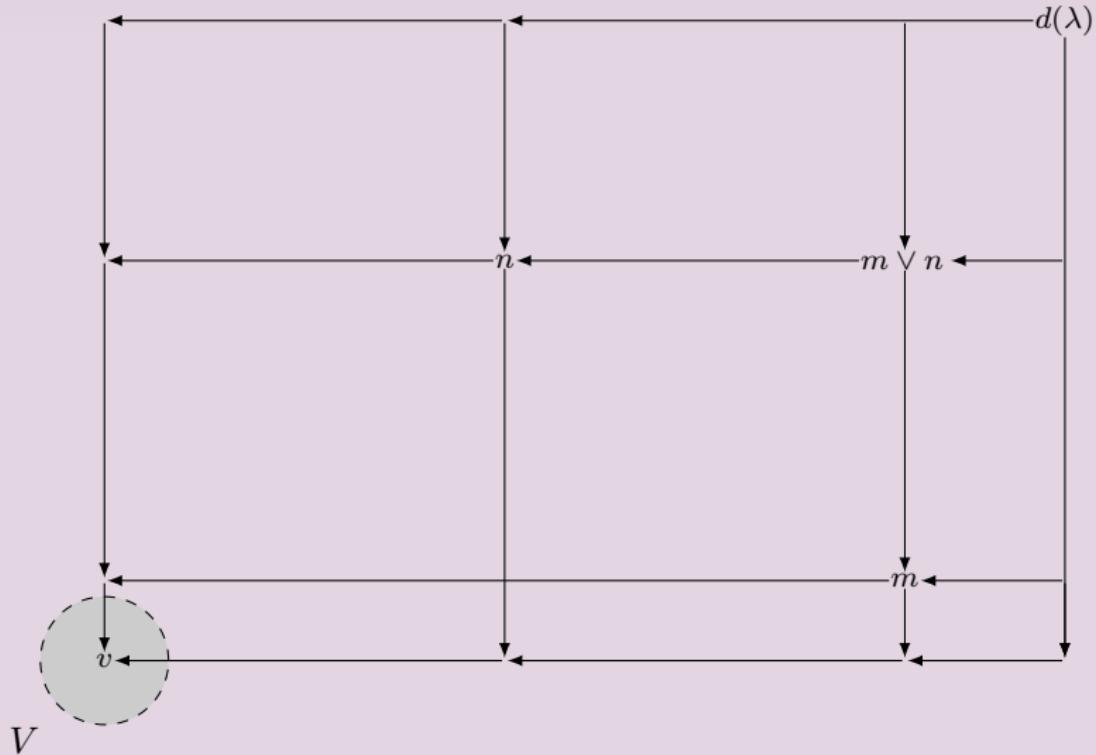
Visualizing the Conditions



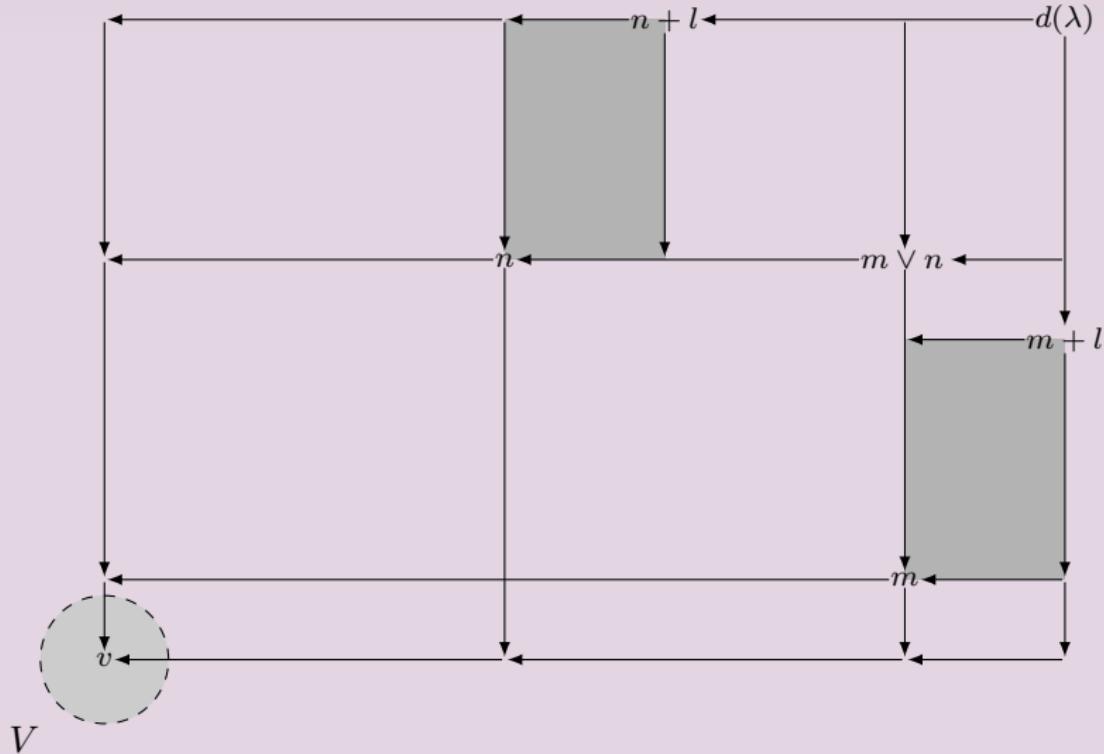
Visualizing the Conditions



Visualizing the Conditions



Visualizing the Conditions



The Ever Important Lemma

Tube Lemma

Let $V \subset \Lambda^0$ be open, $m \neq n \in \mathbb{N}^k$, and $\lambda \in V\Lambda$ satisfy (\star) . Then there exists a compact neighborhood $E \subset V\Lambda^{d(\lambda)}$ of λ such that every $\mu \in E$ satisfies (\star) .

The Ever Important Lemma

Tube Lemma

Let $V \subset \Lambda^0$ be open, $m \neq n \in \mathbb{N}^k$, and $\lambda \in V\Lambda$ satisfy (\star) . Then there exists a compact neighborhood $E \subset V\Lambda^{d(\lambda)}$ of λ such that every $\mu \in E$ satisfies (\star) .

“Proof”:

The Ever Important Lemma

Tube Lemma

Let $V \subset \Lambda^0$ be open, $m \neq n \in \mathbb{N}^k$, and $\lambda \in V\Lambda$ satisfy (\star) . Then there exists a compact neighborhood $E \subset V\Lambda^{d(\lambda)}$ of λ such that every $\mu \in E$ satisfies (\star) .

“Proof”:

$$\lambda = \lambda(0, m)\lambda(m, m + d(\lambda) - (m \vee n))\lambda(m + d(\lambda) - (m \vee n), d(\lambda))$$

and

$$\lambda = \lambda(0, n)\lambda(n, n + d(\lambda) - (m \vee n))\lambda(n + d(\lambda) - (m \vee n), d(\lambda))$$

The Ever Important Lemma

Tube Lemma

Let $V \subset \Lambda^0$ be open, $m \neq n \in \mathbb{N}^k$, and $\lambda \in V\Lambda$ satisfy (\star) . Then there exists a compact neighborhood $E \subset V\Lambda^{d(\lambda)}$ of λ such that every $\mu \in E$ satisfies (\star) .

“Proof”:

$$\lambda = \boxed{\lambda(0, m) \mid \lambda(m, m + d(\lambda) - (m \vee n)) \mid \lambda(m + d(\lambda) - (m \vee n), d(\lambda))}$$

and

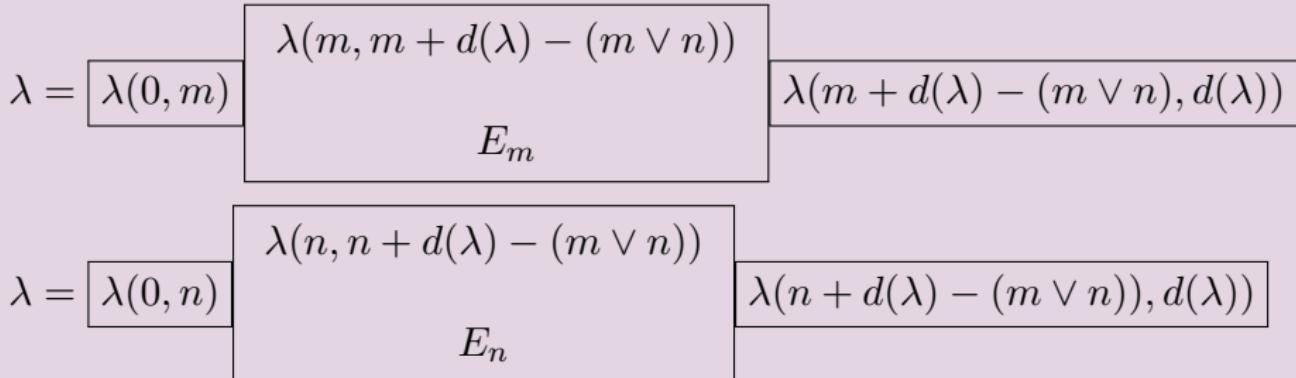
$$\lambda = \boxed{\lambda(0, n) \mid \lambda(n, n + d(\lambda) - (m \vee n)) \mid \lambda(n + d(\lambda) - (m \vee n)), d(\lambda))}$$

The Ever Important Lemma

Tube Lemma

Let $V \subset \Lambda^0$ be open, $m \neq n \in \mathbb{N}^k$, and $\lambda \in V\Lambda$ satisfy (\star) . Then there exists a compact neighborhood $E \subset V\Lambda^{d(\lambda)}$ of λ such that every $\mu \in E$ satisfies (\star) .

“Proof”:



Now... Use That Lemma!

Now... Use That Lemma!

$(B) \implies (A)$:

Now... Use That Lemma!

$(B) \implies (A)$:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

Now... Use That Lemma!

$(B) \implies (A)$:

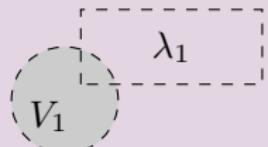
Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

Now... Use That Lemma!

$(B) \implies (A)$:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

$\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,



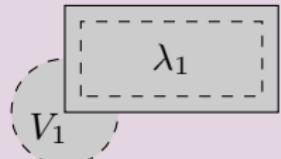
Now... Use That Lemma!

$(B) \implies (A)$:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

$\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

$F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and



Now... Use That Lemma!

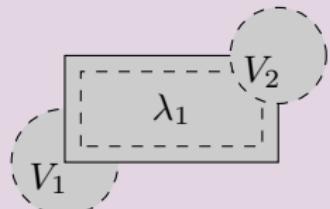
$(B) \implies (A)$:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

$V_i :=$ interior of $s(F_{i-1})$,

$\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

$F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and



Now... Use That Lemma!

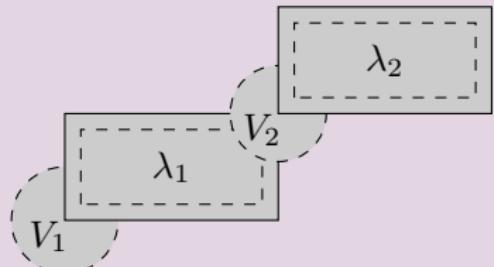
$(B) \implies (A)$:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

$V_i :=$ interior of $s(F_{i-1})$,

$\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

$F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and



Now... Use That Lemma!

$(B) \implies (A)$:

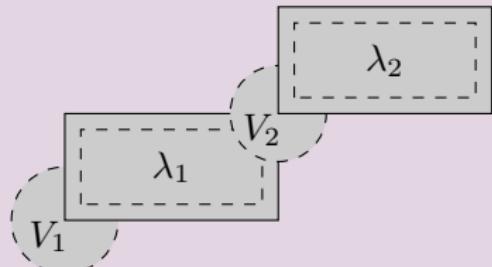
Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^\infty$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

$V_i :=$ interior of $s(F_{i-1})$,

$\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

$F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and

$E_i := F_1 \dots F_i \partial \Lambda$.



Now... Use That Lemma!

(B) \Rightarrow (A):

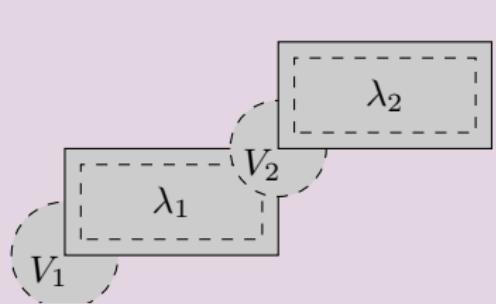
Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^\infty$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

$$V_i := \text{interior of } s(F_{i-1}),$$

$\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

F_i := a compact neighborhood of λ_i given by the Tube Lemma, and

$$E_i := F_1 \dots F_i \partial \Lambda.$$



Now... Use That Lemma!

$(B) \implies (A)$:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^\infty$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

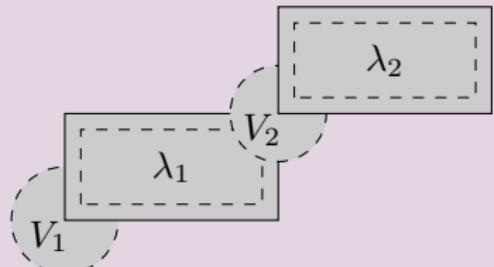
$V_i :=$ interior of $s(F_{i-1})$,

$\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

$F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and

$E_i := F_1 \dots F_i \partial \Lambda$.

⋮



Now... Use That Lemma!

$(B) \implies (A)$:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^\infty$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

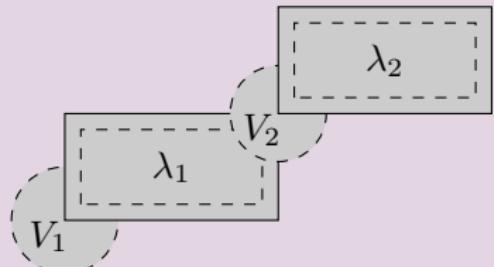
$V_i :=$ interior of $s(F_{i-1})$,

$\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

$F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and

$E_i := F_1 \dots F_i \partial \Lambda$.

⋮



Twisted Product Graphs

Let (Λ, d) be a finitely aligned k -graph with no sources,

Twisted Product Graphs

Let (Λ, d) be a finitely aligned k -graph with no sources, X be a second countable, locally compact, Hausdorff space

Twisted Product Graphs

Let (Λ, d) be a finitely aligned k -graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau : \Lambda \rightarrow \{\tau_\lambda : X \rightarrow X \mid \tau_\lambda \text{ is a local homeomorphism}\}$$

a continuous functor.

Twisted Product Graphs

Let (Λ, d) be a finitely aligned k -graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau : \Lambda \rightarrow \{\tau_\lambda : X \rightarrow X \mid \tau_\lambda \text{ is a local homeomorphism}\}$$

a continuous functor. Then the pair $(\Lambda \times_\tau X, \tilde{d})$

Twisted Product Graphs

Let (Λ, d) be a finitely aligned k -graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau : \Lambda \rightarrow \{\tau_\lambda : X \rightarrow X \mid \tau_\lambda \text{ is a local homeomorphism}\}$$

a continuous functor. Then the pair $(\Lambda \times_\tau X, \tilde{d})$, with object and morphism sets

$$\text{Obj}(\Lambda \times_\tau X) := \text{Obj}(\Lambda) \times X \text{ and } \text{Mor}(\Lambda \times_\tau X) := \text{Mor}(\Lambda) \times X,$$

Twisted Product Graphs

Let (Λ, d) be a finitely aligned k -graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau : \Lambda \rightarrow \{\tau_\lambda : X \rightarrow X \mid \tau_\lambda \text{ is a local homeomorphism}\}$$

a continuous functor. Then the pair $(\Lambda \times_\tau X, \tilde{d})$, with object and morphism sets

$\text{Obj}(\Lambda \times_\tau X) := \text{Obj}(\Lambda) \times X$ and $\text{Mor}(\Lambda \times_\tau X) := \text{Mor}(\Lambda) \times X$,
range and source maps

$$r(\lambda, x) := (r(\lambda), \tau_\lambda(x)) \text{ and } s(\lambda, x) := (s(\lambda), x),$$

Twisted Product Graphs

Let (Λ, d) be a finitely aligned k -graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau : \Lambda \rightarrow \{\tau_\lambda : X \rightarrow X \mid \tau_\lambda \text{ is a local homeomorphism}\}$$

a continuous functor. Then the pair $(\Lambda \times_\tau X, \tilde{d})$, with object and morphism sets

$\text{Obj}(\Lambda \times_\tau X) := \text{Obj}(\Lambda) \times X$ and $\text{Mor}(\Lambda \times_\tau X) := \text{Mor}(\Lambda) \times X$,
range and source maps

$$r(\lambda, x) := (r(\lambda), \tau_\lambda(x)) \text{ and } s(\lambda, x) := (s(\lambda), x),$$

and composition

$$(\lambda, \tau_\mu(x)) \circ (\mu, x) = (\lambda\mu, x),$$

whenever $s(\lambda) = r(\mu)$ in (Λ, d)

Twisted Product Graphs

Let (Λ, d) be a finitely aligned k -graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau : \Lambda \rightarrow \{\tau_\lambda : X \rightarrow X \mid \tau_\lambda \text{ is a local homeomorphism}\}$$

a continuous functor. Then the pair $(\Lambda \times_\tau X, \tilde{d})$, with object and morphism sets

$\text{Obj}(\Lambda \times_\tau X) := \text{Obj}(\Lambda) \times X$ and $\text{Mor}(\Lambda \times_\tau X) := \text{Mor}(\Lambda) \times X$,
range and source maps

$$r(\lambda, x) := (r(\lambda), \tau_\lambda(x)) \text{ and } s(\lambda, x) := (s(\lambda), x),$$

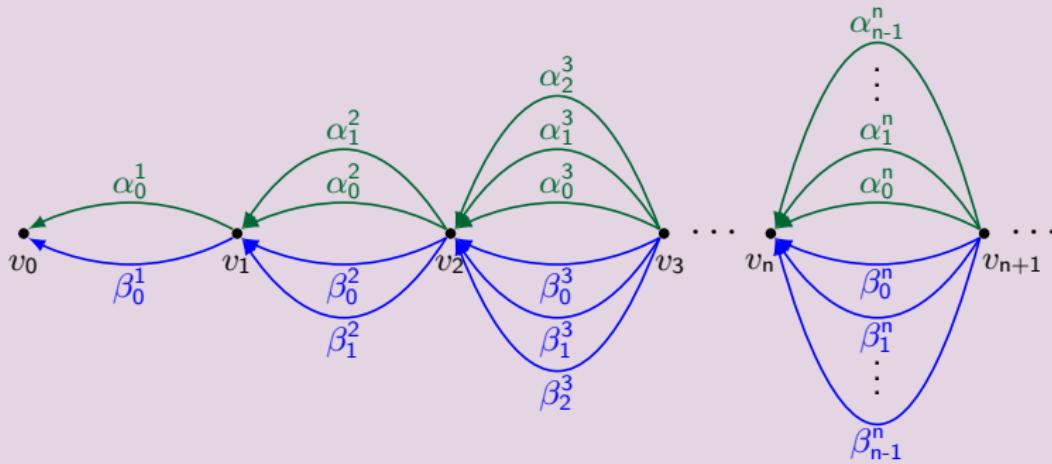
and composition

$$(\lambda, \tau_\mu(x)) \circ (\mu, x) = (\lambda\mu, x),$$

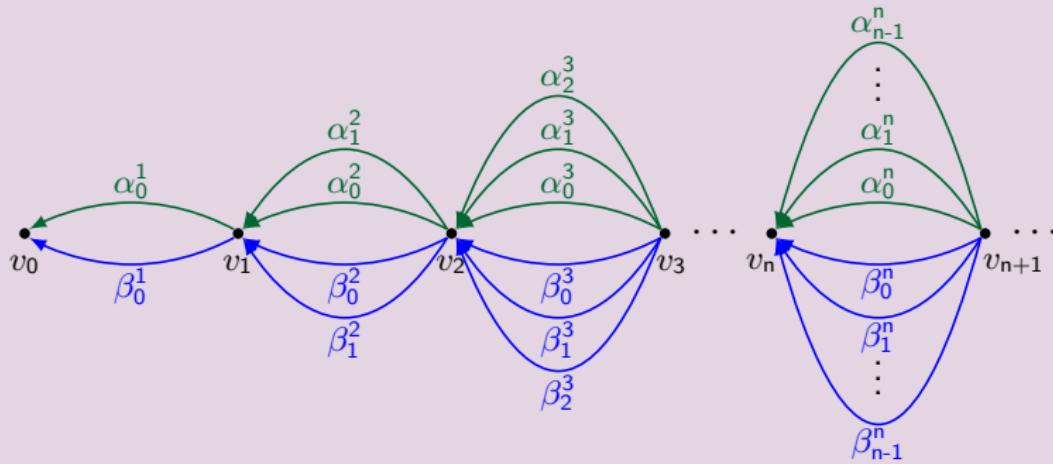
whenever $s(\lambda) = r(\mu)$ in (Λ, d) , and degree functor

$$\tilde{d}(\lambda, x) = d(\lambda)$$

The 1-Skeleton

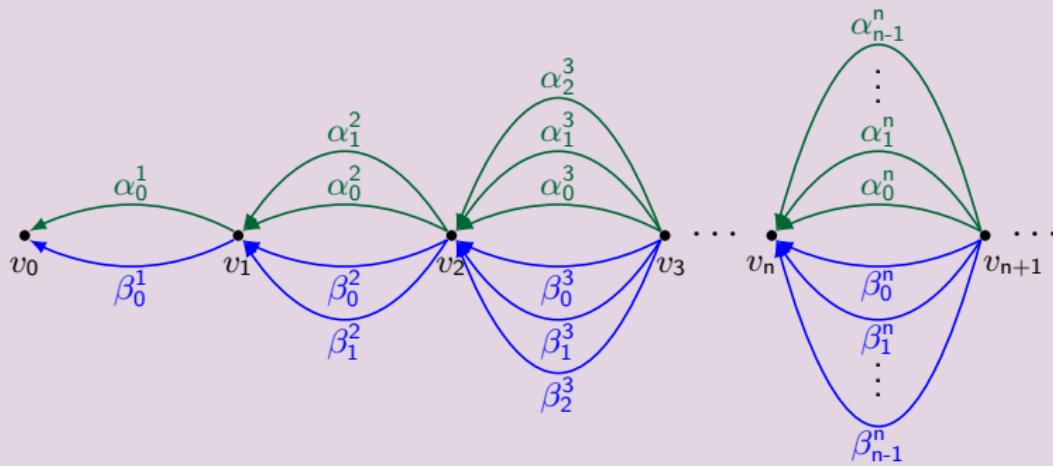


The 1-Skeleton



$$\alpha_i^n \beta_j^{n+1} = \beta_{i+1}^n \alpha_{j+1}^{n+1}$$

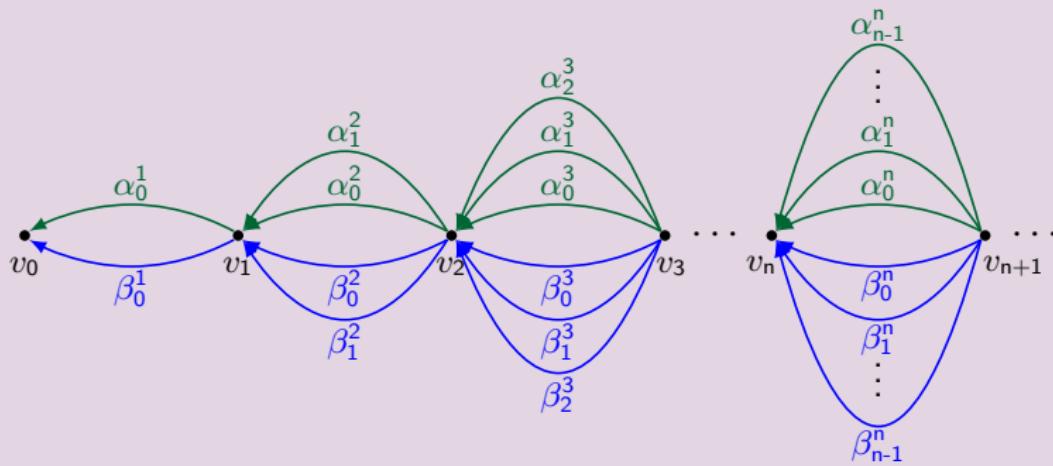
The 1-Skeleton



$$\alpha_i^n \beta_j^{n+1} = \beta_{i+1}^n \alpha_{j+1}^{n+1}$$

$$X := \mathbb{T}$$

The 1-Skeleton



$$\alpha_i^n \beta_j^{n+1} = \beta_{i+1}^n \alpha_{j+1}^{n+1}$$

$$X := \mathbb{T}$$

$$\tau_{\alpha_i^n}(z) = \tau_{\beta_j^n}(z) := z^n$$

Checking Condition (C)

Fix and open set $V \subset \Lambda^0$, $\mu, \nu \in V\Lambda$, with $r(\mu) = r(\nu)$, $s(\mu) = s(\nu)$, and $d(\mu) \wedge d(\nu) = 0$.

Checking Condition (C)

Fix and open set $V \subset \Lambda^0$, $\mu, \nu \in V\Lambda$, with $r(\mu) = r(\nu)$, $s(\mu) = s(\nu)$, and $d(\mu) \wedge d(\nu) = 0$.

$$\mu = \left(\alpha_{i_0}^m, z^k \right) \dots \left(\alpha_{i_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1} \right) \left(\alpha_{i_{n-1}}^{m+n-1}, z^{m+n} \right) \left(\alpha_{i_n}^{m+n}, z \right)$$

Checking Condition (C)

Fix and open set $V \subset \Lambda^0$, $\mu, \nu \in V\Lambda$, with $r(\mu) = r(\nu)$, $s(\mu) = s(\nu)$, and $d(\mu) \wedge d(\nu) = 0$.

$$\mu = (\alpha_{i_0}^m, z^k) \dots (\alpha_{i_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}) (\alpha_{i_n}^{m+n}, z)$$

$$\nu = (\beta_{j_0}^m, z^k) \dots (\beta_{j_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\beta_{j_{n-1}}^{m+n-1}, z^{m+n}) (\beta_{j_n}^{m+n}, z)$$

Checking Condition (C)

Fix and open set $V \subset \Lambda^0$, $\mu, \nu \in V\Lambda$, with $r(\mu) = r(\nu)$, $s(\mu) = s(\nu)$, and $d(\mu) \wedge d(\nu) = 0$.

$$\mu = (\alpha_{i_0}^m, z^k) \dots (\alpha_{i_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}) (\alpha_{i_n}^{m+n}, z)$$

$$\nu = (\beta_{j_0}^m, z^k) \dots (\beta_{j_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\beta_{j_{n-1}}^{m+n-1}, z^{m+n}) (\beta_{j_n}^{m+n}, z)$$

$$\lambda = (\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1})$$

Checking Condition (C)

Fix and open set $V \subset \Lambda^0$, $\mu, \nu \in V\Lambda$, with $r(\mu) = r(\nu)$, $s(\mu) = s(\nu)$, and $d(\mu) \wedge d(\nu) = 0$.

$$\mu = (\alpha_{i_0}^m, z^k) \dots (\alpha_{i_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}) (\alpha_{i_n}^{m+n}, z)$$

$$\nu = (\beta_{j_0}^m, z^k) \dots (\beta_{j_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\beta_{j_{n-1}}^{m+n-1}, z^{m+n}) (\beta_{j_n}^{m+n}, z)$$

$$\lambda = (\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1})$$

$$\mu\lambda = (\alpha_{i_0}^m, z^k) (\alpha_{i_1}^{m+1}, z^{k/m+n}) \dots (\alpha_{i_n}^{m+n}, z) (\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1})$$

Checking Condition (C)

Fix and open set $V \subset \Lambda^0$, $\mu, \nu \in V\Lambda$, with $r(\mu) = r(\nu)$, $s(\mu) = s(\nu)$, and $d(\mu) \wedge d(\nu) = 0$.

$$\mu = (\alpha_{i_0}^m, z^k) \dots (\alpha_{i_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}) (\alpha_{i_n}^{m+n}, z)$$

$$\nu = (\beta_{j_0}^m, z^k) \dots (\beta_{j_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\beta_{j_{n-1}}^{m+n-1}, z^{m+n}) (\beta_{j_n}^{m+n}, z)$$

$$\lambda = (\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1})$$

$$\mu\lambda = (\alpha_{i_0}^m, z^k) (\alpha_{i_1}^{m+1}, z^{k/m+n}) \dots (\alpha_{i_n}^{m+n}, z) (\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1})$$

$$= (\alpha_{i_0}^m, z^k) (\alpha_{i_1}^{m+1}, z^{k/m+n}) \dots (\beta_{j_0-n+1}^{m+n}, z) (\alpha_{i_{n+1}}^{m+n+1}, z^{1/m+n+1})$$

Checking Condition (C)

Fix and open set $V \subset \Lambda^0$, $\mu, \nu \in V\Lambda$, with $r(\mu) = r(\nu)$, $s(\mu) = s(\nu)$, and $d(\mu) \wedge d(\nu) = 0$.

$$\mu = (\alpha_{i_0}^m, z^k) \dots (\alpha_{i_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}) (\alpha_{i_n}^{m+n}, z)$$

$$\nu = (\beta_{j_0}^m, z^k) \dots (\beta_{j_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\beta_{j_{n-1}}^{m+n-1}, z^{m+n}) (\beta_{j_n}^{m+n}, z)$$

$$\begin{aligned} \lambda &= (\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}) \\ \mu\lambda &= (\alpha_{i_0}^m, z^k) (\alpha_{i_1}^{m+1}, z^{k/m+n}) \dots (\alpha_{i_n}^{m+n}, z) (\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}) \\ &= (\alpha_{i_0}^m, z^k) (\alpha_{i_1}^{m+1}, z^{k/m+n}) \dots (\beta_{j_0-n+1}^{m+n}, z) (\alpha_{i_{n+1}}^{m+n+1}, z^{1/m+n+1}) \\ &= (\beta_{j_0+1}^m, z^k) (\alpha_{i_0+1}^{m+1}, z^{k/m+n}) \dots (\alpha_{i_{n+1}}^{m+n}, z^{1/m+n+1}) \end{aligned}$$

Checking Condition (C)

Fix and open set $V \subset \Lambda^0$, $\mu, \nu \in V\Lambda$, with $r(\mu) = r(\nu)$, $s(\mu) = s(\nu)$, and $d(\mu) \wedge d(\nu) = 0$.

$$\mu = (\alpha_{i_0}^m, z^k) \dots (\alpha_{i_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}) (\alpha_{i_n}^{m+n}, z)$$

$$\nu = (\beta_{j_0}^m, z^k) \dots (\beta_{j_{n-2}}^{m+n-2}, (z^{m+n})^{m+n-1}) (\beta_{j_{n-1}}^{m+n-1}, z^{m+n}) (\beta_{j_n}^{m+n}, z)$$

$$\begin{aligned} \lambda &= (\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}) \\ \mu\lambda &= (\alpha_{i_0}^m, z^k) (\alpha_{i_1}^{m+1}, z^{k/m+n}) \dots (\alpha_{i_n}^{m+n}, z) (\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}) \\ &= (\alpha_{i_0}^m, z^k) (\alpha_{i_1}^{m+1}, z^{k/m+n}) \dots (\beta_{j_0-n+1}^{m+n}, z) (\alpha_{i_{n+1}}^{m+n+1}, z^{1/m+n+1}) \\ &= (\beta_{j_0+1}^m, z^k) (\alpha_{i_0+1}^{m+1}, z^{k/m+n}) \dots (\alpha_{i_{n+1}}^{m+n}, z^{1/m+n+1}) \end{aligned}$$

Checking Condition (A)

- 1 Consider a path x in “standard form”.

Checking Condition (A)

- 1 Consider a path x in “standard form”.

$$x = (\alpha_0^1, z) \left(\beta_0^{i+1}, z^{1/(i+1)} \right) \left(\alpha_0^{i+2}, z^{1/(i+1)(i+2)} \right) \left(\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)} \right) \dots$$

Checking Condition (A)

- 1 Consider a path x in “standard form”.

$$x = (\alpha_0^1, z) (\beta_0^{i+1}, z^{1/i+1}) (\alpha_0^{i+2}, z^{1/(i+1)(i+2)}) (\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}) \dots$$

- 2 Calculate $\sigma^{(1,0)}x$ and $\sigma^{(0,1)}x$.

$$\sigma^{(1,0)}x = (\beta_0^{i+1}, z^{1/i+1}) (\alpha_0^{i+2}, z^{1/(i+1)(i+2)}) (\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}) \dots$$

Checking Condition (A)

- 1 Consider a path x in “standard form”.

$$x = (\alpha_0^1, z) (\beta_0^{i+1}, z^{1/i+1}) (\alpha_0^{i+2}, z^{1/(i+1)(i+2)}) (\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}) \dots$$

- 2 Calculate $\sigma^{(1,0)}x$ and $\sigma^{(0,1)}x$.

$$\sigma^{(1,0)}x = (\beta_0^{i+1}, z^{1/i+1}) (\alpha_0^{i+2}, z^{1/(i+1)(i+2)}) (\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}) \dots$$

- 3 Find a formula for $\sigma^m x$.
- 4 Deduce range of $\sigma^m x$, $|m|$, and m_1 and m_2 .
- 5 Conclude x is aperiodic.
- 6 Other paths and open sets?

Checking Condition (A)

- 1 Consider a path x in “standard form”.

$$x = (\alpha_0^1, z) (\beta_0^{i+1}, z^{1/i+1}) (\alpha_0^{i+2}, z^{1/(i+1)(i+2)}) (\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}) \dots$$

- 2 Calculate $\sigma^{(1,0)}x$ and $\sigma^{(0,1)}x$.

$$\sigma^{(1,0)}x = (\beta_0^{i+1}, z^{1/i+1}) (\alpha_0^{i+2}, z^{1/(i+1)(i+2)}) (\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}) \dots$$

- 3 Find a formula for $\sigma^m x$.
- 4 Deduce range of $\sigma^m x$, $|m|$, and m_1 and m_2 .
- 5 Conclude x is aperiodic.
- 6 Other paths and open sets?
- 7 More complicated 1-skeletons, factorizations, spaces, twistings...
EEEKK!

You're The BEST!

😊 THANKS! 😊

References

Iain Raeburn, *Graph Algebras*, CBMS Regional Conference Series in Mathematics, vol. 103.

Takeshi Katsura, *A class of C^* -algebras generalizing both graph algebras and homeomorphism C^* -algebras I, II, III, and IV*.

Alex Kumjian and David Pask, *Higher rank graph C^* -algebras*, New York J. Math.

David I. Robertson and Aidan Sims, *Simplicity of C^* -algebras associated to higher-rank graphs*, Bull. Lond. Math. Soc.

Trent Yeend, *Topological higher-rank graphs and the C^* -algebras of topological 1-graphs*, Operator theory, operator algebras, and applications

Sarah Wright, *Aperiodicity Conditions in Topological k -Graphs*, Thesis, Dartmouth College, May 2010