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Graph Algebras

So... Aperiodicity is Important?

Let E be a row finite such that every
cycle has an entry. Then C*(E) is
simpIe if and only if F is cofinal.

Y / In the groupoid
/ \& // model of the
C*-algebra, the

” elements are paths
w which differ only by

// i 2 an initial segment.
x\, y Aperiodicity and
cofinality cause

K,//S more infinite paths

to be “related”.
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Topological k-Graphs

For k € N, a topological k-graph is a pair (A, d) consisting of a
category A = (Obj(A), Mor(A),r,s) and a functor d : A — N¥,
called the degree map, which satisfy:

© Obj(A) and Mor(A) are second countable, locally compact
Hausdorff spaces;

Q r,s: Mor(A) — Obj(A) are continuous and s is a local
homeomorphism;

© Composition o : A X, A — A is continuous and open, where A x. A

has the relative topology inherited from the product topology on
A x A;

@ d is continuous, where N¥ is given the discrete topology;

@ The unique factorization property: For all A € A and m,n € N*
with d(\) = m + n, there exists unique (u,v) € A X, A such that
A= pv, d(p) = m and d(v) = n.
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Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist
of the vertices and edges of shape e;, and giving the appropriate
factorization rules if necessary.




Graph Algebras Aperiodicity Conditions Proof of Equivalence Example(s)
- =
Infinite Paths

da=d'c, fa=de,
bd =cb/, bf = eb

Aperiodicity Conditions in Topological k-Graphs

>




Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram

o

da=d'c, fa=de,
bd =cb/, bf = eb



Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram

v da=d'c, fa=de,
bd = clf, bf = et/

< _.: .': ) v ‘
v:" v:'. V:'- \4 E\/ f



Topological k-Graphs

Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram which is labeled with edges from the

1-skeleton in a way which respects the unique factorization
property, and the range and source maps.

da=d'c, fa=de,

bd = cb/, bf = et/



Topological k-Graphs

Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram which is labeled with edges from the

1-skeleton in a way which respects the unique factorization
property, and the range and source maps.

da=d'c, fa=de,

bd = cb/, bf = et/



Topological k-Graphs

Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram which is labeled with edges from the

1-skeleton in a way which respects the unique factorization
property, and the range and source maps.

da=d'c, fa=de,

bd = cb/, bf = et/



Topological k-Graphs

Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram which is labeled with edges from the

1-skeleton in a way which respects the unique factorization
property, and the range and source maps.

da=d'c, fa=de,

bd = cb/, bf = et/



Topological k-Graphs

Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram which is labeled with edges from the

1-skeleton in a way which respects the unique factorization
property, and the range and source maps.

da=d'c, fa=de,

bd = cb/, bf = et/



A

Topological k-Graphs

Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram which is labeled with edges from the

1-skeleton in a way which respects the unique factorization
property, and the range and source maps.

U

®
<A

‘ ¥ A4 ) \/ v
@ . h . - . Ol .
v .. . p . : .. ...‘.

da=d'c, fa=de,

bd = cb/, bf = et/



Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram which is labeled with edges from the
1-skeleton in a way which respects the unique factorization

property, and the range and source maps.

A

b/
b vﬁ‘ . "5‘ v:' \ da = CL/C, fa = a,e,
C, C,
w o W A v bd =cb/, bf = eb
D) > <




Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram which is labeled with edges from the
1-skeleton in a way which respects the unique factorization

property, and the range and source maps.

A

7. : 117 - b
b vﬁ‘ . "5‘ v:' \ da = CL/C, fa = a,e,
C, C,
w oo W \/ v bd =cb/, bf = eb
D) > <

» B 5 I % - 3..".::_. Evf



Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram which is labeled with edges from the
1-skeleton in a way which respects the unique factorization

property, and the range and source maps.

'A
d, w0
w lr  w ¢ L/
By s < b
b vﬁ‘ . "5‘ v:' \ da = CL/C, fa = a,e,
C, C,
w o W A v bd =cb/, bf = eb
D) > <




Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram which is labeled with edges from the
1-skeleton in a way which respects the unique factorization

property, and the range and source maps.

'A
d, w0
w lr w ¢ L/
By s < b
b vﬁ‘ . "5‘ v:' \ da = CL/C, fa = a,e,
C, C,
w oo W \/ v bd =cb/, bf = eb
D) > <

= ..: ..= v '
ﬁ d, &



Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
commutative diagram which is labeled with edges from the
1-skeleton in a way which respects the unique factorization

property, and the range and source maps.

PN C PR . . b
bY. o Y \ \ da = CL/C, fa = a,e,
S 7 <
w oo W \/ v bd =cb/, bf = eb
D) > <



Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional
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The Shift Map

We can shift an infinite path of a k graph, x, using the shift map o.

o"(x) is the infinite path obtained by removing the initial segment
of degree n from z.
For x below,

0 +— 0 <+——

—— Q) +—0 +——

T
S
S
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We say that a path z is aperiodic if ™z = ¢"x only when m = n.



Yeend’s Condition (A)

Definition

We say a topological k-graph (A, d) is aperiodic, or satisfies
Condition (A), if for every open set V C A there exists an infinite
aperiodic path x € VA.

Proposition (Yeend, 2007)

Suppose A is a compactly aligned topological k-graph that satisfies
Condition (A). Then, G is topologically principal.
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Theorem

Let (A, d) be a compactly aligned topological k-graph and V' be

any nonempty open subset of A?. The following conditions are
equivalent.

(A) There exists an aperiodic path 2 € VOA.
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that d(\) > m V n and
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Aperiodicity Conditions

Theorem

Let (A, d) be a compactly aligned topological k-graph and V' be

any nonempty open subset of A?. The following conditions are
equivalent.

(A) There exists an aperiodic path 2 € VOA.

(B) For any pair m # n € N* there exists a path Ay, € VA such
that d(\) > m V n and

A(m,m + d(X) — (m V n)) # AX(n,n+d(A) — (m Vn)).

(C) There is a vertex v € V and paths «, 5 € A with s(a) = s(8)

such that there exists a path 7 € s(a)A with MCE(ar, 37) @

(*)

11 /20



Graph Algebras Topological k-Graphs Proof of Equivalence Example(s)
Visualizing the Conditions

Aperiodicity Conditions in Topological k-Graphs




Graph Algebras Topological k-Graphs Proof of Equivalence Example(s)
Visualizing the Conditions

Aperiodicity Conditions in Topological k-Graphs




Graph Algebras Topological k-Graphs Proof of Equivalence Example(s)
Visualizing the Conditions

Aperiodicity Conditions in Topological k-Graphs




Graph Algebras Topological k-Graphs Proof of Equivalence Example(s)
Visualizing the Conditions

Aperiodicity Conditions in Topological k-Graphs

>




Graph Algebras Topological k-Graphs Proof of Equivalence Example(s)
Visualizing the Conditions

Aperiodicity Conditions in Topological k-Graphs

>




Graph Algebras Topological k-Graphs Proof of Equivalence Example(s)
Visualizing the Conditions

d(\)

n mVn

Aperiodicity Conditions in Topological k-Graphs

>




Graph Algebras Topological k-Graphs Proof of Equivalence Example(s)
Visualizing the Conditions

d(\)

S

Aperiodicity Conditions in Topological k-Graphs

>




Graph Algebras Topological k-Graphs Aperiodicity Conditions

Proof of Equivalence

Visualizing the Conditions

n—+ 1

Example(s)

d(\)

~—m -+

S

12 /20



The Ever Important Lemma

Tube Lemma

Let V. C AY be open, m # n € N¥, and A\ € VA satisfy (x). Then
there exists a compact neighborhood E C VA of X such that
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The Ever Important Lemma

Tube Lemma

Let V C A° be open, m # n € N¥, and \ € VA satisfy (x). Then
there exists a compact neighborhood E C VA of X such that
every i € E satisfies (x).

“Proof":
A(m,m +d(A\) — (mV n))
A =[A(0,m) ; A(m + d(A) — (mVn),d(A))\
A(n,n+d(A) — (mVn))
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Checking Condition (C)

Fix and open set V C A%, p,v € VA, with r(u) = r(v),
s(p) = s(v), and d(p) AN d(v) = 0.
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Checking Condition (A)

@ Consider a path z in “standard form”.

= (a(1)7z) (68+17Z1/i+1) (aé+27zl/(i+1)(i+2)) (ﬁé+3,Zl/(i+1)(i+2)(i+3))

@ Calculate 039z and @V g,

o(1.0), — (66+1’Z1/i+1> (aé+2’zl/(i+l z+2)) (ﬂz+3 ey z+1)(i+2)(i+3))

© Find a formula for c™x.

© Deduce range of o™z, , and my and ms.

© Conclude z is aperiodic.

@ Other paths and open sets?
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Checking Condition (A)

@ Consider a path z in “standard form”.

= (oz(l),z) (ﬁé+l7zl/i+1) (a6+27zl/(i+1)(i+2)) (ﬁé+3,Zl/(i+1)(i+2)(i+3))

@ Calculate 039z and @V g,

o(1.0), — (68+1’Z1/i+1> (a6+2’zl/(i+1 z+2)) (ﬂz+3 ey z+1)(i+2)(i+3))

© Find a formula for c™x.

© Conclude z is aperiodic.

@ Other paths and open sets?

@ More complicated 1-skeletons, factorizations, spaces, twistings...
EEEKK!
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You’re The BEST!

© THANKS! ©
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