

*Fuglede-Kadison Determinants for Operators
in the Von Neumann Algebra of an
Equivalence Relation*

Gabriel Picioroaga, University of South Dakota
joint work with Catalin Georgescu, University of South Dakota

Lincoln, October 15, 2011

Fuglede-Kadison determinant

Set-up: (M, τ) II_1 -factor, $T \in M$ normal, $|T| = \sqrt{T^*T}$.

$\exists E(\lambda)$ projection-valued measure

$$T = \int_{\sigma(T)} \lambda dE(\lambda)$$

$\mu_T = \tau \circ E \in \text{Prob}(\mathbf{C})$, $\text{supp}(\mu_T) = \sigma(T)$.

Fuglede-Kadison determinant

Set-up: (M, τ) II_1 -factor, $T \in M$ normal, $|T| = \sqrt{T^*T}$.

$\exists E(\lambda)$ projection-valued measure

$$T = \int_{\sigma(T)} \lambda dE(\lambda)$$

$\mu_T = \tau \circ E \in \text{Prob}(\mathbf{C})$, $\text{supp}(\mu_T) = \sigma(T)$.

Fuglede-Kadison determinant(1952)

Fuglede-Kadison determinant

Set-up: (M, τ) II_1 -factor, $T \in M$ normal, $|T| = \sqrt{T^*T}$.

$\exists E(\lambda)$ projection-valued measure

$$T = \int_{\sigma(T)} \lambda dE(\lambda)$$

$\mu_T = \tau \circ E \in \text{Prob}(\mathbf{C})$, $\text{supp}(\mu_T) = \sigma(T)$.

Fuglede-Kadison determinant(1952)

M finite vN algebra with trace τ , $T \in M$ invertible

Fuglede-Kadison determinant

Set-up: (M, τ) II_1 -factor, $T \in M$ normal, $|T| = \sqrt{T^*T}$.

$\exists E(\lambda)$ projection-valued measure

$$T = \int_{\sigma(T)} \lambda dE(\lambda)$$

$\mu_T = \tau \circ E \in \text{Prob}(\mathbf{C})$, $\text{supp}(\mu_T) = \sigma(T)$.

Fuglede-Kadison determinant(1952)

M finite vN algebra with trace τ , $T \in M$ invertible

$$\Delta(T) = \exp(\tau(\log |T|))$$

Fuglede-Kadison determinant

Set-up: (M, τ) II_1 -factor, $T \in M$ normal, $|T| = \sqrt{T^*T}$.

$\exists E(\lambda)$ projection-valued measure

$$T = \int_{\sigma(T)} \lambda dE(\lambda)$$

$\mu_T = \tau \circ E \in \text{Prob}(\mathbf{C})$, $\text{supp}(\mu_T) = \sigma(T)$.

Fuglede-Kadison determinant(1952)

M finite vN algebra with trace τ , $T \in M$ invertible

$$\Delta(T) = \exp(\tau(\log |T|))$$

Extend to any $T \in M$:

$$\Delta(T) = \exp \left(\int_0^\infty \log t d\mu_{|T|} \right)$$

Computation Rules

For $n \times n$ matrices $\tau = \text{Tr}/n$: $\Delta(T) = \sqrt[n]{|\det T|}$

Computation Rules

For $n \times n$ matrices $\tau = \text{Tr}/n$: $\Delta(T) = \sqrt[n]{|\det T|}$

$$\Delta(ST) = \Delta(S)\Delta(T)$$

$$\Delta(S) = \Delta(|S|) = \Delta(S^*)$$

$\Delta(U) = 1$ where U is unitary

$$\Delta(\lambda I) = |\lambda|$$

Δ is upper-semicontinuous both in SOT and $\|\cdot\|$

Some recent use of Δ

- [Haagerup & Schultz, 2009] Calculation of Brown measures, solution of the invariant subspace problem for operators in \mathcal{II}_1 -factors.
- [Bowen, Deninger, H.Li 2006-] Entropy of algebraic actions of discrete amenable groups, Ljapunov exponents etc.

Some recent use of Δ

- [Haagerup & Schultz, 2009] Calculation of Brown measures, solution of the invariant subspace problem for operators in \mathcal{II}_1 -factors.
- [Bowen, Deninger, H.Li 2006-] Entropy of algebraic actions of discrete amenable groups, Lyapunov exponents etc.

A computational example

Theorem (Deninger, 2009)

(X, μ) probability space, $f \in L^\infty(X)$ non-zero μ -a.e.

$M = L^\infty(X) \rtimes_\alpha \mathbf{Z}$, $\alpha(1) = g : X \rightarrow X$ ergodic measure preserving.

Some recent use of Δ

- [Haagerup & Schultz, 2009] Calculation of Brown measures, solution of the invariant subspace problem for operators in \mathcal{II}_1 -factors.
- [Bowen, Deninger, H.Li 2006-] Entropy of algebraic actions of discrete amenable groups, Lyapunov exponents etc.

A computational example

Theorem (Deninger, 2009)

(X, μ) probability space, $f \in L^\infty(X)$ non-zero μ -a.e.

$M = L^\infty(X) \rtimes_\alpha \mathbf{Z}$, $\alpha(1) = g : X \rightarrow X$ ergodic measure preserving.
 U the unitary implemented by the action :

Some recent use of Δ

- [Haagerup & Schultz, 2009] Calculation of Brown measures, solution of the invariant subspace problem for operators in \mathcal{II}_1 -factors.
- [Bowen, Deninger, H.Li 2006-] Entropy of algebraic actions of discrete amenable groups, Lyapunov exponents etc.

A computational example

Theorem (Deninger, 2009)

(X, μ) probability space, $f \in L^\infty(X)$ non-zero μ -a.e.

$M = L^\infty(X) \rtimes_\alpha \mathbb{Z}$, $\alpha(1) = g : X \rightarrow X$ ergodic measure preserving.
 U the unitary implemented by the action :

$$\log \Delta(I + fU) = \int_X \log |f(x)| d\mu(x)$$

Some recent use of Δ

- [Haagerup & Schultz, 2009] Calculation of Brown measures, solution of the invariant subspace problem for operators in II_1 -factors.
- [Bowen, Deninger, H.Li 2006-] Entropy of algebraic actions of discrete amenable groups, Lyapunov exponents etc.

A computational example

Theorem (Deninger, 2009)

(X, μ) probability space, $f \in L^\infty(X)$ non-zero μ -a.e.

$M = L^\infty(X) \rtimes_\alpha \mathbb{Z}$, $\alpha(1) = g : X \rightarrow X$ ergodic measure preserving.

U the unitary implemented by the action :

$$\log \Delta(I + fU) = \int_X \log |f(x)| d\mu(x)$$

Problem: Calculate Δ for other (ergodic, measure-preserving) group actions.

Countable Equivalence Relations

Set-up: (X, \mathcal{B}, μ) probability space, $A_i, B_i \in \mathcal{B}$

$g_i : A_i \rightarrow B_i$ measure preserving bijections (Borel partial isomorphisms), $i \in I$ and I countable.

Countable Equivalence Relations

Set-up: (X, \mathcal{B}, μ) probability space, $A_i, B_i \in \mathcal{B}$

$g_i : A_i \rightarrow B_i$ measure preserving bijections (Borel partial isomorphisms), $i \in I$ and I countable.

$(g_i)_i$ generate an equivalence relation \mathcal{R} with countable orbits:

$$x \sim y \text{ if } g_{i_1}^{\varepsilon_1} \dots g_{i_k}^{\varepsilon_k} x = y$$

Countable Equivalence Relations

Set-up: (X, \mathcal{B}, μ) probability space, $A_i, B_i \in \mathcal{B}$

$g_i : A_i \rightarrow B_i$ measure preserving bijections (Borel partial isomorphisms), $i \in I$ and I countable.

$(g_i)_i$ generate an equivalence relation \mathcal{R} with countable orbits:

$$x \sim y \text{ if } g_{i_1}^{\varepsilon_1} \cdots g_{i_k}^{\varepsilon_k} x = y$$

Definition

\mathcal{R} is called ergodic if for any measurable set $A \in \mathcal{B}$ with $A = \mathcal{R}(A)$ we have $\mu(A) = 0$ or $\mu(A) = 1$.

Countable Equivalence Relations

Set-up: (X, \mathcal{B}, μ) probability space, $A_i, B_i \in \mathcal{B}$

$g_i : A_i \rightarrow B_i$ measure preserving bijections (Borel partial isomorphisms), $i \in I$ and I countable.

$(g_i)_i$ generate an equivalence relation \mathcal{R} with countable orbits:

$$x \sim y \text{ if } g_{i_1}^{\varepsilon_1} \dots g_{i_k}^{\varepsilon_k} x = y$$

Definition

\mathcal{R} is called ergodic if for any measurable set $A \in \mathcal{B}$ with $A = \mathcal{R}(A)$ we have $\mu(A) = 0$ or $\mu(A) = 1$.

Definition

\mathcal{R} is called treeable if

$\mu\{x \mid \omega(x) = x\} = 0$ for every $\omega = g_1^{\varepsilon_1} g_2^{\varepsilon_2} \dots g_k^{\varepsilon_k}$ reduced word.

Example

- If Γ is a countable group then any free, ergodic action on a standard probability space gives rise to an (SP1) equivalence relation on that space.

Example

- If Γ is a countable group then any free, ergodic action on a standard probability space gives rise to an (SP1) equivalence relation on that space.
- There is always an action: any countable group is acting freely and ergodically on $X = \{0, 1\}^\Gamma$ equipped with the product measure by means of the Bernoulli shifts.

Example

- If Γ is a countable group then any free, ergodic action on a standard probability space gives rise to an (SP1) equivalence relation on that space.
- There is always an action: any countable group is acting freely and ergodically on $X = \{0, 1\}^\Gamma$ equipped with the product measure by means of the Bernoulli shifts.
- Countable groups that give rise to treeable, ergodic equivalence relations: free groups, amenable etc.

Example

- If Γ is a countable group then any free, ergodic action on a standard probability space gives rise to an (SP1) equivalence relation on that space.
- There is always an action: any countable group is acting freely and ergodically on $X = \{0, 1\}^\Gamma$ equipped with the product measure by means of the Bernoulli shifts.
- Countable groups that give rise to treeable, ergodic equivalence relations: free groups, amenable etc.
- Not necessary that the domains of the generators be all of X : there are groups of non-integer *cost* hence some of their generators must be defined on measurable pieces of X .

Von Neumann algebra of an equivalence relation

Hilbert space $L^2(\mathcal{R})$ consists of those $\varphi : \mathcal{R} \rightarrow \mathbf{C}$

$$\int_X \sum_{(z,x) \in \mathcal{R}} |\varphi(x, z)|^2 d\mu(x) < \infty$$

Von Neumann algebra of an equivalence relation

Hilbert space $L^2(\mathcal{R})$ consists of those $\varphi : \mathcal{R} \rightarrow \mathbf{C}$

$$\int_X \sum_{(z,x) \in \mathcal{R}} |\varphi(x, z)|^2 d\mu(x) < \infty$$

For ω a reduced word and $f \in L^\infty(X)$ the operators

$$(L_\omega \Psi)(x, y) = \chi_{D_\omega}(x) \Psi(\omega^{-1}x, y), \quad D_\omega \text{ the domain of } \omega^{-1}$$

$$(M_f \Psi)(x, y) = f(x) \Psi(x, y)$$

Von Neumann algebra of an equivalence relation

Hilbert space $L^2(\mathcal{R})$ consists of those $\varphi : \mathcal{R} \rightarrow \mathbf{C}$

$$\int_X \sum_{(z,x) \in \mathcal{R}} |\varphi(x, z)|^2 d\mu(x) < \infty$$

For ω a reduced word and $f \in L^\infty(X)$ the operators

$$(L_\omega \Psi)(x, y) = \chi_{D_\omega}(x) \Psi(\omega^{-1}x, y), \quad D_\omega \text{ the domain of } \omega^{-1}$$

$$(M_f \Psi)(x, y) = f(x) \Psi(x, y)$$

(ω -closure, linear span of) generate a von Neumann algebra, $\mathcal{M}(\mathcal{R})$ with trace $\tau(T) = \langle T\delta, \delta \rangle$, where δ is the characteristic function of the diagonal of \mathcal{R} .

Our goal in this setting: $\log \Delta(\sum_{i=1}^n M_{f_i} L_{g_i})$

Our goal in this setting: $\log \Delta(\sum_{i=1}^n M_{f_i} L_{g_i})$

Remark

The case $n = 2$ in can be dealt with by following Deninger provided that g_1 and g_2 are full Borel isomorphisms.

If $g_1^{-1}g_2$ or $g_2^{-1}g_1$ is ergodic then one can embed the calculation of the determinant in the hyperfinite II_1 -factor generated by the \mathbb{Z} -action of $g_1^{-1}g_2$, or $g_2^{-1}g_1$ (notice that the ergodicity of an equivalence relation does not guarantee that of a subrelation).

Proposition (Deninger)

For an operator Φ in a finite von Neumann algebra with a trace $\tau(1) = 1$ the following formula holds:

$$\Delta(z - \Phi) = |z|,$$

if the following two conditions are satisfied:

$$r(\Phi) < |z| \text{ and if } \tau(\Phi^n) = 0.$$

Lemma

Let $g : A \rightarrow B$ a Borel partial isomorphism and denote by fg^{-1} the function $(fg^{-1})(x) = f(g^{-1}x)$. Then we have:

$$L_g M_f = M_{fg^{-1}} L_g$$

$$(M_f L_g)^n = M_{f \cdot fg^{-1} \cdot \dots \cdot fg^{-(n-1)}} L_g^n$$

Lemma

Let $g : A \rightarrow B$ a Borel partial isomorphism and denote by fg^{-1} the function $(fg^{-1})(x) = f(g^{-1}x)$. Then we have:

$$L_g M_f = M_{fg^{-1}} L_g$$

$$(M_f L_g)^n = M_{f \cdot fg^{-1} \cdot \dots \cdot fg^{-(n-1)}} L_g^n$$

Proposition

Let $\Phi = \sum_{i=1}^n M_{f_i} L_{g_i}$ in $\mathcal{M}(\mathcal{R})$ where \mathcal{R} is ergodic and treeable and the g_i 's are Borel partial isomorphisms and among its generators. Then:

$$\tau(\Phi^n) = 0, \quad \forall n \geq 1$$

Lemma

Let $g : A \rightarrow B$ a Borel partial isomorphism and denote by fg^{-1} the function $(fg^{-1})(x) = f(g^{-1}x)$. Then we have:

$$L_g M_f = M_{fg^{-1}} L_g$$

$$(M_f L_g)^n = M_{f \cdot fg^{-1} \cdot \dots \cdot fg^{-(n-1)}} L_{g^n}$$

Proposition

Let $\Phi = \sum_{i=1}^n M_{f_i} L_{g_i}$ in $\mathcal{M}(\mathcal{R})$ where \mathcal{R} is ergodic and treeable and the g_i 's are Borel partial isomorphisms and among its generators. Then:

$$\tau(\Phi^n) = 0, \quad \forall n \geq 1$$

Proof based on: $\tau(M_h L_\omega) = \int_{\{x | \omega(x) = x\}} h(x) d\mu(x) = 0$

Main Results

Theorem

Let $f_i \in L^\infty(X)$ and $T = \sum_{i=1}^n M_{f_i} L_{g_i} \in \mathcal{M}(\mathcal{R})$ such that $g_i : A_i \rightarrow B_i$ are Borel partial isomorphisms among the generators of a treeable (SP1) equivalence relation \mathcal{R} . Assume that there is an index i_0 such that

$$\sum_{i \neq i_0} \|f_i/f_{i_0}\|_\infty < 1,$$

that f_{i_0} is non-vanishing on sets of positive measure and that $g_{i_0} : A_{i_0} = X \rightarrow B_{i_0} = X$. Then:

$$\log \Delta(T) = \int_X \log |f_{i_0}| d\mu(x)$$

If \mathcal{R} not necessarily treeable and all L_{g_i} partial isometries:

If \mathcal{R} not necessarily treeable and all L_{g_i} partial isometries:

Theorem

Let $f_i \in L^\infty(X)$ and $g_i : A_i \rightarrow B_i$, $i = 1, \dots, n$ be Borel partial isomorphisms in the standard probability space (X, \mathcal{B}, μ) such that g_i 's are among the generators of an ergodic (SP1) equivalence relation.

If \mathcal{R} not necessarily treeable and all L_{g_i} partial isometries:

Theorem

Let $f_i \in L^\infty(X)$ and $g_i : A_i \rightarrow B_i$, $i = 1, \dots, n$ be Borel partial isomorphisms in the standard probability space (X, \mathcal{B}, μ) such that g_i 's are among the generators of an ergodic (SP1) equivalence relation. If the following conditions are satisfied

- $\mu(A_1 \cup A_2 \dots \cup A_n) = 1$

If \mathcal{R} not necessarily treeable and all L_{g_i} partial isometries:

Theorem

Let $f_i \in L^\infty(X)$ and $g_i : A_i \rightarrow B_i$, $i = 1, \dots, n$ be Borel partial isomorphisms in the standard probability space (X, \mathcal{B}, μ) such that g_i 's are among the generators of an ergodic (SP1) equivalence relation. If the following conditions are satisfied

- $\mu(A_1 \cup A_2 \dots \cup A_n) = 1$
- $\mu(B_i \cap B_j) = 0$ if $i \neq j$

If \mathcal{R} not necessarily treeable and all L_{g_i} partial isometries:

Theorem

Let $f_i \in L^\infty(X)$ and $g_i : A_i \rightarrow B_i$, $i = 1, \dots, n$ be Borel partial isomorphisms in the standard probability space (X, \mathcal{B}, μ) such that g_i 's are among the generators of an ergodic (SP1) equivalence relation. If the following conditions are satisfied

- $\mu(A_1 \cup A_2 \dots \cup A_n) = 1$
- $\mu(B_i \cap B_j) = 0$ if $i \neq j$

then the Kadison-Fuglede determinant of the operator

$T = \sum_{i=1}^n M_{f_i} L_{g_i}$ is given by

$$\log \Delta(T) = \sum_{i=1}^n \int_{B_i} \log |f_i| d\mu(x)$$

Idea of proof: $L_{g_j}^* L_{g_i} = 0$ and $T^* T$ is a multiplication operator.

$$T^* T = M_{\sum_i |f|^2 g_i \cdot \chi_{A_i}}$$

$$\log \Delta(M_f) = \int_X \log |f| d\mu$$