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Fuglede-Kadison determinant
Set-up: (M, ) Ih-factor, T € M normal, |T| =+ T*T.
JE()) projection-valued measure

T = / AE(N)
o(T)

ur =710 E € Prob(C), supp(ur) =o(T).

Fuglede-Kadison determinant(1952)

M finite vN algebra with trace 7,7 € M invertible

A(T) = exp(7(log|T]))

Extend toany T € M :

A(T) =exp </OOO log td/,LT|>
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Computation Rules

For n x n matrices 7 = Tr/n: A(T) = {/|det T|
A(ST) = A(S)A(T)
A(S) = A(IS]) = A(S7)
A(U) =1 where U is unitary
AN = |)|

A is upper-semicontinuous both in SOT and ||-||
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Some recent use of A

e [Haagerup & Schultz, 2009] Calculation of Brown measures,
solution of the invariant subspace problem for operators in
Il1-factors.

e [Bowen, Deninger, H.Li 2006-] Entropy of algebraic actions of
discret amenable groups, Ljapunov exponents etc.

A computational example
Theorem (Deninger, 2009)

(X, ) probability space, f € L>°(X) non-zero u-a.e.
M= L>®(X) xoZ, a(l) = g : X — X ergodic measure preserving.
U the unitary implemented by the action :

log A(/ + fU) = /X log | (x)|dp(x)

Problem: Calculate A for other (ergodic, measure-preserving)
group actions.
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Countable Equivalence Relations
Set-up: (X, B, u) probability space, A;, B € B
gi : Ai — B;j measure preserving bijections (Borel partial
isomorphisms), i € [ and / countable.

(gi)i generate an equivalence relation R with countable orbits:

x~yifgl...gix=y

Definition
R is called ergodic if for any measurable set A € B with A =R(A)
we have p(A) =0 or u(A) = 1.

Definition

R is called treeable if
p{x | w(x) = x} =0 for every w = gi'g5? ... g~ reduced word.
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Example

e If [ is a countable group then any free, ergodic action on a
standard probability space gives rise to an (SP1) equivalence
relation on that space.

e There is always an action: any countable group is acting freely
and ergodically on X = {0,1}" equipped with the product measure
by means of the Bernouli shifts.

e Countable groups that give rise to treeable, ergodic equivalence
relations: free groups, amenable etc.

e Not necessary that the domains of the generators be all of X:
there are groups of non-integer cost hence some of their generators
must be defined on measurable pieces of X.
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Von Neumann algebra of an equivalence relation

Hilbert space L2(R) consists of those ¢ : R — C

/Z o(x, 2)[2du(x) < oo

(z,x)ER

For w a reduced word and f € L*°(X) the operators

(LoW)(x,y) = xp,(X)¥(w™x,y), D, the domain of w™*

(MrW)(x,y) = F(x)¥(x,y)

(w-closure, linear span of) generate a von Neumann algebra,
M(R) with trace 7(T) = (T4, 6), where ¢ is the characteristic
function of the diagonal of R.
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Remark

The case n = 2 in can be dealt with by following Deninger
provided that g1 and g» are full Borel isomorphisms.

If g, lg or g L, is ergodic then one can embedd the calculation
of the determinant in the hyperfinite |l -factor generated by the
Z-action ofgl_lgz, or gz_lgl (notice that the ergodicity of an
equivalence relation does not guarantee that of a subrelation).



Proposition (Deninger)
For an operator ® in a finite von Neumann algebra with a trace
7(1) = 1 the following formula holds:

Az~ )=
if the following two conditions are satisfied:

r(®) < |z| and if 7(®") = 0.
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Lemma
Let g : A— B a Borel partial isomorphism and denote by fg~! the
function (fg=1)(x) = f(g~1x). Then we have:

LgMp = Mg Lg
(Mng)n == Mf,fg—l,m‘fgf(nfl) Lg”
Proposition
Let & =37 | MgLg in M(R) where R is ergodic and treeable

and the gi’s are Borel partial isomorphisms and among its
generators. Then:

Proof based on: 7(MyL,,) = f{XMX):X} h(x)du(x) =0



Main Results

Theorem

Let f € L°(X) and T =i Mglg € M(R) such that

gi . Aj — B; are Borel partial isomorphisms among the generators
of a treeable (SP1) equivalence relation R. Assume that there is

an index iy such that

D i/ folloe < 1,
i#io

that f;, is non-vanishing on sets of positive measure and that
8iy - Afo =X - B,‘O = X. Then:

log A(T) = /X log |y |du(x)
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If R not necessarilty treeable and all L, partial isometries:

Theorem

Let f; € L*°(X) and g; : Ai — B;, i =1,..,n be Borel partial
isomorphisms in the standard probability space (X, B, u) such that
gi's are among the generators of an ergodic (SP1) equivalence
relation. If the following conditions are satisfied

° M(A1UA2...UA,7):1

° M(B;ﬁBj):Oifi#j

then the Kadison-Fuglede determinant of the operator

T =37, Mglg is given by

0g A(T) =3 [ o fldu
i=17Bi



Idea of proof: LZ,ng,. =0 and T*T is a multiplication operator.

T'T = My, f12g;xa,

g A(My) = [ log
X



