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Fuglede-Kadison determinant
Set-up: (M, τ) II1-factor, T ∈ M normal, |T | =

√
T ∗T .

∃E (λ) projection-valued measure

T =

∫
σ(T )

λdE (λ)

µT = τ ◦ E ∈ Prob(C), supp(µT ) = σ(T ).

Fuglede-Kadison determinant(1952)

M finite vN algebra with trace τ ,T ∈ M invertible

∆(T ) = exp(τ(log |T |))

Extend to any T ∈ M :

∆(T ) = exp

(∫ ∞
0

log tdµ|T |

)



Fuglede-Kadison determinant
Set-up: (M, τ) II1-factor, T ∈ M normal, |T | =

√
T ∗T .

∃E (λ) projection-valued measure

T =

∫
σ(T )

λdE (λ)

µT = τ ◦ E ∈ Prob(C), supp(µT ) = σ(T ).

Fuglede-Kadison determinant(1952)

M finite vN algebra with trace τ ,T ∈ M invertible

∆(T ) = exp(τ(log |T |))

Extend to any T ∈ M :

∆(T ) = exp

(∫ ∞
0

log tdµ|T |

)



Fuglede-Kadison determinant
Set-up: (M, τ) II1-factor, T ∈ M normal, |T | =

√
T ∗T .

∃E (λ) projection-valued measure

T =

∫
σ(T )

λdE (λ)

µT = τ ◦ E ∈ Prob(C), supp(µT ) = σ(T ).

Fuglede-Kadison determinant(1952)

M finite vN algebra with trace τ ,T ∈ M invertible

∆(T ) = exp(τ(log |T |))

Extend to any T ∈ M :

∆(T ) = exp

(∫ ∞
0

log tdµ|T |

)



Fuglede-Kadison determinant
Set-up: (M, τ) II1-factor, T ∈ M normal, |T | =

√
T ∗T .

∃E (λ) projection-valued measure

T =

∫
σ(T )

λdE (λ)

µT = τ ◦ E ∈ Prob(C), supp(µT ) = σ(T ).

Fuglede-Kadison determinant(1952)

M finite vN algebra with trace τ ,T ∈ M invertible

∆(T ) = exp(τ(log |T |))

Extend to any T ∈ M :

∆(T ) = exp

(∫ ∞
0

log tdµ|T |

)



Fuglede-Kadison determinant
Set-up: (M, τ) II1-factor, T ∈ M normal, |T | =

√
T ∗T .

∃E (λ) projection-valued measure

T =

∫
σ(T )

λdE (λ)

µT = τ ◦ E ∈ Prob(C), supp(µT ) = σ(T ).

Fuglede-Kadison determinant(1952)

M finite vN algebra with trace τ ,T ∈ M invertible

∆(T ) = exp(τ(log |T |))

Extend to any T ∈ M :

∆(T ) = exp

(∫ ∞
0

log tdµ|T |

)



Computation Rules

For n × n matrices τ = Tr/n: ∆(T ) = n
√
| det T |

∆(ST ) = ∆(S)∆(T )

∆(S) = ∆(|S |) = ∆(S∗)

∆(U) = 1 where U is unitary

∆(λI ) = |λ|

∆ is upper-semicontinuous both in SOT and ‖·‖
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Some recent use of ∆
• [Haagerup & Schultz, 2009] Calculation of Brown measures,
solution of the invariant subspace problem for operators in
II1-factors.
• [Bowen, Deninger, H.Li 2006-] Entropy of algebraic actions of
discret amenable groups, Ljapunov exponents etc.

A computational example

Theorem (Deninger, 2009)
(X , µ) probability space, f ∈ L∞(X ) non-zero µ-a.e.
M = L∞(X ) nα Z, α(1) = g : X → X ergodic measure preserving.
U the unitary implemented by the action :

log ∆(I + fU) =

∫
X

log |f (x)|dµ(x)

Problem: Calculate ∆ for other (ergodic, measure-preserving)
group actions.
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Countable Equivalence Relations
Set-up: (X ,B, µ) probability space, Ai ,Bi ∈ B
gi : Ai → Bi measure preserving bijections (Borel partial
isomorphisms), i ∈ I and I countable.

(gi )i generate an equivalence relation R with countable orbits:

x ∼ y if g ε1
i1
. . . g εkik

x = y

Definition
R is called ergodic if for any measurable set A ∈ B with A = R(A)
we have µ(A) = 0 or µ(A) = 1.

Definition
R is called treeable if
µ{x | ω(x) = x} = 0 for every ω = g ε1

1 g ε2
2 . . . g εkk reduced word.
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Example
• If Γ is a countable group then any free, ergodic action on a
standard probability space gives rise to an (SP1) equivalence
relation on that space.

• There is always an action: any countable group is acting freely
and ergodically on X = {0, 1}Γ equipped with the product measure
by means of the Bernouli shifts.
• Countable groups that give rise to treeable, ergodic equivalence
relations: free groups, amenable etc.
• Not necessary that the domains of the generators be all of X :
there are groups of non-integer cost hence some of their generators
must be defined on measurable pieces of X .
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Von Neumann algebra of an equivalence relation

Hilbert space L2(R) consists of those ϕ : R → C∫
X

∑
(z,x)∈R

|ϕ(x , z)|2dµ(x) <∞

For ω a reduced word and f ∈ L∞(X ) the operators

(LωΨ)(x , y) = χDω (x)Ψ(ω−1x , y), Dω the domain of ω−1

(Mf Ψ)(x , y) = f (x)Ψ(x , y)

(w-closure, linear span of) generate a von Neumann algebra,
M(R) with trace τ(T ) = 〈T δ, δ〉, where δ is the characteristic
function of the diagonal of R.
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Our goal in this setting: log ∆(
∑n

i=1 Mfi Lgi )

Remark
The case n = 2 in can be dealt with by following Deninger
provided that g1 and g2 are full Borel isomorphisms.
If g−1

1 g2 or g−1
2 g1 is ergodic then one can embedd the calculation

of the determinant in the hyperfinite II1-factor generated by the
Z-action of g−1

1 g2, or g−1
2 g1 (notice that the ergodicity of an

equivalence relation does not guarantee that of a subrelation).
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Proposition (Deninger)
For an operator Φ in a finite von Neumann algebra with a trace
τ(1) = 1 the following formula holds:

∆(z − Φ) = |z |,

if the following two conditions are satisfied:

r(Φ) < |z | and if τ(Φn) = 0.



Lemma
Let g : A→ B a Borel partial isomorphism and denote by fg−1 the
function (fg−1)(x) = f (g−1x). Then we have:

Lg Mf = Mfg−1Lg

(Mf Lg )n = Mf ·fg−1·...·fg−(n−1)Lgn

Proposition
Let Φ =

∑n
i=1 Mfi Lgi in M(R) where R is ergodic and treeable

and the gi ’s are Borel partial isomorphisms and among its
generators. Then:

τ(Φn) = 0, ∀n > 1

Proof based on: τ(MhLω) =
∫
{x |ω(x)=x} h(x)dµ(x) = 0
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Main Results

Theorem
Let fi ∈ L∞(X ) and T =

∑n
i=1 Mfi Lgi ∈M(R) such that

gi : Ai → Bi are Borel partial isomorphisms among the generators
of a treeable (SP1) equivalence relation R. Assume that there is
an index i0 such that ∑

i 6=i0

||fi/fi0 ||∞ < 1,

that fi0 is non-vanishing on sets of positive measure and that
gi0 : Ai0 = X → Bi0 = X . Then:

log ∆(T ) =

∫
X

log |fi0 |dµ(x)



If R not necessarilty treeable and all Lgi partial isometries:

Theorem
Let fi ∈ L∞(X ) and gi : Ai → Bi , i = 1, .., n be Borel partial
isomorphisms in the standard probability space (X ,B, µ) such that
gi ’s are among the generators of an ergodic (SP1) equivalence
relation. If the following conditions are satisfied
• µ(A1 ∪ A2 . . . ∪ An) = 1
• µ(Bi ∩ Bj) = 0 if i 6= j
then the Kadison-Fuglede determinant of the operator
T =

∑n
i=1 Mfi Lgi is given by

log ∆(T ) =
n∑

i=1

∫
Bi

log |fi |dµ(x)
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Idea of proof: L∗gj
Lgi = 0 and T ∗T is a multiplication operator.

T ∗T = MP
i |f |2gi ·χAi

log ∆(Mf ) =

∫
X

log |f |dµ


