1. Evaluate the following:

(a)
$$\frac{d}{dx} \int_5^{x^2 + e^x} \sin^2(x) dx.$$

(b)
$$\int \tan(x) dx.$$

(c)
$$\int_0^3 |2x - 3| dx$$
.

$$(d) \int_0^{\pi/4} \frac{1 - \sin^2(\theta)}{\cos^2(\theta)} d\theta.$$

2. A solid is formed by adjoining two hemispheres to the ends of a right circular cylinder. Find the dimensions that minimize the cost if the volume must be $300 \mathrm{ft}^3$ and the hemispherical ends cost twice as much per square foot of surface area as the sides.

3. Consider the sum:

$$\sum_{k=1}^{n} (k-2)^2.$$

(a) Find the value of the sum when n=4 by computing each term.

(b) Find the value of the sum when n = 50 by using the summation formulas you were given in class.

4. Find the value of f(c) guaranteed by the Mean Value Theorem for Integrals in the following problem:

$$\int_1^9 \frac{1}{\sqrt{x}(1+\sqrt{x})^2} dx.$$

5. Find the volume of the solid generated by revolving the region bounded by $y = x^2$ and $y = 4x - x^2$ about the line y = 6.

6. Find the left-hand, right-hand, and midpoint sums for the function $y = (x-3)^2$ on the interval [1,3] using four equally spaced intervals. What are you approximating, and which of the three is a better estimate for this?

7. Find the total area between the curve $y = \cos^2(2t)$ and the x-axis on the interval $[-\pi/2, \pi]$.