Important Formulas for Test 3:

1. Antiderivatives:

THIS I WOULD THE TOTAL THE					
	<u>Function</u>	Antiderivative		<u>Function</u>	Antiderivative
1.	x^n	$\frac{1}{n+1}x^{n+1} + C$	2.	$\sin kx$	$-\frac{1}{k}\cos kx + C$
3.	$\cos kx$	$\frac{1}{k}\sin kx + C$	4.	$\sec^2 kx$	$\frac{1}{k}\tan kx + C$
5.	$\csc^2 kx$	$-\frac{1}{k}\cot kx + C$	6.	$\sec kx \tan kx$	$\frac{1}{k}\sec kx + C$
7.	$\csc kx \cot kx$	$-\frac{1}{k}\csc kx + C$	8.	e^{kx}	$\frac{1}{k}e^{kx} + C$
9.	$\frac{1}{\sqrt{1-k^2x^2}}$	$\frac{1}{k}\arcsin kx + C$	10.	$\frac{1}{1+k^2x^2}$	$\frac{1}{k}\arctan kx + C$

11.
$$\frac{1}{x} \qquad \qquad \ln|x| + C, \qquad x \neq 0$$

12.
$$a^{kx}$$
 $\left(\frac{1}{k \ln a}\right) a^{kx} + C$, $a \ge 0, a \ne 1$

2. Summation:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \qquad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{2}, \qquad \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

3. Riemann Sum of $\int_a^b f(x)dx$:

Right Hand Rule:
$$\frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k\left(\frac{b-a}{n}\right)\right)$$

Left Hand Rule: $\frac{b-a}{n} \sum_{k=1}^{n} f\left(a + (k-1)\left(\frac{b-a}{n}\right)\right)$

4. Integration Rules:

Order of Integration:
$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$
 Zero Width:
$$\int_{a}^{a} f(x) = 0$$
 Constant Multiple:
$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$$
 Additivity:
$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Summation:
$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

5. Area under a curve
$$f(x)$$
 for x on $[a,b]$: $A = \int_a^b f(x)dx$

Area between the curves
$$f(x)$$
 and $g(x)$ for x on $[a,b]$: $A = \int_a^b (f(x) - g(x)) dx$

6. Fundamental Theorem of Calculus: If f is continuous on [a,b] then $F(x) = \int_a^x f(t)dt$ is continuous on [a,b] and differentiable on (a,b) and its derivative is f(x):

F.T.C.1:
$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$
 and

F.T.C.2:
$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

7. Substitution Rules:

Indefinite Integrals: If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then

$$\int f(g(x)) \cdot g'(x) dx = \int f(u) du$$

Definite Integrals: If g' is continuous on the interval [a,b] and f is continuous on the range of g, then

$$\int_{a}^{b} f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

8. Volumes by Slicing and Rotation About an Axis:

Disc or Washer Method: For a solid of revolution about the x-axis, if the cross-sectional area is A(x), where R(x) is the outer radius and r(x) is the inner radius, the volume is

$$V = \int_{a}^{b} A(x)dx = \int_{a}^{b} \pi \left([R(x)]^{2} - [r(x)]^{2} \right) dx$$

Cylindrical Shell Method: For a solid generated by revolving the region between the x-axis and the graph of $y = f(x) \ge 0$ with $L \le a \le x \le b$ about a vertical line x = L, the volume is given by

$$V = \int_{a}^{b} 2\pi (x - L) f(x) dx$$

Use the Cylindrical Shell Method for solids of revolution about the y-axis that are difficult to do with the washer method.