This is a random collection of sample problems; Problems unlike these may (will) be on the test, so prepare your own study guide.

1. Compute the following:

(a)
$$\int \sin 2\theta + \theta^3 + e^{-\theta} d\theta$$
, (b) $\int_1^3 2x^3 - 5x dx$,
(c) $\int_1^2 x e^{x^2 - 1} dx$, (d) $\frac{d}{dx} \int_2^x \cos(t^2) - t^3 dt$.

2. Using a suitable substitution, evaluate the following integrals:

(a)
$$\int \frac{1}{x^2} \sin\left(1 - \frac{1}{x}\right) dx$$
 (b) $\int_2^8 \frac{1}{x(\ln x)^2} dx$

- 3. Set up the integral(s) for the following problems. **BUT DO NOT evaluate the integral(s)**. First, sketch the region bounded by the curves $y = x^2$ and $y = x^4 4x^2 + 4$ between x = 0 and x = 2.
 - (a) Find the total area bounded by the curves between x = 0 and x = 2.
 - (b) Find the volume if the region bounded by the curves between x = 1 and x = 2 is revolved around the x-axis.
 - (c) Find the volume if the region bounded by the curves between x = 1 and x = 2 is revolved around the line x = -1.
- 4. Consider the function $f(x) = 2 x^3$ on the interval [0, 1]. Set up in Σ -notation **BUT DO NOT evaluate** the Riemann sum for the following functions on the given interval using a partition into n equal subintervals and the given rule.
 - (a) $f(x) = 2 x^3$ on the interval [0, 1] using the midpoint rule.
 - (b) $g(x) = x + x^2$ on the interval [1, 4] using the righthand rule.
 - (c) $h(x) = \cos(x)$ on the interval $[0, \pi]$ using the lefthand rule.
- 5. A rectangular plot of land will be bounded on one side by a river and on the other three sides by an electric fence. If you have 400 m of fencing, what is the largest area that can be enclosed?

Be sure to draw a relevant diagram and name your variables.

6. What point (a, b) on the parabola $y = x^2$ minimizes the distance to (6, 3)? Hint: minimize the square of the distance from (a, b) to (6, 3).