
RIEMANN SUM EXAMPLE

We find and simplify the Riemann Sum formula for f(x) = 3 + 2x − x2 on [0, 3] using n
equal subintervals and the lefthand rule.
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and, letting j = i− 1, we get
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and we can leave out the j = 0 terms, since they add nothing, to get
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and now we use the formulas with n− 1 to get
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For n = 10, this sum is equal to 9.405, for n = 100, it is 9.045 and For n = 1000, it is 9.004.
Finally, we can take the limit as n → +∞, to get
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