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1. Direct Problem of Adsorption:

(u+a); + (c1(z)u — Diug), = O,

at = v(¢(x)u —a),
forO<z <L, 0<t<T subject to boundary
and initial conditions

u(0,t) = u(t), 0<t<T
u(L,t) + Bug(L,t) = 0, 0<t<T

u(x,0) = 0, 0<x<L

a(z,0) = 0, 0<z<L

e u(x,t), a(x,t) are scaled concentrations of
transported and adsorbed substance, resp.

e c1(x) is transport velocity, D diffusion co-
efficient and § a positive flux coefficient.

e v is a rate parameter and ¢(x) a spatially
varying adsorption property of the underly-
ing medium.



0

(u+a), + (ci(x)u — Diug), ,
Y(p(x)u — a),

at
u(0,t) = p(t), 0<t<T
u(L,t) + Bus(L,t) = 0,0<t<T
uw(x,0) = 0,0<z<L
a(z,0) = 0,0<z<L

2. The Inverse Problem of Adsorption:

Given that u(z,t) is a solution to the direct
problem given by and suitable exact data, such
as

9(z) =u(z,T), 0 <z <L,

to determine the coefficient function ¢(x), = €
[0, L].



3. Modified Direct Problem:
We omit the terms ' (z) and u; to obtain

(DP):

Diugy (1)
Y(P(z)u — a) (2)
forO<z <L, 0<t<T subject to boundary
and initial conditions

c1(x)uz + ay
at

u(0, t) p(t), 0<t<T (3)
w(L,t) + Bux(L,t) 0, 0<t<T (4)
a(z,0) = 0, 0<z<L. (5)

The resulting inverse problem is

(IP): given that u(x,t) is a solution to the di-
rect problem given by (1)—(5), and exact data

9(z) =u(z,T), 0 <z <L, (6)

to determine coefficient function ¢(z), = € [0, L],
given in (2).



Parameter Conditions:

1. ¢ € C[0,L] and ¢(x) > 0 for = € [0, L].

2. c1(x) € C[O, L].

3. The constants D41, v and (3 are positive.
4. p € C|[0, L] and p is non-negative on [0, T].

5. e Cllo, L], u(0) =0 and 4/ is positive on
(0,T].

6. u'(t) — 7]6 e~ YE=T) /() dr > 0, for 0 < t <
T.

Theorem 1. Assume parameter conditions 1-

4. Then direct problem (DP) has a unique
non-negative solution u(x,t), a(x,t) with ugz, uzy, ar €
ClQr1] where Q- = [0, L] x [0, T].



Discussion of proof:

Integrate (2) and use the initial condition (5)
to obtain that for all (z,t) € Q,

a(z,t) = vo(x) /O e " y(z, 1) dr. (7)

If we substitute (2) and (7) into (1), we obtain
the equation

¢
c1(x)uy + yop(x)u — 72¢(x) / e_V(t_T)u(x, 7)dT = Diuge.
0

Now let ¢(x) = ¢1(x)/D1 and d = v/Dq, and
this equation becomes

—Ugr + (@) uz + do(x)u — ydop(x) /t e_W(t_T)u(:I:, 7)dr = 0.

i (8)
It follows that the direct problem is equiv-
alent to the problem (7), (8), (3) and (4).
One can now exploit properties of this integro-
differential equation to prove the existence,
non-negativity and uniqueness claims of the
theorem. []



For later reference, regarding a term in (8):

t t
d¢(x)u—7d¢(a:)/ e Ty (z, ) d7'=d<b(:c)/ e Ty (z, 7) dr.
0 0
(9)
What do additional parameter conditions yield?
Condition 5 yields a maximum principle:

Theorem 2. Assume parameter conditions 1-
5. If u,a is a solution to the direct problem,
then u; € C[Qr] and for (x,t) € Qp

")k < t) < max u(t
pw(t)k(z) < u(x, )_OStSTu(),

where k(z) is the solution to —v" + c(x)v’ +
do(x)v = 0 satisfying boundary conditions k(0) =
1 and k(L) 4+ BK'(L) = 0.

Condition 6 yields a comparison principle:

Theorem 3. Assume parameter conditions 1-
6. Let u(x,t; ¢;),a(x,t; p;) be a solution to the
direct problem corresponding to ¢;, 1 = 1,2. If
¢1(z) < ¢o(x) for z € [0, L], then wi(z,t; 1) >
ur(x,t; o) for (z,t) € Q.



4. Modified Inverse Problem:

(IP) Given that u(z,t) is a solution to the di-
rect problem given by (1)—(5), and exact data

9(z) =u(z,T), 0 <z <L, (10)

to determine the coefficient function ¢(x), = €

[0, L], given in (2). We make these assump-
tions.

Data Conditions:

1. g(x) € C2[0,L] and g(z) is a positive func-
tion.

2. g(0) = u(T) and g(L) + B¢'(L) = O.

3. ¢’(x) —c(x)g'(x) € C[0,L] and is a positive
function on [0, L].



We can see an approach to solving this prob-
lem by substituting g(x) into (8), then solving
this equation for ¢(x) and use (9). Next antic-
ipate a fixed point argument by defining and
using the formula for ¢(x) to define a nonlinear
operator

g"(z) — c(z)g' ()
dfOT e VT (x, 7; @) dr’

Certainly ¢(x) is a solution to the equation
égb = ¢, i.e., a fixed point of A. Conversely, if

¢ is a fixed point of A,

b= Ap=

(11)

T
g (x)—c(z)d'(z) = d/ e_V(T_T)ut(:I:, T:¢)dT = uge(x, T, g)—c(m)ux(:c, T; E)
0

Since both g(z) and u(z, T; ¢) satisfy the same
boundary conditions, g(z) = u(z,T; ¢) so that
#(x) is a solution to the inverse problem.

10



It follows from Theorem 2 that for a positive

¢(:’U)7

Ad = g'(z) —c(x)g'(z) 9"(z) — c(z)g'(x)

dfOT eV TNy (x, 7; d)dr dfg e Y T=T) yrrdr

= h(x)

(12)
where py; = maxo<i< 1/ (t). We define

E = {¢(z) € C[0, L] | ¢(x) > h(x), z € [0, L]}.

Then E C P, the set of positive functions in
C[0, L]. Throughout the following, we use the
uniform norms ||-|| in C[0, L] and C[QT]. The
operator A is said to be monotone if, for func-
tions ¢(x) and W(x) in the domain of A with
o(x) < W(x) for x € [0,L], we have A¢p(x) <
AW (x) for x € [0,L]. Operator A is compact
if it is continuous and maps bounded sets into
precompact sets. A well known theorem as-
serts that if the operator A is monotone and
compact, and operator A maps the non-empty
order interval [ug,u®] = {u|ug < u < u%} into
itself, then the sequences of iterates {A™ug} or
{A"0} converge to fixed points of A.

11



With this terminology we can show

Theorem 4. The operator A : P — E given
by (11) is a continuous and monotone operator
which maps bounded sets into equicontinuous
sets.

Theorem 4 is used to show the key theorem
for the existence of solutions to (IP).

Theorem 5. If parameter conditions 2-6 and
data conditions 1-3 are satisfied, then a nec-
essary and sufficient condition for the inverse
problem (IP) to have a solution is that there
exist a positive function ¢g(x) € C[0, L] for
which A¢g(z) < ¢g(xz), 0 <z < L.

Discussion of proof:
If (IP) has a solution ¢(x), we have already

that A¢p = ¢, so take ¢g = ¢.
12



Conversely, suppose that positive continuous
function ¢g(x) satisfies the inequality Ag¢g(x) <

oo(x). By (12) we have that for any positive
¢(x) and z € [0, L], h(z) < A¢(zx). Consequently,
the monotonicity of A implies that A maps the
order interval

I ={¢(z) € C[O, L] | h(x) < ¢(x) < ¢o(x), 0 <z < L}
into itself. By Theorem 4 the operator A: I —
I is a monotone compact operator. It follows
that the sequence of iterates ¢q, Adg, A%, . ..
converges to a fixed point ¢ of A, which as we

have seen in the introduction of this section,
must satisfy u(z, T; ¢) = g(x), 0 < x < L.

A computationally useful fact:

Corollary 1. If the inverse problem (IP) has a

solution, then the sequence of iterates h, Ah, A?h, ...

converges to a solution of (IP).

Remark. One can construct functions ¢, (x)
such that up(z,T) = u(x,T; ¢n) converge to
ug(x,t) = u(x,t; ¢g) uniformly on [0, L], yet
|én — ¢dol| = n tends to oco with n. Thus the
inverse problem (IP) is not stable.

13



5. Numerical Algorithms:

BVP algorithm: for the system defined on Qr

¢
— Uzt p(x)ur+q(x)u—yq(x) / e_W(t_T)u(x, 7)dr = F(x,t)
0

(13)
u(0,t) = u(t), 0<t<T (14)
u(L,t) + fus(L,t) = 0, 0<t<T (15)
define
T = te_W(t_T)u T, T)dT.
Uz, 1) /O (e, 7)d (16)

Let Ax = L/M and At =T /N be step sizes in

x and t to be used in the discretization of this
problem, where M and N are positive integers.

We view (13) and (16) as an evolutionary sys-
tem in the unknowns v and U. The evolutionary
aspect of U is made clearer by the observation
that

t

t— At
U(z,t) = / e_’Y(t_T)u(a:,T)dT-I—/ e ¢ Du(z, 7)dH17)
0 t

—At
t

= e AU (x, t — AL) + / e "y (z, ) dr.
t—At

14



Set t, = nAt, n = 1,2,...N and z;, = kAx,
k=1,2,... M. Define p,, = p(kAx), q. = q(kAx),

Hn = ,LL(’TLAt), Fk,n — F(k‘ACE, TLAt), uk,n ~ ’LL(CUk, tn) —
u(kAz,nAt) and Uy, = U(zy, tn) = U(kAxz, nAt)

Use centered first and second differences to
discretize (13) and a trapezoidal method to

discretize (17). We obtain

A At A
— <1 +pk7$) Uk;—l,n-l-{Q + (Az)?gy <1 — 77) } Uk p— (1 — pk;?x) Ukt 1,n =

At
(Azx)? {Fkn + ve "Rqy (Uk,n—l + 7uk,n—l> } : (18)

Upn = e U1 + %Gﬂm (uk,n—l + ukn) : (19)
These equations account for the interior nodes
(g, tn), k=1,...,M and n = 1,2,...N. Use
boundary conditions to eliminate terms wug,
and ups41 - Problem (13)-(15) is now solved
by single step marching method, which is ex-
plicit in time and implicit in space: given U,u
at (n—1)-th time level, solve the linear system
(18) for values of u at the n-th level, then use

(19) to solve explicitly for U at the n-th level.

15



Remark. Impose the stability restrictions At <
2/ and Ax < 2/||p||, and the BVP algorithm
converges to the solution with truncation er-
rors in even powers of the step sizes, so that it
is second order in step sizes. Therefore, the al-
gorithm can be computed at step and half step
sizes, followed by a single step of Richardson
extrapolation to vield a fourth order method.

Discretization of operator A: Recall that A¢p =

Tg”(x)—c(x)g/(x) . Assume exact data. First,
d [o e VT uy(z,7;¢) dr

discretize the data function ¢g and argument
function ¢ via g, = g(kAx), k=0,1,... M + 1,
and ¢ = ¢(kAzx), k=1,2,..., M. We can dif-
ferentiate equation (13) to obtain that v(x,t) =
ut(x, t) also satisfies such an equation, together
with boundary conditions v(0,t) = p/(t) and
v(L,t) + Bvz(L,t) = 0, so that the function
V(z,t) =) [§ e~ V=T)y(x,7) dr can be approx-
imated by the output of the BVP algorithm,
applied to v(x, t), resulting in approximate node
values Vi n.

16



Given an argument ® = (¢1,...,0), the dis-
cretized operator is given by

Ax . .
(AMCD)k—( + B9 gk-1 — 29x + (1 — x5 g1

de’N(ASB)Q

(20)
which is valid for £k = 1,2,... M. This requires
a value for gyr41, go, Which are determined by
the boundary conditions.

Algorithm for (IP): Use Corollary 1 to devise
a simple method, which we term the IP algo-
rithm, for computing the solution to the in-
verse problem; let the initial guess ®g be the
discretization of h(x) as defined in (12). Then
use fixed point iteration of (20) until conver-
gence.

17



6. Examples:

1. Let L =2, T =2, v=p8=1, c(z) =
1 4+ cos(3z)/3, ¢(z) = 2 — z/2 + z2sin(3z)/3
and u(t) = (1 — e *)/a, where a > 0. Param-
eter conditions 2-5 are satisfied. Parameter
condition 6 is satisfied if ag < 0.2031. We set
a= 0.2 and Az = At = 0.01. Use the extrap-
olated BVP algorithm to obtain the data func-
tion g(x) to a higher order of accuracy than
the expected accuracy of solution to the in-
verse problem. Then use IP algorithm in tan-
dem with unextrapolated BVP to compute the
solution to this inverse problem.

Here the initial guess for ¢(x) is the function
oo(x) = h(x) of (12). We see an approximately
linear rate of convergence until about the fifth
iteration, where the discretization error causes
fixed point iteration to stall.

18



Example 5.1 iterates with a=0.2.

2- T T T T T T T T T
S _
e lterate 1
L '~ T -— - lterate 2 |
1.8 '\\ N -— - lterate 3
. TN Ilterate 4
~. ~N N .
1.6 ~o } N\ —— Exact Solution
.\.\i
141 ~
\.
1.2+
< L
& 1
0.8
0.6
0.4j
0.2 '
0 | | | | 1 | | [ [
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

At the fourth iteration, the norm of the error
is ||g — ¢4|| = 0.0021. The monotone behavior
of the operator A is evident. When we halved
both Az and At, the final error was decreased

19



by a factor of about four, confirming that the
BVP algorithm is second order accurate.



Fixed point iterates for Example 5.1 with a=3.0.

25 T T T T T T T T T
~~~~~ Iterate 1
-— - lterate 2
ol — = - = — - -~ o — — lterate 3 |
=~ E N Iterate 4
~—= . _ I~ —— Exact Solution

Parameter condition 6, u/(t)—v [E e~ Y)W/ (1) dr >
O, for 0 <t < T, fails for a = 3. We see from
the picture that this condition is really needed

for the monotone property of A.
20



2. Effect of noise. These effects are strong.
Since operator A is compact, one needs a reg-
ularization strategy. Discretization of the def-
inition (11) of A by way of (20) is itself a reg-
ularization strategy with regularization param-
eter Az. Since the operator A is nonlinear, an
exact analysis of the error is difficult; however,
one expects that the principal source of diffi-
culty is in the discretization of the numerator
in (11). A simple Taylor series analysis shows
that if the noise level is bounded by ¢, then the
discretization error is bounded by a function of
the form

5 5
Aot Zx + er(Ax)?

for suitable constants cq,c> depending on c(x)
and the second and third derivatives of u; and
c(x). This expression is minimized (to leading
order in Az) at Az = (¢36)1/4, which provides
a regularization strategy. Alternately, one could
use Tikhonov regularization on the operator
equation ¢ = A¢. This would alter the form
of our calculations significantly. Or one could
use some sort of smoothing or filtration of the
data in the discretization we employ in (20).

21



A simple approach is to do a least squares fit
of the data points to a polynomial of some
degree.

Use the same parameters as in Example 1, cal-
culate the data “exactly” using a higher ac-
curacy calculation, and then add noise. The
noise is random and uniformly distributed on
the interval [—-6/2,6/2]. We took § = 0.0001.
In view of the discussion preceding this exam-
ple, one expects the optimum regularization
parameter to be Ax =~ 0.1. Since we are lacking
a priori derivative information, trial and error
will suggest an optimal value. Computations
for Ax = 0.05 and Ax = 0.1 are illustrated,
along with the exact solution. To compare, we
smoothed the data by doing a least squares fit
of a tenth degree polynomial to it, then applied
IP algorithm with Ax = 0.01. The plotted re-
sult clearly indicates that polynomial smooth-
ing is a superior regularization for (IP).
22



Fifth iterates Fifth iterate, polynomial smoothed data

\§ -~ Dx=0.01
' —— Solution

1.8}

16

— — Dx=0.05
—- Dx=01

14r — Solution

@)

0.6
04r

0.2f T

(Ax = 0.01 was too bad to be put in the first
graph.)
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Current Research:

We are continuing research on the general Di-
rect and Inverse Problems. Our analysis of
(DP) and (IP) have important connections to
the general problems.

To see why, we note that much of our analysis
carries through if a source term f(x,t) is placed
on the right hand side of (1). Introduce a time
derivative for u in (DP) to obtain

—D1ugy + c1(x)uxr + ay —uy
at = v(¢(x)u—a)
The corresponding operator for the inverse prob-
lem is

b= Ap=

g"(x) — c(x)g'(z) — w (=, T; ¢)
dfOT e~ YT=T)y(x, 7: &) dr

These forms naturally suggest “Kacanov'’ type
iteration schemes for deriving solution to the
direct problem and fixed point iteration for the
inverse problem.
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