A NEW SINC-GALERKIN METHOD FOR
CONVECTION-DIFFUSION EQUATIONS WITH MIXED
BOUNDARY CONDITIONS
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ABSTRACT. A new Sinc-Galerkin method is developed for approximating the
solution of convection-diffusion equations with mixed boundary conditions on
half-infinite intervals. The method avoids differentiation of the coefficients of
the PDE, rendering it appropriate as a forward solver in an inverse coefficient
problem. The method has the advantage that no functions are appended to
the sinc basis in the discretization. An error analysis is included, and it is
shown that the error in the approximate solution is bounded in the infinity
norm by the norm of the inverse of the coefficient matrix multiplied by a factor
that decays exponentially with the size of the system. We demonstrate the

exponential convergence of the method on several test problems.

1. INTRODUCTION

Sinc methods for the numerical solution of ordinary and partial differential equa-
tions have been extensively studied and found to be a very effective technique, par-
ticularly for problems with singular solutions and those on unbounded domains.
The first Sinc-Galerkin method was presented in [11] to solve two-point boundary-
value problems for second-order differential equations with Dirichlet boundary con-
ditions. The books [5] and [12] provide excellent overviews of existing methods
based on sinc functions for solving ODE’s, PDE’s, and integral equations. Sinc
methods have also been employed as forward solvers in the solution of inverse prob-
lems (see, for example, [6],[10],[4],[8])-

This work was motivated by the fact that applying the existing sinc methods
to convection-diffusion equations with mixed boundary conditions results in the
differentiation of the coefficient in the leading order term. This can be undesirable,

for instance when the method is being used as a forward solver in the solution of
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an inverse coefficient problem. Furthermore, in the existing methods the ease of
implementation is hampered by the need to append non-sinc basis functions to the
expansion of the solution. In this paper, a new Sinc-Galerkin method for the solu-
tion of convection-diffusion equations with mixed boundary conditions is presented
which has the advantage of being an appropriate forward solver in the solution
of an inverse coefficient problem, as it does not require the differentiation of the
coefficients. It also does not append any functions to the sinc basis. Furthermore,
the method is suitable for unbounded domains and singularities in the coefficients.

The convection-diffusion equation (CDE) in one space dimension for transport
of a nonreactive chemical tracer through a saturated heterogeneous porous medium
is [2, p.254ff]

(11 (@) + (1 = w@)psKai(x))er = (D(@)ca)e — (0(x)c)e — Aw(z)e+ f(2),

where c(x,t) is the concentration of the tracer, x is distance, ¢ is time, v(x) is the
advective velocity, w(z) is the porosity, A is the decay rate, f(z) is a source term and
D(x) is the dispersivity. The term (1 —w(x))psKqi(x)c; arises from modeling linear
reversible adsorption. In the case where porosity is constant and the transported
substances are in weak concentration, the coefficient of ¢; in (1) may be taken to
be a constant.

We abbreviate the coefficient of ¢; to p(x) and absorb the w(z) term into A(z).

Thus we obtain the equation
(1.2) pct — (D(x)ey)s + (v(X)e)g + Ac = f(z), t>0 x>0.

We will assume that f € L?(0,00), v € H'(0,00), v'(z) > 0,0 < X\g < X(z) €
L>°(0,00), and that 0 < dg < D(z), p(x) € L*(0,00) are bounded and

(1.3) zan;O D(z) = D4 = CONSTANT.

To complete the mathematical model, the CDE is subject to the initial condition
(1.4) c(z,0) =g(z), x>0,

the decay condition

(1.5) c(co,t) =0, t>0,

and Fourier boundary condition

(1.6) —D(0)ea (0, 1) + v(0)e(0, ) = v(0)G(t), t>0



where g(r) € H'(0,00) and G(t) € L?(0,T) is the concentration in the entrance
reservoir, which is assumed to be perfectly mixed. The suitability of various choices
of boundary conditions was studied in [13] where it was shown that the Fourier type
condition preserves mass balance. In [7] it is shown that in the case of constant p, the
problem (1.2), (1.3), (1.4), (1.5), (1.6) has a unique solution in L?([0, 7], H'(0, >))

which has norm

(L7) lell = ( / ' ([ 1etw? + oo Pac) dt)

Another existence-uniqueness proof in fractional Holder spaces can be found in [9].

1/2

The Sinc-Galerkin method presented here begins with the variational form of the
CDE. In obtaining the variational form, only one integration by parts is performed
to avoid differentiation of the coefficients. The key idea of our approach is to
transform the problem as follows: we introduce a rapidly decaying transformation
function which enables us to solve for a function ¢ that can be approximated by a
sinc expansion interpolating ¢ and its derivatives with exponential accuracy. This
circumvents the need to append any functions to the sinc basis at the expense of
explicitly introducing the value of ¢(0) into the vector of unknowns. Hence the
first step in the algorithm is to solve for ¢(0). This method was applied in [7] as a
forward-solver for the inverse problem of determining D(x) from measurements of
¢(x) in the steady-state case.

We compare our method to the Sinc-Galerkin method presented in Section 4.4

of [5] to solve equations of the form
(18)  Liu(x) = —u"(@) + pla)' (@) + q(@)ule) = f(z), a<w<b

with mixed boundary conditions at a and b. The idea in [5] is to express u in
terms of an appended sinc basis to obtain us ~ u and apply a Petrov-Galerkin
approach to Liuy. While this method is highly accurate, its application to the
CDE would involve differentiating the dispersion coeflicient D(x). In Section 5 of
this paper, we include some numerical comparisons with this method. Section 5.5
of [5] contains another approach for the discretization of self-adjoint forms such as
—(D(x)cy(2))s, but relies on the applicability of a sinc expansion of D(z). In [1]
a Sinc-Collocation method is presented for equations of the form (1.8) with mixed
boundary conditions at ¢ and b. This method, while accurate and efficient, also
involves appended basis functions and differentiation of D(x) when applied to the
CDE.



The paper is organized as follows. In Section 2 we present some notation and
background from sinc theory. The definitions and theorems of Section 2 are all
taken from [5] and are included for the reader’s convenience since they are used in
the derivation and convergence analysis of the new Sinc-Galerkin method. Section
3 contains the construction of the new Sinc-Galerkin method for the steady-state
problem. The convergence analysis is found in Section 4, and numerical experiments
are found in Section 5. Section 6 addresses the time-dependent problem, which
was solved using a weighted implicit/explicit method in the time variable. The

corresponding numerical experiments are found at the end of Section 6.

2. NOTATION AND BACKGROUND

The methods of sinc approximation for differential and integral equations rest
on substantial foundations which have been laid by F. Stenger and his students, a
complete development of which can be found in the texts [12] and [5]. In this section
some definitions and pertinent theorems from [5] are presented for the reader’s

convenience.

Definition 2.1. The sinc function is defined for all z € C' by

sin(mz) P 75 0

Tz

1 z=0.

sinc(z) =

Let h be a positive constant. We will denote the sinc basis functions by

x — kh

S(k,h)(a:):sinc( ) keZ, —oo<uz<o0.

Theorem 2.2. [Theorem 4.1 [5]] Let x, = kh, k=—-M,...,N.

(2.1) 8 = SG ) @)ome = { 1. i 5=k }

(2:2) 5 =S/ ) (@) = { 0 iF = )

For the assembly of discrete systems, it is convenient to define the following

matrices:

l
(2.3) 10 =191 1=01
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The matrix 1(9) is the m x m identity matrix. The matrix I") is the skew

symmetric Toeplitz matrix

oy ey
1
M=1 _1 1
2 2
-1
% =110

Definition 2.3. [Definition 3.1 [5]] Let D be a domain in the w = u+iv plane with
points a # b on the boundary of D. Let z = ¢(w) be a one-to-one conformal map
of D onto the infinite strip Dy = {z € C: z = z + iy, |y| < d} where ¢(a) = —o0
and ¢(b) = co. Denote by w = ¢(z) the inverse of the mapping ¢ and let

(2.4) F={weC:w=1¢x),z R} =(R).

Let B(D) denote the class of functions F' analytic in D which satisfy for some

constant a € [0, 1),
(2.5) / F(w)dw| = O(2]"), 2 — +oo
W(z+L)
where L = {iy : |y| < d} and for v a simple closed contour in D
(2.6) N(F,D) = lim / |F(w)dw| < oo
y—0D y

where this limit means that the contour 7 is 9D in the limit. Further, for h > 0,
define the nodes

(2.7) wy, = Y(kh), k=0,41,+2,....

In our example calculations we shall take z = ¢(w) = Inw and D = {w = re? €
C| |0] < d} so that ¥(z) = e*. Formulas for interpolation involving the infinite
cardinal series for a function f are discussed in [5] and [12]; here, we consider only
the truncated series.

The following theorem gives the error resulting from differentiating the trun-
cated cardinal series. A weight function g is needed to ensure the existence of the

derivative. As usual, [z] denotes the ceiling of .

Theorem 2.4. [Theorem 3.17 [5|] Let ¢'F/g € B(D) and h > 0. Let ¢ be a one-

to-one conformal map of the domain D onto Dy. Let ) = ¢~ 1, wy = (kh), and
5



' =9(R). Assume that there exist constants K and L so that for all £ € T

a7 [ g(€)sin(x(€)/h)
28 ‘dg_m {mw(@ —59) ]

|m€8D < Kh™™

(2.9) < Lh™™

CZ—mm {9(5) sinc (M)]

forallm =0,1,...,n. Assume that there are positive constants c, 3 and C so that
'@’ < K exp(—oz|¢(£)\), € S 1_\a

exp(—B[e(§)]), £ € Ty
where Ty ={£ €T :¢¢) =x € (—00,0)} and T, ={£ €T :¢(&) =z € [0,00)}.

Make the selections

« wd 3 2mwd
Then for all £ €T and m =0,1,..., n,
(2.11)
dm S F(wy) d” (m+1)/2 — /7 dalT
‘ dg—mF(g) - k;M g(wr) dEm [9(§)S(k,h) o p(&)]|| < KM™+D/2¢ -

oo

The following theorem is useful in the development of the Sinc-Galerkin scheme.

Theorem 2.5. [5, Theorem 4.4] Assume that there are positive constants o, 3,and
K so that

) < K { exp(ald(¢)]). € € T

exp(—Blo(§)]), £ € Ty

where Ty = {€ €T :¢(&) =z € (—00,0)} and T, ={ €T : ¢(f) =z € [0,00)}
and F = upw or u¢'w. Let By = (w/[S(, h) o oJw)(z) — (u([S(, k) o dJw)) ()]
Select N and h as in (2.10).
(a) Let vw € B(D) for v = f(z) or qu. Then

b
(2.12) / (vw[S(j, h) oqs](x)dx_h%’(xj)) < LoM ™2 exp(—(ndaM)'/?)

where Lg is a constant depending on v and d.
(b) Let u(p[S(j,h) o ¢|w)" € B(D) and Br =0. Then

Gl S G, )
[ o1sGm) e dlw e +h S (wpw)wn) 2 + 1T )
@ k=—M

< LiM*Y? exp(—(ndaM)'/?)

where L1 is a constant depending on u,p,w,and d.
6



Finally, we shall need the following result which is suitable for more general sinc

quadrature.

Theorem 2.6. [5, Theorem 3.8] Assume the notation of Theorem 2.5. Suppose

there are positive constants o,3,and K so that

FO)|_ o ] exp(-alé(©)). £ €T,
¢’<€>‘ N exp(—Blp(€)]), € €Ty,

where Ty ={ €T :¢() =z € (—00,0)} and Tp = {£ €T : (&) =z € [0,00)}.

Make the selections

Q 2nd 2nd

Then there is a constant L depending only on F, d, ¢ and D such that
b N
F(ak)
F(x)dx — h
| @ X 56

We observe that Theorem?2.6 remains valid if (2.10) is used to select N and h.

[N

< Lexp(—(2ndaM)'/?).

One can see from the proof of this theorem that the only change is a loss of the factor
of 2 in the exponential bound, which results in the same sort of exponential bound
as in Theorem 2.5. We will primarily be interested in the case that ¢(z) = Inz,

whereupon the inequalities on F'(§) reduce to

el el

F <K
LGIET R I,

3. NUMERICAL FORMULATION OF STEADY STATE PROBLEM

We first consider the steady-state problem

(3.1) Le=—(D(x)eg)s + (v(@)e)e + A(z)e = f(x), >0
(3.2) Ac(0) + Be,(0) = G, B#0
(3.3) cloo) = 0

where ¢ = ¢(z). Recall that only the natural boundary conditions A = v(0) and
B = —D(0), guarantee a well posed problem, so we must assume that the constants

of (3.2) have been properly chosen. We define the integrals

(3.4) T(c,u) = / (Deguy — veu, + Aeuw)dx
0

7



and
e A G
(3.5) R(c,u) = / f(z)udx + {C(O) <v(0) + ED(O)> - D(O)E} u(0).
0
Multiply (3.1) by u and integrate by parts to obtain that (3.1)—(3.3) can be written

in the variational form
(3.6) /OO(Dcwuw—vcuw—i—)\cu)dx = /OO f(z)udx+(—D(0)c,(0) 4+ v(0)c(0)) u(0).
0 0

Use the boundary condition (3.2) to eliminate ¢, (0) and we can express this varia-
tional form as T'(c,u) = R(c, u).

Next the problem is transformed in two steps to obtain what we will refer to as
the numerical variational form. We select a function p(x) such that p(0) = 1 and
lim,_, p(x) = 0 at approximately the same rate as c(xz). Asymptotic methods
such as WKB can be used to estimate this rate, but we note that in practice the
method was somewhat insensitive to the particular choice of p.

Define

(3.7) qo(z) =

so that ¢o(0) = 0 and ¢{,(0) = G/ B, and q satisfies the Fourier boundary condition
(3.2). Define
(A/B+9p'(0)—Dz+1

(38) 0 () = — p(a)

so that ¢;(0) = 1 and ¢1(0) = —A/B. Hence ¢ satisfies the homogeneous boundary
condition

(3.9) Aq1(0) + Bg} (0) = 0.

Now define

(3.10) &(z) = c(z) — qo(z) — c(0)q1 (@)

Then ¢ satisfies the homogeneous condition
(3.11) Aé(0) + B&(0) =0,

and since ¢(0) = 0 we have that &(0) = 0.

Thus, from (3.1) and (3.10) the numerical variational form is
(3.12) T(¢,u)+ T(qo,u) + c(0)T(q1,u) = R(c, u).

For a Sinc-Galerkin approximation we choose test functions u;(z) = w(x)S(j, h)o

¢(x) where w(x) is a weight function and ¢(z) is a conformal map from (0, c0) to
8



(—00,00), such as ¢(xr) = In(x). This is not the only possible choice for ¢(x)
and for further discussion of the alternatives, we refer the reader to [5, p. T9ff].
The unknown ¢(0) will be obtained via an auxillary equation derived at the end
of this section, and will be found before solving the linear system obtained by
orthogonalizing the residual in (3.12). Thus, for the present derivation, we will
regard ¢(0) as known. Assuming ¢ satisfies the hypotheses of Theorem 2.4, we can

approximate ¢ by

N

(3.13) Em(r) = Y 4

5 ()

Y(x)S (G, h) o o(x)

where v is an appropriately chosen weight function so that ¢ (z) is accurately ap-
proximated by the derivative of the cardinal sum, and h, M, and N, are chosen ac-
cording to Theorem 2.4. We define the sinc nodes zy = ¢~ 1(kh), k = —M,,..., N,
and let m = M, + N, + 1. Note that

ém(l'k) = dk.

For a true Galerkin method, we choose the weight function w(z) = v(x), but the
following derivation is carried out for a general w.
Note that differentiating the approximation (3.13) to ¢ and evaluating at xy

yields

Guon) = Y (@S 0 b))

which is exponentially accurate by Theorem 2.4. Now by the definition of 5](2 in
Theorem 2.2,

dp, 1 Al d 1)
~/ / J 1) s
Cp(TR) = —7 + — g —= Y05, P

where a subscript of & denotes evaluation at the node zg, e.g., v = vy(zk)-

For the remainder of this section we adopt the Einstein summation notation
where we sum over any repeated index in a product or quotient unless otherwise
indicated. Thus, applying the sinc quadrature formula of Theorem 2.6 to T'(¢, u;)
yields

(3.14) Tquad(&,uj) = — (Dyc),(u), — valr(us)y + Ml (us)k) -

9

e
S



Thus,

- h d
Thuad(Cm, uj) = o (Dk {Wzkk - 55? gi;f } (u))r — vrdp (uf) + )\kdk(uj)k) .

Note that for our choice u; = wS(j, h) o ¢,

(Uj)kzwk5§2) and (U;)ka;ﬁ(k + wy (5 (b , (nosumonk)

So
i) = 8 ) (i )
= —uds (wk(;](k) + w0 1>¢k> + Moy
For ease in building the discrete system, we use the property that 61(; ) = —52)

and regroup the terms in (3.15) to obtain the following expression (no sum on j).

(3.16)
Dw', Don/
Tyuems ) = h25200d; — ;D) La +5§z>wdk
3t Tr Vi
- 53(’“)ka’”’“¢’€ kr idr h 7 d 6;116)Ukwkdk + i,)\jwjdj.
h Yr ¢ ¢j

Let Diag(-) denote a diagonal matrix of node evaluations. Also, in general we
let Vec(f) denote a vector of node evaluations of the function f(z) at nodes x;,
j=—-M,,...,N,. To avoid subscript ambiguity, let d(z) = é,(z). We see from
(3.13) that Vec(d) = {d; }J__M Letting j = —M,,..., N, in (3.15) yields the

system
(3.17) {Tguaa(@my ug)} oy = M - Vec(d)

where the matrix M is given by

D 100 D ! 1
M = hDiag ( deu ) + I Diag (ﬂ> — Diag(Dyw')I™ Diag (—)
Y Y Y
— 1™ Diag(D 10 Diag (L) = hDiag (Y2) - 10D hDi
iag(Dy¢' w) fag { =) —hDiag {7 | = iag(vw) + h Diag ¢/

) =67 as defined in (2.3). The integrals T(q;, wS(j, h) 0 ¢), i = 0,1

are approximated by Tyuqq(gi, u;) as in (3.14). Since the functions g¢; are known,

and where

denoting the discrete approximations to {T(qi,uj)}jy;_Mm by T;, i = 0,1, (3.14)
10



yields the vectors

T; = I Diag(Dw)Vec(q) — IV Diag(vw) Vec(q;) + hDiag(%) Vec(q;)

/ /

+ hDiag(%) Vec(q)) — hDiag(v;L,) ) Vec(qi).

Since u(0) = 0, the discretized R(c,u;), j = —My,..., N, does not involve ¢(0)
and is simply

w
¢
Thus, the discrete system corresponding to the variational form (3.6) with u; =
wS(j,h)od, j=—M,,...,N, is

(3.18) Rg4is = hDiag(—) Vec(f).

(3.19) MVeC(d) 4+ To + coTy = Ryis

where ¢y = ¢(0). Let wo = M~ (Rais — To) and wy = M ~'T; and we may write

this equation in the form
(3.20) Vec(d) = wg — cowy.

We apply the following scheme for computing cp: Integrating (3.1) from 0 to co
and applying the boundary condition yields

g2 [ (@ -A@ads = DO)es(0) - o0)e(0)

- D(O)% ~ e <v(0) + %D(O))

By the sinc quadrature rule (and the Einstein summation notation) we have

/ f(z)dx ~ hf—ic and / Ax)e(z)dr ~ h)\klck
0 o 0 P
so that

fk )\kck N G A
(3.22) h(b;C h o ~ D(0) B co | v(0) + BD(O) .
We have
(3.23) ck = ¢k + (qo)x +¢c(0)(q1)k, k=—My,..., Ny
so that

(3.24) ek ~ (wo — cowr )k + (qo)k + co(q1)r
11



Substituting for ¢ in (3.22) yields the following equation :
(3.25)
hi—z — h;—z (wo — cow)r + (q0)k + colqu)r} = D(O)% — ¢ (’U(O) + %D(O)) .
We solve for ¢y to obtain
D(0)F + 4 { M ((wo)x + (q0)k) — fi}

v(0) + £ D(0) + hi—;': {(wi)r — (q1)x}

(326) Co —

We summarize the algorithm for the solution to the CDE:
Algorithm
(1) Form M, Ty, and T3.
(2) Compute wg = M~ Y(R - Tp) and w; = M~ 1T7.
(3) Calculate ¢y by (3.26).
(4) Calculate Vec(d) from (3.20).
(5) Compute Vec(c) from (3.24).

4. CONVERGENCE ANALYSIS

In order for the discretizations we have employed to be valid, the hypotheses
of Theorems 2.4-2.6 have to be satisfied for many functions in our discussion.
Throughout this section we assume that the coefficients D, v, A and f in (3.1) —
(3.3) and the unique solution ¢ are analytic in the simply connected domain D
containing 0 and oo on its boundary and that ¢ is a conformal map of D onto the
strip Dg = {z € C: z = x + 4y, |y| < d} such that ¢(0) = —oo and ¢(o0) = 0.
Assume also that qo, q1, D& (wS(k,h) o @), vé(wS(k, h)o @) \é, Aéw, A\éw € B(D).

We assume that constants «, 5 can be found such that the exponential inequality

exp(—alp(§)]), £ € Ta
exp(=Blo(E)]), € € T

where 'y = {{ €T : ¢§) =2 € (—00,0)}and T, = {£ € T : ¢(&) =z €

[0,00)} is satisfied for all functions F' needed to validate the sinc quadratures and

|[F(6)| <K

interpolations used in our algorithm. Given M,, choose

« rd \'/?
(4.1) N, = (BMx—l-l] and h= <aMm> .

Denote the Sinc-Galerkin solution obtained by the method of Section 3 by ¢, (z),
m = M, + N, + 1. Then we wish to find a bound on ||¢ — ¢, || Recall, uj(z) =

w(x)S(j,h) o ¢(z). Here we will choose w(z) = v(x) = x/(10 + x)?, as used in the
12



computations. (Other choices are possible. Some justification for this particular

w(z) is given at the beginning of Section 5.) From (3.12) we have
(4.2) T(¢,u) = R(u;) — GT(qo, u;) — c(0)T' (g1, uy).
Let the vector g be defined to have jth component
g; = R(u;) — GT(qo, u;) — c(0)T' (g1, uy).
We define the discretization error vector
e1 = Tquad(G,uy) — T(E uy)

where ¢ is the exact solution to (3.12), i.e., T'(¢, u;) = g;. We define the right-hand
side error vector
€2 = ¢g; — Jj

Where gj = Rdis(uj) — GTquad(q07 Uj) — C(O)Tquad(ql, Uj).
Now let &, solve Tquqd(ém,u;j) = §;. Then
(43) Tquad(& — &m; Uj) = T(&, ’U,j) —+ €1 — gj

= gj+el—(g; —e2)

= e1+es.

Throughout this section we shall abbreviate the infinity norm to ||-|| ., = ||-|| .

Lemma 4.1. Assume that the coefficients D,v,\ and [ in (3.1)—(3.3) and the
unique solution c are analytic in the simply connected domain D,,. Let ¢ be the

conformal map of D,, onto Ds. Given M, choose

o rd \'/?
Nmzngm—i—l] and h:(aMz) :

Assume also that D& (wS(k,h) o @), vé(wS(k,h) o ¢)', Aéw € B(D). Let N =
min(M, N;). Then

(4.4) lerlloo < K (MY? + M2 + N3/*) exp(—VmdaN).

Proof. We let K be a constant, independent of M, which will be permitted to
change without relabeling. Define

Nz

(4.5) @) = S Sk h) o o).

My PARACD))




Then
Tquad (@ uz) = T(Eus)l < |Tquad(E15) — Tquad (Mms u5)] + Tquad (Mms u5) = T (0, uj)]
+ T (s u) = T(E uj)].
By Theorem 2.5
| Tguad (ms 45) — T (s uj)| < LaMY? exp(—+/mday).

By (3.14) and Theorem 2.4

Touaa(@5) = Tyuaallm )
Dy (u); , |
< ([P e g [P o e+ [P )
9 i 5
< hKMye Vrdes (’Dk(u”k vk (1) )\k(uj)k>
2 o &,

Since h < KM, */* and [1/¢5] < KM}?, we have
T guad (m; 45) = Tquaa (€ u5)| < K Mpe VM (1D (uf) | + o ()] + Ak (ug)il)

Since w and w’ are bounded and |S(k,h) o ¢(x)| < 1 and |(S(k,h) o ¢)'(z)] <
KM,

(46) |Tquad(77m7 uj) - Tquad(&7 uJ)| S KMze_ mdaM, (Kle + KQMm + KB)
So
(4.7) |Tquad(Mm, ;) — Tuada (G, uj)| < KMw2 exp(—+v/mdaM,).

Finally, by Holder’s inequality

T (M) —  T(Euy)
< / D(n,, — & )u)jdx +/ V(N — E)ujdx +/ AN, — €)ujdx
0 0 0
<

1D 2l = Ell2 + [[vujllalinm = ell2 + | Auglla|lnm — el
In Chapter 4, [12] one finds the bound

(4.8) diS(k, h) olog(z)| < Cma~"/h,
X

which implies, for our choice v = 2/(10 + )2,

d . d .
(4.9) IDU)| < [[Dllooll 52 Sy h) 0 ¢ +y~=S(j, h) 0 ¢lla < o0,
dx dx
14



Similarly, ||vou}| < co. By equation (4.4.13), [12],

(4.10) It =&l < CLNZ/Ael-VrdaR)
(4.11) i —llz < ColNy/*el=VrIaRe)

Finally, since |lu;||2 < oo, we have

T (s ) = T(@ )| < KNG/ el Vmdans),
This proves the lemma. O
Lemma 4.2. |je3]|o < KMY? exp(—v/mdaM,)

Proof. By Theorem 2.5

l9; = 951 < [R(u;) = Rais(u;)] + |GI[T(qo, u;) — Tguad(qo, u;)]
+ (0| Tquaa(qr; uj) — T(qu, uj)|
< LoM, '/ exp(—\/mdaM,) + |G| La M}/ exp(—+/mdalM,)
4+ 1e(0)|LaM}/? exp(—+/mdaM,)
< KM% exp(—+/mdald,).
This proves the lemma. (]

Theorem 4.3. With the assumptions of Lemma 4.1 there exists a constant K

independent of M, such that

¢ — ém| < K || M~ M exp(—VrdaN).

If, in addition, %, is bounded by a multiple of m and q1 is chosen such that
k lloo

IS Ma)qu (@) d # 0(0) + 4D(0), then there erists a constant C' such that

[¢(0) — col| < C || M| M52 exp(—VwdaN).
Proof. Note that from (4.3) we have that
1€ = Gmll < [[M7H]| (lleall + lle2l]) -

Since N, is less than a constant multiple of M, the first assertion of the theorem
follows from Lemmas 4.1 and 4.2.
To estimate the error in approximating c¢(0), we let H = v(0) + 4 D(0), so that

B
(3.21) becomes

(4.12) /0 T (F = AE+ Gao + c(0)q))de. = D(O)G — c(0)H

15



Thus we have

(413)  —h2E —h2E (et Gy + cO)q )k — e = D(O)

G
—c(0)H
P 0

B
where e3 is the error produced by performing sinc-quadrature on (4.12) as specified
by Theorem 2.6. If in (4.13) we replace ¢(0) by co, ¢ by &, and delete the error
term e, we obtain (3.25), which is the equation used to solve for ¢y. Subtract (3.25)
from (4.13) and there results

DY

(4.14) —h¢—;€((c —&m) + (¢(0) — co)q1)k — e3 = —(¢(0) — o) H.

So the error e = ¢(0) — ¢y satisfies

(4.15) (H - h(/\ql)’“) e = —h2E (G Gk + es.
ol ol

Note that as m — oo, hg—;’: — fooo Az) dz the coefficient of e tends to H —
fooo M2)q1(z) dx, which is a nonzero constant by our hypotheses. Furthermore,
e3 is bounded by a constant multiple of exp(—+/7daM,,) and h;—z is bounded by a
multiple of M'/2 by our hypothesis on ¢, the definition of & and the fact that \(x)
is bounded. Thus, if we take absolute values of both sides, divide by the coefficient
of e and use the first assertion of this theorem, we obtain that for some constant C'

independent of M,

(4.16) c(0) — co| < CMB/2 exp(—+/ndaM,).
0

We remark that the technical hypotheses of the second part of the preceding
theorem are easily satisfied by most problems. If ) is nonzero anywhere, the first
condition can satisfied. And the condition on ¢’ is easily seen to be true for the
two most commonly used choices of ¢, namely ¢(x) = Inx and ¢(x) = In(sinh(u)).

We conclude this section with a discussion of the matrix M. We use the infinity
norm in this discussion. The ideal situation would be for cond(M) to be polynomial.
However, numerical evidence from each matrix used in this paper suggests that || M|

grows exponentially. Unfortunately, this is demonstrably true is some cases.

16



Example 4.4. Let D(z) = 1,v(z) = 0, A\(z) = 1, v(z) = w(z) = ¢'(z) = 1/x. The

matrix M is given by
L) 4o 1)~ Diag (=) 1 pi
(4.17) M = hDiag + I'" Diag — Diag s I'Y Diag(xy)
3 3 k
I Diag L lI<1>Diag(a:k)+h1<0>
) h

Let us estimate the (1, 1)-th entry of the matrix M. Since I(!) is skew-symmetric,
diagonal entries are zero and so the second and third terms of the right-hand side
make no contribution to this entry. Also, the contribution of the last term tends
to zero with h, and one can show (we omit the details) that the first term makes a
contribution that is negligible relative to the contribution of the fourth term, which

we now examine. Let D = Diag(1 /xz/ %) so that this term becomes (1/h)B, where
(4.18) B = (DITDI® Diag(xy,).

Certainly 1/h > 1, so it suffices to examine the matrix B. We see that the (1,1)-
th entry of B is product of a sum of squares of the entries of the first column of
DI™ and the first entry of the diagonal matrix Diag(zy). Now recall that z; =
exp(—kh), k= —M,...N,. Thus, the second entry in the first column of DI(")
is exp((M, — 1)h(3/2)). Hence the (1,1)-th entry of B is a sum of squares, one of
which is exp(3(M, — 1)h) multiplied by exp(—M,h). This entry can be shown to
be of order exp(AMml/ %) for some positive constant A (we omit the details here).

Thus || M || grows exponentially with M.

Fortunately, our error estimates involve ||M ~!|| and not cond(M). Now it is
customary to consider the condition number of the (invertible) coefficient matrix
of a linear system Mz = b as the deciding factor for accuracy, as it appears as a
coefficient that amplifies error. However, we can get a different perspective if we
we have to go back to the classical forward error inequality and express it in this
form: If Mz = b and (M + AM)(z + Az) =b+ Aband r = [|[AM M~!|| < 1 then

we have
|Az| _ |[M 1||{ IAbII}
< AMI| + ||M
T2 = [AM]| + [[M]| T

Now when we solve a system Mx = b, by backwards error analysis, we effectively

solve a system with perturbed coefficient matrix as above. Only input or indepen-

dent calculation of b will introduce the error term Ab. Thus, given that ||M~!|

grows more slowly with its size than || M|| and || M|| grows exponentially with size,
17



we see the importance of starting with an accurate right hand side b order to have
the term || M/ ! || be the major source of amplification of error rather than cond(M).

Numerical experiments indicate that the behavior of | M ~!|| is quite complex. In
Figure 4.1 we plot norms versus matrix dimension for different coefficient matrices
M that come from the test problems in the following section, and dimension m =
1,...,320. (In sinc applications, most examples are satisfactorily solved by matrices
in this range.) In each case, the exponential growth of ||M|| is apparent. On the
other hand, HM ’1H appears to grow linearly over a large range of dimensions,
then abruptly changes to quadratic growth followed by sub-quadratic growth. For
matrices in the linear range we expect to see obvious exponential convergence rates
of solutions, and our test problems will bear this out.

The matrix I(Y) is central in the construction of M. There is a well known con-
jecture in sinc theory that ||(I(Y)~!|| grows linearly with the size of the matrix,
when it is invertible, and thus ||(/("))~2| would grow quadratically. Even invert-
ibility was unknown until recently when it was proved [3] that (V) is invertible
if the matrix is of even order. Thus, the exponential convergence of the method
remains a conjecture. However, exponential convergence is demonstrated on the

test problems in the following section.

5. NUMERICAL RESULTS

In Examples 5.1-5.4 below, we consider the steady-state problem

(5.1) —((1=05e")ey)p +co+c = f(x), x>0
(5.2) ¢(0) = 0.5¢,(0) = G
(5.3) cloo) = 0.

In each example the weight function ~ of (3.13) was chosen to be
x

(5.4) V(z) = 0122
This choice ensures that (y(z)S(k, h)od(x))’ is continuous and integrable on [0, c0).
Other choices of v are possible, and the 10 in the denominator is arbitrary, but
serves to move the singularity of (x) away from the domain (0, c0) which results
in greater accuracy in derivative approximation. However, this increase in accuracy
tapers off as the singularity approaches —oo.

In regards to the implementation of the code, there are several details we men-

tion. First, if a solution is assumed to have exponential decay and the conformal
18



E— Example 5.1

Example 5.3

- = - Example 5.4

10’17 : : : e : : : ]
10° 10
Dimension

FIGURE 4.1. Log-log plot of norms of |[M| and ||[M~!| for the
coeflicient matrices of Examples 5.1, 5.3 and 5.4 against matrix

dimension.

mapping ¢(x) is used, then the prescription for computing N in (2.10), namely

N = [GM], can be replaced by the formula

N = [% In <%Mh)]
while preserving the exponential accuracy of sinc approximations (see [5, p. 77]
for a discussion of this point.) There results a considerable reduction in the size
of the systems needed for the examples. This economization is applied to each
of the following examples except Example 5.3, where the solution has polynomial
decay. Moreover, there are cases in which I(!) could actually be a factor of the
coefficient matrix M. To ensure nonsingularity, we adjust the size of the coefficient
matrix by one if necessary, so that size is even. These results were generated using
Octave. Versions of the programs used can be obtained from the authors (e.g.,

tshores@math.unl.edu).
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Finally, there is the issue of determining the optimum convergence rate param-
eters d, a and (. In the absence of additional information it is usually safe to take
the minimum values « = 3 =1 and d < 7/4. These are conservative choices which
work reasonably well in most cases. In fact, it is no accident that o = 1 is the
optimum choice in most cases. Consider the systems we solve. In the terminology
of Section 3, the coefficient matrix is M and the right hand sides are Ry;s — Ty and
Ti. As we saw at the end of the preceding section, it is imperative that these terms
be calculated exponentially accurately. Therefore, choices of o and 5 must be well
suited to these integrals. There is no difficulty with the term Rgy;s — Tp. However,

one of the terms in the integrand that is discretized in 7} is the function

(d(x)q1 (x) = v(x)q(x)) w(z)¢' ()S(k, h)') o ().

It is easy to see that F(z) = w(z)¢'(z)S(k,h)’) o ¢(z) tends to 0 as z — 0T as
1/ lnz|. Recall that sinc quadrature mandates that o be chosen so that F(z) =
O(x*~ 1), x — 0F. Therefore, we should not choose o larger than 1 in general,
though there may be cases, such as when ¢(0) and ¢/(0) are both 0, where o > 1
works well.

In the following examples we denote the error at 0, |co — ¢(0)|, by |e(0)| and the
sup-norm of the error at the sinc nodes by ||e(xf)|/c. In the first three examples,
¢(0) =1, and in the last example ¢(1.3) s 0.4, so that in all cases absolute error is

a good measure of relative error.

Example 5.1. (erfc-like decay) Here we chose ¢(z) = e~ /4, and computed f(z)
accordingly. We also calculate G = 1. The function p(z) was chosen as p(z) = e~
The sinc parameters of Theorem 2.4 were chosen to be a = 1,5 =1, d = 7/3. The
algorithm was tested for several values of M,. Norms of the coefficient matrix M

and M~ along with the resulting errors are tabulated in Table 2.

Example 5.2. (exponential decay) Here we chose c(z) = (1 + 22%)e™®

f(z) accordingly, and chose p(z) = e~®. We also calculate G = 3/2. Note that

computed

the coefficient matrix M is the same as in the previous example since the same
choices were made for the sinc parameters «, §, and d. The algorithm was tested
for several values of M, and the condition number of the coefficient matrix M and

resulting error is tabulated in Table 2.
20



a=1,8=1d=7/3

Mo [ T oo [ Ml [ el el
12 | 0.64 | 1.49e+00 | 8.94e+02 | 5.67e-03 | 1.11e-02
16 | 22 | 0.45| 1.22e+01 | 2.06e+03 | 1.75e-03 | 3.39e-03
32 | 40 | 0.32 | 2.53e+02 | 5.06e+03 | 4.89e-04 | 5.04e-04
64 | 78 | 0.22 | 1.46e+04 | 3.07e+04 | 2.27e-05 | 2.78e-05
128 | 148 | 0.16 | 5.78e+06 | 1.03e+05 | 1.69e-08 | 1.28e-06

oo

TABLE 1. Example 5.1 with erfc-like decay.

a=1,6=1d=n/3

My | m | b | My | [[M7H ] e | lle(n)lls
12 | 0.64 | 1.49e+00 | 8.94e+02 | 1.01e-03 | 5.76e-03
16 | 22 | 0.45 | 1.22e+01 | 2.06e+03 | 6.52e-04 | 1.12¢-03
32 | 40 | 0.32 | 2.53e+02 | 5.06e+03 | 1.33e-03 | 1.33e-03
64 | 78 | 0.22 | 1.46e+04 | 2.88e+04 | 8.18¢-06 | 3.01e-05
128 | 148 | 0.16 | 5.78¢+06 | 1.03e-+05 | 5.05¢-08 | 2.14e-07

oo

TABLE 2. Example 5.2 with exponential decay.

Inspection of Table 2 reveals a curious phenonemon: the error is not monotone
decreasing in step size h. The spacing of nodes in sinc methods is not uniform, so
that halving step size does not uniformly halve node separation. Thus, one might
expect that decrease in error need not be strictly monotone in every case. However,
doubling the error in going from a system of dimension 22 to dimension 40 seems
disconcerting. Typically, such irregular convergence rates (or no convergence at
all) signals a bad choice of parameters in sinc methods, which can be sensitive
to the choice of parameters. Here are some guidelines that we have found useful,
especially in situations in which the solution to the differential equation to be solved
is really unknown (as opposed to our examples of systems generated by prescribed
solutions.) We assume, of course, that some choice of parameters satisifies the

conditions of Theorem 4.3:

(1) Use available information to estimate convergence rate parameters a, 8 of

the solution at 0 and infinity. As we noted earlier, in our setup, a« = 1 is
21



a good choice for most problems and (3 has to be estimated by behavior of
the solution at oco.

(2) Start with a conservative (small) choice of d and increase it to a maximum
of d = 7/2. (The motivation here is that a valid choice of d which is larger
will improve the exponentially decreasing term of Theorems 2.4 and 2.5.)

(3) Use inspection of an error table to search for improved estimates for «, 3
and d found in (1) and (2).

It is possible to observe rough convergence rates with an unknown solution. One way
to do so is to find a large dimension M, for which the system matrix is numerically
nonsingular and use the resulting computed solution as the “true” solution by which
error is measured. Equations (3.10) and (3.13) give us a formula for the “true”
solution at any point in the interval of interest. Then calculate the node “error”
for smaller choices of M, and make out tables as we have done in Examples 5.1-
5.2. Good a posteriori evidence that reasonable choices of the dimensions M, have
been made will be indicated by an error table that suggests exponential convergence
rates.

To illustrate this strategy, we revisit Example 5.2 and imagine that we do not
know the solution in advance. A crude asymptotic model for Equation (5.1) can
be obtained by letting the terms of the differential equation pass to the limit as

x — 00, resulting in
—Cpz+Ce+¢c=0.

The only decaying solutions to this equation are scalar multiples of e** with \ =
(1 —+/5)/2 ~ —0.62. This suggests that 3 = 0.6 might be a safer choice than
B=1. Weused « =1, § = 0.6 and d = 7/4 to start our investigation and found
that we could increase d to the value d = 7/2.5 with nonsingular coefficient matrix
for M, = 150 to generate our “true” solution. The results are recorded in Table 3
with ||e(xy)||,, denoting errors found by using the estimated “true” solution. These
numbers compare quite favorable with the actual errors which are listed to the left
of the estimated errors. Note also that the error for M, = 128 in Table 3 is about
half the corresponding error in Table 2. The overly optimistic estimate of Table 3
should be expected, since the approximate solution with M, = 150 is used in place

of the exact solution.

Example 5.3. (polynomial decay) Here we chose ¢(z) = %, computed f(x),

and chose p(z) = e~*. We also calculate G = 1/2. The sinc parameters were taken
22



a=1,=06,d=m7/25

My | m | b | Ml [ [[MH | le@] | [20O) | lle@i)lloo | (@)l
8 | 12 | 0.64 | 1.49e+00 | 8.94e+02 | 1.90e-02 | 1.90e-02 | 3.22e-02 | 3.22e-02
16 | 22 | 0.45 | 1.22e+01 | 2.06e+03 | 2.72e-03 | 2.72e-03 | 5.12e-03 | 5.12e-03
32 | 40 | 0.32 | 2.53e+02 | 5.06e+03 | 5.50e-05 | 5.50e-05 | 1.98e-04 | 1.98e-04
64 | 78 | 0.22 | 1.46e+04 | 2.88e+04 | 3.78¢-06 | 3.78e-06 | 1.36e-05 | 1.36e-05
128 | 148 | 0.16 | 5.78e+06 | 1.03e+05 | 2.56e-08 | 1.33e-08 | 1.03e-07 | 1.02e-07
TABLE 3. Example 5.2 with exponential decay.
a=1,6=2,d=7/6
My | m | b | (Ml [ M7 | le)] | lle(za)lls
8 | 14 | 0.45| 8.26e-01 | 6.91e+02 | 1.27e-01 | 6.15e-01
16 | 26 | 0.32 | 2.80e+00 | 1.63e+03 | 1.65e-02 | 6.98e-02
32 | 50 | 0.27 | 2.02e+01 | 3.82e+03 | 3.59¢-03 | 1.11e-02
64 | 98 | 0.16 | 3.90e+02 | 8.99e+03 | 2.76e-04 | 8.11e-04
128 | 194 | 0.13 | 2.69e+04 | 3.23e+04 | 7.43e-06 | 5.63e-05
256 | 386 | 0.08 | 1.09e+07 | 1.52e+05 | 7.74e-07 | 7.74e-07
TABLE 4. Example 5.3 with polynomial decay.

tobe « = 1,8 =2, and d = w/6. The reason for a choice of d different from the

preceding examples is that in the absence of solution knowledge, one would still be

able to observe terms with denominator ¢(z) = 1 — 2 + z* in the right hand side

f(z). Now we want f(z) to be analytic in B(D), which is a wedge centered along

the positive z-axis, with vertex at the origin and angle d from the positive z-axis.

Since one of the roots of ¢(x) is approximately 0.727 + 0.434, we choose a smaller

angle to exclude this point from the wedge. Also, one could observe quadratic

decay in f(z), motivating the choice 5 = 2. The results are detailed in Table 4.

One observes that due to the slower decay, in this example more nodes are needed

to achieve accuracy comparable to previous examples.
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Method 1 Method 2
My | omo | (IM] | IMY | le@ollss | I1IM | M | lle(@r)lloo
8 14 | 9.89e-01 | 3.72e+03 | 3.52e-02 | 1.97e-02 | 6.31e+01 | 1.27e-03
16 | 26 | 5.55e+00 | 6.91e4-03 | 9.60e-03 | 1.82e+03 | 4.17e4-02 | 9.68e-05
32 | 50 | 7.93e+01 | 1.22e+04 | 1.13e-04 | 4.02e+04 | 1.16e+04 | 1.76e-06
64 | 98 | 2.70e+03 | 2.63e+04 | 2.08e-07 | 2.73e+06 | 1.18¢e+06 | 1.08e-08
128 | 194 | 4.84e+05 | 5.82e+05 | 2.41e-10 | 8.19e+08 | singular | 5.06e-11

TABLE 5. The new Sinc-Galerkin method (Method 1) and the tra-
ditional Sinc-Galerkin method of [5] (Method 2) applied to Exam-

ple 5.4 with sinc parameters « = 1,0 = 2, d = w/4. The error

le(0)| is not applicable for the traditional method, so not listed.

Example 5.4. (singular coefficient) In this example we consider

—Cag + Cx

3
T

c(0) — ¢ (0)

¢(o0)

= efz(g:cl/Q —22%?), >0

0

= 0.

This problem has solution c(z) = 2%/2¢~*. The results of our method with p(z) =

e and a =1,8 = 2, d = /4 are found in Table 5, and compared to the results
of the Sinc-Galerkin method in Section 4.6 of [5] with a = 1,8 = 2, d = 7/4.

Also included is the condition number of the coefficient matrix M of each method.

From the table, it is evident that the convergent rates are comparable, with the

traditional Sinc-Galerkin method exhibiting slightly more rapid convergence and a

more ill-conditioned coefficient matrix.

6. THE TiIME DEPENDENT PROBLEM

Consider the time dependent problem

6.1

(=2}
)

[=))
o

(6.1)
(6.2)
(6.3)
(6.4)

p(x)ey + Le = f(x,t), =>0,t>0
Ac(0,t) + Bey(0,t) = G(t), B#0
c(oo,t) = 0,
o(x,0) = g(z)




where Lc = —(D(z)cg)s + (v(x)0)y + A(x)c and ¢ = ¢(z,t). Again we assume the
parameters are chosen so that the problem is well posed.

Given a steady state solver such as we have developed, there are many time
marching schemes one could develop for the general problem. Alternately, one could
develop a fully Sinc-Galerkin method in space and time. In this section we examine
a very simple example of time marching, namely, we apply a convex combination of
the standard first order explicit and implicit time marching schemes to the problem
above. With a time stepping increment of At and superscripts denoting values at

time ¢t = kAt, such methods are described by the equation

ck+1

k
—-C k+1 _
(6.5) L N Le 8

where f = f* yields the explicit method and f = f**! the implicit method.
Multiply the former equation by 1 — p and the latter by u to obtain the family

of implicit methods
k+1 _ ok

(& — C
(6.6) P—a;r T pLf 4 (1= )L = pff ™ + 1= p)ff 0 <p < 1.
Regroup terms to obtain the form
Pkl opkrr L= p (o P k
. L+ — = — - (L - ———
60 (e = I (o )

where it is understood that the second term on the right hand side is £ c* for the
fully implicit method p = 1.
We can now apply the methods of Section 3} to this problem after making a few

slight adjustments in notation. Define operators and functions

14
(6.8) Lt = L+E
- P
P ks, 1op E_ (1 _ P o

and corresponding bilinear forms T+, T~ as in Section 3 to obtain the steady state

differential equation at the kth time step in the unknown c**!

(6.11) Lt = f
and variational form (with R,u as in Section 3)

(6.12) TH( 1 u) = R(f)

1

(6.13) = RUMY+ —EROY) =T (¢ w)
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The suitable choice of weighting factor depends on the problem. If the problem
exhibits stiff behavior in time, p close to 1 might be a good choice. On the other
hand, the choice ;1 = 1/2 gives a method which is second order in time (Crank-
Nicolson is a special case.) If one uses finite difference methods, this second order
accuracy will not materialize unless the operator L is carefully discretized and
possibly other restrictions on step sizes such as the Courant number y = At/Ax? <
1/2 are applied. If the discretization error is even in powers of At and Az, one can
employ Richardson extrapolation to increase the order of accuracy in even powers
of the step sizes. An advantage of using sinc methods on the spatial operator L is
that spatial step size discretization error is exponentially small for sufficiently large
node number M, . Thus, one can expect that one step of Richardson extrapolation
should lead to a fourth order method in time.

It should be emphasized in general one can only expect extrapolation to re-
duce the time stepping error to the level of spatial discretization error. Further
time extrapolation should have little effect on the spatial discretization error, so
that for a sufficiently small time step size, we should not see any improvement by
extrapolating the solution.

We illustrate these points in the following example, where fairly modest values
of M, are employed. We have constructed this example so that at T = 2 the
spatial problem is exactly equivalent to the problem of Example 4.4. Therefore,
Table 1 should offer us an approximate floor on the error level that we can attain

by reducing step size and/or extrapolating.

Example 6.1. Consider the following time dependent test problem.

(6.14) (f i i) e — (1 =05 "))y +ex+c = f(a,t),t>0 >0,
(6.15) c(0,t) — 0.5¢,(0,t) = 1—cos(mt/4), t>0
(6.16) c(o0,t) = 0, t>0

(6.17) c(z,0) = 0, z>0.

The function f(x,t) was computed for c(z,t) = e*t””z/g(l — cos(wt/4)), and the
solution at time T = 2 was computed for p(z) = e*f’:2, a=1p=1,d=n/3,
M, = 32 and M, = 64, time-stepping parameters At = 1,0.5,0.4,0.2,0.1,0.05
and p = 0.5. We expect halving step size to reduce error by about four, which is
evident from Table 6. In the absence of effect from spatial discretization, we also

expect Richardson extrapolation to reduce the error by a factor of about 16. The
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At | M, | |le(zk)|loo | EERF | At | M, | |le(zk)||coc | EERF
0.5 | 32 | 7.45e-03 0.5 | 64 | 7.20e-03

0.25 | 32 | 1.99e-03 0.25 | 64 | 1.79e-03

R.E. 5.39e-04 13.8 || R.E. 2.40e-04 30
0.1 | 32 | 6.31e-04 0.1 | 64 | 2.96e-04

0.05 | 32 | 4.72e-04 0.05 | 64 | 8.15e-05

R.E. 4.19e-04 1.5 R.E. 1.97e-05 15.4

TABLE 6. Example 6.1: error table for the solution at time T =
2 with sinc parameters o = 1, § = 1, and d = 7/3 including
the error after Richard extrapolation (R.E.) and the extrapolation
error reduction factor (EERF).

table reflects these expectations: in the last column we exhibit the extrapolation
error reduction factors (EERF) obtained by dividing the full step error ||e(zx) || by
the correspoding error after Richardson extrapolation. Further extrapolations with
smaller step sizes only worsened the error in the case of M, = 32.. Notice that the
lowest error of 4.72¢ — 04 is to be compared with the counterpart error of 5.04e — 04
listed in Table 1. It is somewhat surprising to see a slightly smaller error when time
stepping is used as opposed the the steady state problem of Example 4.4. However,
this result is an artifact of time stepping for this particular problem and should not
be expected in general. The improvement can be explained by examining the actual
error at x = 0. In the case of Example 4.4 we found that the approximate solutions
(any M,,) undershot the correct value. On the other hand, the solutions in our time
stepping example overshot the exact value at = 0. Richardson extrapolation then
gave an approximation that undershot the exact value by a serendipitously smaller
amount than the steady state problem with M, = 32.

Notice in Table 1 that the EERF of 1.5 for Richardson extrapolation when
M, = 32 and At = 0.1,0.05 is disappointingly small. This suggests that the
time discretization error is dominated by spatial error, which time extrapolation
cannot expect to reduce. However, in the case of M, = 64 with At = 0.1,0.05
the table suggests that spatial error is dominated by time discretization error since
Richardson extrapolation gives a better EERF of 15.4. Table 1 lists an error of
2.78¢ — 05 for the corresponding M, = 64 steady state problem. This suggests that

further improvements will not be realized by reducing time step sizes below the
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values At = 0.1,0.05 displayed in Table 6, and further calculations (which we did

not display) confirmed this speculation.

7. CONCLUSIONS

We have presented a new Sinc-Galerkin method for solving the convection-
diffusion equation on a half-infinite interval with mixed boundary conditions. The
method is developed by recasting the original problem into a variational form. The
method is suitable as a forward solver for the inverse coefficient problem of de-
termining the dispersivity coefficient as it does not involve differentiation of the
coefficients. An exponential rate of convergence was demonstrated on several test
problems, and this rapid rate of convergence is even maintained in the presence of

end-point singularities in the coefficients of the convection-diffusion equation.
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