
CSCE/MATH 4/847 LECTURE NOTES

Part I: Fundamentals

1. Matrix-Vector Multiplication

First Day:

(1) Welcome
(2) Pass out information sheets
(3) Take roll
(4) Open up home page and have students do same to check for login problems
(5) Go through information materials

(8/22/06) We cover (review) the basics: matrix multiplication, addition, scalar multi-
plication, transposes, block arithmetic, inner and outer vector products and invertible
matrices.
We also cover (review) basic vector space concepts such as span, linear indepen-

dence/dependence, basis and dimension. We also review the vector spaces associated
with a matrix (row, column=range and null space.)
By way of review, here are some of the de�nitions and facts that are used but not

formally presented in the text.

De�nition 1.1. Let A be a square matrix. Then a (two-sided) inverse for A is a square
matrix B of the same size as A such that AB = I = BA. If such a B exists, then the
matrix A is said to be invertible.

De�nition 1.2. An (abstract) vector space is a nonempty set V of elements called
vectors, together with operations of vector addition (+) and scalar multiplication (·),
such that the following laws hold for all vectors u,v,w ∈ V and scalars a, b ∈ F (the
�eld of scalars).

(1): (Closure of vector addition) u + v ∈ V.
(2): (Commutativity of addition) u + v = v + u.
(3): (Associativity of addition) u + (v + w) = (u + v) + w.
(4): (Additive identity) There exists an element 0 ∈ V such that u+0 = u = 0+u.
(5): (Additive inverse) There exists an element −u ∈ V such that u+(−u) = 0 =

(−u) + u.
(6): (Closure of scalar multiplication) a · u ∈ V.
(7): (Distributive law) a · (u + v) = a · u + a · v.
(8): (Distributive law) (a + b) · u = a · u + b · u.
(9): (Associative law) (ab) · u = a · (b · u) .
(10): (Monoidal law) 1 · u = u.

1

De�nition 1.3. A subspace of the vector space V is a subset W of V such that W ,
together with the binary operations it inherits from V , forms a vector space (over the
same �eld of scalars as V) in its own right.

An example of a subspace is the span of a set of vectors v1,v2, . . . ,vn which is de�ned
as

span {v1,v2, . . . ,vn} ≡ {c1v1 + c2v2 + · · ·+ cnvn | c1, c2, . . . cn are scalars } .

De�nition 1.4. A set of vectors v1,v2, . . . ,vn is is said to span the space V if

V = span {v1,v2, . . . ,vn} .

De�nition 1.5. A set of vectors v1,v2, . . . ,vn is linearly independent if whenever c1v1+
c2v2 + · · · + cnvn = 0 it follows that c1 = c2 = · · · = cn = 0. Otherwise, the set is said
to be linearly dependent.

De�nition 1.6. A basis for the vector space V is a spanning set of vectors v1,v2, . . . ,vn

which is a linearly independent set.

De�nition 1.7. The vector space V is called �nite dimensional if there is a �nite set
of vectors {v1,v2, . . . ,vn} which is a spanning set for V.

Theorem 1.8. (Basis Theorem) Every �nite dimensional vector space has a basis.

Theorem 1.9. (Dimension Theorem) Let V be a �nite dimensional vector space. Then
any two bases of V have the same number of elements which is called the dimension of
the vector space and denoted as dim V .

Corollary 1.10. If W is a subspace of the �nite dimensional space V , then W is �nite
dimensional and dim W ≤ dim V .

De�nition 1.11. Let A be an m × n matrix. Assuming that the �eld of scalars is
F = C or R, we have associated subspaces
Row space: row (A) = R(A) = span

{
columns of AT

}
⊆ Fn.

Column space: range (A) = C(A) = span {columns of A} = {Ax |x ∈ Fn} ⊆ Fm .
Null space: null (A) = N (A) = {x ∈ Rn |Ax = 0} ⊆ Fn.

De�nition 1.12. rank (A) = dim row (A).

Theorem 1.13. (Rank Theorem) Let A be an m×n matrix such that rank A = r. Then
(1) dim C(A) = r
(2) dimR(A) = r
(3) dimN (A) = n− r

2

De�nition 1.14. Let A be a square n × n matrix. An eigenvector of A is a nonzero
vector x in Rn (or Cn, if we are working over complex numbers), such that for some
scalar λ, we have

Ax = λx

The scalar λ is called an eigenvalue of the matrix A, and we say that the vector x is an
eigenvector belonging to the eigenvalue λ. The pair {λ,x} is called an eigenpair for the
matrix A.

Eigenvectors of A, as de�ned above, are also called right eigenvectors of A. Notice
that if ATx = λx, then

λxT = (λx)T =
(
ATx

)T
= xT A.

For this reason, eigenvectors of AT are called left eigenvectors of A.
Some standard theorems from elementary linear algebra:

Theorem 1.15. Let A be a square n× n matrix. Then

(1): The eigenvalues of A consist of all scalars λ that are solutions to the nth degree
polynomial equation

det(λI − A) = 0

(2): For a given eigenvalue λ, the eigenvectors of the matrix A belonging to that
eigenvalue consist of all nonzero elements of N (λI − A).

De�nition 1.16. Given an eigenvalue λ of the matrix A, the eigenspace corresponding
to λ is the subspace N (λI − A) of Rn (or Cn). We write Eλ(A) = N (λI − A).

De�nition 1.17. By an eigensystem of the matrixA, we mean a list of all the eigenvalues
of A and, for each eigenvalue λ, a complete description of the eigenspace corresponding
to λ.

De�nition 1.18. Matrix A is said to be similar to matrix B if there exists an invertible
matrix P such that

P−1AP = B.

The matrix P is called a similarity transformation matrix.

Theorem 1.19. Suppose that A is similar to B, say P−1AP = B. Then:

(1): For every polynomial q (x),

q (B) = P−1q (A) P

(2): The matrices A and B have the same characteristic polynomial, hence the
same eigenvalues.

3

2. Orthogonal Vectors and Matrices

(8/24/06) First, we examine the correct version of inner product for possibly complex
vectors u,v ∈ Cn:

u∗v =
n∑

k=1

ūkvk.

We explore the inner product and its relation to the so-called induced norm, followed
by a discussion of norm and inner product properties.
Next, we examine orthogonal and orthonormal vectors, and their relation to orthog-

onal matrices and coordinates.
Finally, as time permits, we see how well Matlab knows vectors and matrices by a

quick spin through the Matlab lecture notes.

3. Norms

(8/29/06) We review the de�nition of norm and study both matrix and vector norms.
Discuss induced norms, operator norms, p-norms and Frobenius norm.

4. The Singular Value Decomposition

(8/31/06) We prove the Schur triangularization theorem and use this to prove the
principal axes theorem and the SVD.

5. More on the SVD

(9/5/06) We discuss some of the key applications of the SVD, including computation
of null space, range and low rank approximations.
Here we need a discussion of change of bases, so here is a more complete rendition of

this topic.

*Change of Basis and Linear Operators

We will indicate that T : V → W is a linear operator, B = {v1,v2, . . . ,vn} is a basis
of V and C = {w1,w2, . . . ,wm} is a basis of W with the notation

T : VB → WC or VB
T→ WC .

An example of a linear operator is given by matrix multiplication. Let A ∈ Cm,nand
de�ne the operator TA : Cn → Cm by the formula

TA (x) = Ax.

One checks that linearity holds, that is, for all vectors x,y ∈ Cnand scalars c, d,

TA (cx + dy) = cTA (x) + dTA (y) .

Now let v ∈ V be given. We know that there exists a unique set of scalars, the
coordinates c1, c2, . . . , cn of v with respect to this basis, such that

v = c1v1 + c2v2 + · · ·+ cnvn.

Thus by linearity of T we see that
4

T (v) = T (c1v1 + c2v2 + · · ·+ cnvn)

= c1T (v1) + c2T (v2) + · · ·+ cnT (vn).

It follows that we know everything about the linear operator T if we know the vectors
T (v1), T (v2), . . . , T (vn).
Now go a step further. Each vector T (vj) can be expressed uniquely as a linear

combination of w1,w2, . . . ,wm, namely

(1) T (vj) = a1,jw1 + a2,jw2 + · · ·+ am,jwm.

In other words, the scalars a1,j, a2,j, . . . am,j are the coordinates of T (vj) with respect to
the basis w1,w2, . . . ,wm. Stack these in columns and we now have the m × n matrix
A = [ai,j] which contains everything we need to know in order to compute T (v). In fact,
with the above terminology, we have

T (v) = c1T (v1) + c2T (v2) + · · ·+ cnT (vn)

= c1 (a1,1w1 + a2,1w2 + · · ·+ am,1wm) +

· · ·+ cn(a1,nw1 + a2,nw2 + · · ·+ am,nwm)

= (a1,1c1 + a1,2c2 + · · ·+ a1,ncn)w1+

· · ·+ (am,1c1 + am,2c2 + · · ·+ am,ncn)wm.

Look closely and we see that the coe�cients of these vectors are themselves coordinates
of a matrix product, namely the matrix A times the column vector of coordinates of
v with respect to the chosen basis of V. The result of this matrix multiplication is a
column vector whose entries are the coordinates of T (v) relative to the chosen basis of
W. So in a certain sense, computing the value of a linear operator amounts to no more
than multiplying a (coordinate) vector by the matrix A. Now we make the following
de�nition.

De�nition 5.1. The matrix of the linear operator T : VB → WC relative to the bases B
and C is the matrix [T]B,C = [ai,j] whose entries are speci�ed by Equation (1). In the
case that B = C, we simply write [T]B.

Recall that we denote the coordinate vector of a vector v with respect to a basis B
by [v]B. Then the above calculation of T (v) can be stated succinctly in matrix/vector
terms as

(2) [T (v)]C = [T]B,C [v]B

This equation has a very interesting application to the standard spaces. Recall that a
matrix operator is a linear operator TA : Rn → Rm de�ned by the formula TA (x) = Ax,
where A is an m × n matrix. It turns out that every linear operator on the standard
vector spaces is a matrix operator. The matrix A for which T = TA is called the standard
matrix of T .

Theorem 5.2. If T : Rn → Rm is a linear operator, B and C the standard bases for Rn

and Rm, respectively, and A = [T]B,C, then T = TA.

5

Proof. The proof is straightforward: for vector x, y = T (x) in standard spaces with
standard bases B, C, we have x = [x]B and y = [y]C . Therefore,

T (x) = y = [y]C = [T (x)]C = [T]B,C [x]B = [T]B,C x = Ax,

which proves the theorem. �
Even in the case of an operator as simple as the identity function idV (v) = v, the

matrix of a linear operator can be useful and interesting.

De�nition 5.3. Let idV : VC → VB be the identity function of V. Then the matrix
[idV]C,B is called the change of basis matrix from the basis B to the basis C.

Observe that this de�nition is consistent with the discussion in Section ?? since Equa-
tion (2) shows us that for any vector v ∈ V ,

[v]B = [idV (v)]B = [idV]C,B [v]C .

Also note that change of basis matrix from basis B to basis C is quite easy if B is a
standard basis: simply form the matrix that has the vectors of C listed as its columns.

Example 5.4. Let V = R2. What is the change of basis matrix from standard basis

B = {e1, e2} to the basis C =

{
v1 =

[
cos θ
sin θ

]
,v2 =

[
− sin θ
cos θ

]}
?

Solution. We see that

v1 = cos θ e1 + sin θ e2

v2 = − sin θ e1 + cos θ e2.

Compare these equations to (1) and we see that the change of basis matrix is

[idV]C,B =

[
cos θ − sin θ
sin θ cos θ

]
= R (θ) .

As predicted, we only have to form the matrix that has the vectors of C listed as its
columns. Now compare this to the discussion following Example ??. �
Next, suppose that T : V → W and S : U → V are linear operators. Can we relate

the matrices of T, S and the function composition of these operators, T ◦S? The answer
to this question is a very fundamental fact.

Theorem 5.5. If UD
S→ VC

T→ WD, then [T ◦ S]D,C = [T]B,C [S]D,B.

Proof. Given a vector u ∈ U , set v = S (u). With the notation of Equation (2) we
have that [T ◦S]D,C [u]D = [(T ◦ S) (u)]C and by de�nition of function composition that
(T ◦ S) (u) = T (S (u)) = T (v). Therefore

[T ◦ S]D,C [u]D = [(T ◦ S) (u)]C = [T (S (u))]C = [T (v)]C .

On the other hand, Equation (2) also implies that [T (v)]C = [T]B,C [v]B and [S (u)]B =

[S] D,C [u]D. Hence, we deduce that

[T ◦ S]D,C [u]D = [T]B,C [v]B = [T]B,C [S] D,C [u]D .
6

If we choose u so that ej = [u]D, where ej is the jth standard vector, then we obtain
that the jth columns of left and right hand side agree for all j. Hence the matrices
themselves agree, which is what we wanted to show. �
We can now also see exactly what happens when we make a change of basis in the

domain and target of a linear operator and recalculate the matrix of the operator.
Speci�cally, suppose that T : V → W and that B, B′ are bases of V and C, C ′ are
bases of W. Let P and Q be the change of basis matrices from B′ to B and C ′ to C,
respectively. We calculate that that Q−1 is the change of basis matrix from C to C ′.
Identify a matrix with its operator action by multiplication and we have a chain of
operators

VB′
idV→ VB

T→ WC
idW→ WC′ .

Application of the Theorem shows that

[T]B′,C′ = [idW]C,C′ [T]B,C [idV]B′,B = Q−1[T]B,CP.

Corollary 5.6. Let T : Rn → Rm be a linear operator, B a basis of Rn and C a basis
of Rm. Let P and Q be the change of basis matrices from the standard bases to the bases
B and C, respectively. If A is the matrix of T with respect to the standard bases and M
the matrix of T with respect to the bases B and C, then

M = Q−1AP.

This Corollary gives us an interesting view of the SVD: given m × n matrix A there
exists unitary U, V such that U∗AV = ΣU−1AV with Σ m×n diagonal with non-negative
entries down the diagonal means that with respect to suitable orthonormal bases of Cn

and Cm the action of the matrix multiplication operator TA amounts to non-negative
scalar multiplication, i.e., T (vj) = σjuj, j = 1, . . . , n.

Example 5.7. Given the linear operator T : R4 → R2 by the rule

T (x1, x2, x3, x4) =

[
x1 + 3x2 − x3

2x1 + x2 − x4

]
,

�nd the standard matrix of T.

Solution. We see that

T (e1) =

[
1
2

]
, T (e2) =

[
3
1

]
, T (e3) =

[
−1

0

]
, T (e4) =

[
0

−1

]
.

Since the standard coordinate vector of a standard vector is itself, we have

� [T] =

[
1 3 −1 0
2 1 0 −1

]
.

Example 5.8. With T as above, �nd the matrix of T with respect to the domain basis
B = {(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)} and range basis C = {(1, 1), (1,−1)}

Solution. Let A be the matrix of the previous example, so it represents the standard
matrix of T. LetB′ = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} and C ′ = {(1, 0), (0, 1)}
be the standard bases for the domain and target of T. Then we have

A = [T] = [T]B′,C′ .
7

Further, we only have to stack columns of B and C to obtain change of basis matrices

P = [idR4]B,B′ =


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 and Q = [idR2]C,C′ =

[
1 1
1 −1

]
.

Now apply Corollary 5.6 to obtain that

[T]B,C = Q−1AP

= −1

2

[
−1 −1
−1 1

] [
1 3 −1 0
2 1 0 −1

]
1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


=

[
3
2

7
2

1 1
−1

2
1
2
−1 0

]
.

�

Matlab Introduction

Download and open up the �le �MatlabLecture-447.pdf�. Then start up Matlab from
the Programs menu. We will do some of the highlights. A more detailed pass through
this tutorial is left as an exercise to those students who need it.

Part II: QR Factorization and Least Squares

6. Projectors

(9/7/06) We discuss the idea of projectors from three perspectives: geometrical, an-
alytical and matrix. As in the text, we develop matrix properties in detail and discuss
two ways of constructing projectors. One is derived from normal equations, while the
other is derived from classical Gram-Schmidt, which gives a sneak preview of Lecture
7. We want to consider some basic numerical algebra notation and ideas, namely �op
counts and basic algorithms. This requires some supplemental material that belongs in
every applied numerical analyst's vocabulary.

The BLAS

No, it is not a mental condition. From netlib:
The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard

building blocks for performing basic vector and matrix operations. The Level 1 BLAS
perform scalar, vector and vector-vector operations, the Level 2 BLAS perform matrix-
vector operations, and the Level 3 BLAS perform matrix-matrix operations. Because
the BLAS are e�cient, portable, and widely available, they are commonly used in the
development of high quality linear algebra software, LAPACK for example.
From the gnu website:
There are three levels of blas operations,
Level 1

8

Vector operations, e.g. y = \alpha x + y
Level 2
Matrix-vector operations, e.g. y = \alpha A x + \beta y
Level 3
Matrix-matrix operations, e.g. C = \alpha A B + C
Each routine has a name which speci�es the operation, the type of matrices involved

and their precisions.

Four Precisions:
S
single real
D
double real
C
single complex
Z
double complex

Common Operations:
DOT
scalar product, x^T*y
AXPY
vector sum, \alpha*x + y
MV
matrix-vector product, A*x
SV
matrix-vector solve, inv(A)*x
MM
matrix-matrix product, A*B
SM
matrix-matrix solve, inv(A)*B

Thus, e.g., SAXPY is single precision real AXPY.
Types of Matrices:
GE
general
GB
general band
SY
symmetric
SB
symmetric band
SP
symmetric packed
HE

9

hermitian
HB
hermitian band
HP
hermitian packed
TR
triangular
TB
triangular band
TP
triangular packed
Thus, for example, the name sgemm stands for single-precision general matrix-matrix

multiply and zgemm stands for double-precision complex matrix-matrix multiply.

LAPACK

From netlib:
LAPACK is written in Fortran77 and provides routines for solving systems of simul-

taneous linear equations, least-squares solutions of linear systems of equations, eigen-
value problems, and singular value problems. The associated matrix factorizations (LU,
Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related compu-
tations such as reordering of the Schur factorizations and estimating condition numbers.
Dense and banded matrices are handled, but not general sparse matrices. In all areas,
similar functionality is provided for real and complex matrices, in both single and double
precision.
If you're uncertain of the LAPACK routine name to address your application's needs,

check out the LAPACK Search Engine.
The original goal of the LAPACK project was to make the widely used EISPACK

and LINPACK libraries run e�ciently on shared-memory vector and parallel processors.
On these machines, LINPACK and EISPACK are ine�cient because their memory ac-
cess patterns disregard the multi-layered memory hierarchies of the machines, thereby
spending too much time moving data instead of doing useful �oating-point operations.
LAPACK addresses this problem by reorganizing the algorithms to use block matrix
operations, such as matrix multiplication, in the innermost loops. These block opera-
tions can be optimized for each architecture to account for the memory hierarchy, and
so provide a transportable way to achieve high e�ciency on diverse modern machines.
We use the term "transportable" instead of "portable" because, for fastest possible per-
formance, LAPACK requires that highly optimized block matrix operations be already
implemented on each machine.
LAPACK routines are written so that as much as possible of the computation is per-

formed by calls to the Basic Linear Algebra Subprograms (BLAS). While LINPACK and
EISPACK are based on the vector operation kernels of the Level 1 BLAS, LAPACK was
designed at the outset to exploit the Level 3 BLAS � a set of speci�cations for Fortran
subprograms that do various types of matrix multiplication and the solution of trian-
gular systems with multiple right-hand sides. Because of the coarse granularity of the

10

Level 3 BLAS operations, their use promotes high e�ciency on many high-performance
computers, particularly if specially coded implementations are provided by the manu-
facturer.
Highly e�cient machine-speci�c implementations of the BLAS are available for many

modern high-performance computers. For details of known vendor- or ISV-provided
BLAS, consult the BLAS FAQ. Alternatively, the user can download ATLAS to automat-
ically generate an optimized BLAS library for the architecture. A Fortran77 reference
implementation of the BLAS in available from netlib; however, its use is discouraged as
it will not perform as well as a specially tuned implementation.

Four Precisions:
S REAL
D DOUBLE PRECISION
C COMPLEX
Z COMPLEX*16 or DOUBLE COMPLEX

Types of Matrices:
Most of these two-letter codes apply to both real and complex matrices; a few apply

speci�cally to one or the other.
BD bidiagonal
DI diagonal
GB general band
GE general (i.e., unsymmetric, in some cases rectangular)
GG general matrices, generalized problem (i.e., a pair of general matrices)
GT general tridiagonal
HB (complex) Hermitian band
HE (complex) Hermitian
HG upper Hessenberg matrix, generalized problem (i.e a Hessenberg and a triangular

matrix)
HP (complex) Hermitian, packed storage
HS upper Hessenberg
OP (real) orthogonal, packed storage
OR (real) orthogonal
PB symmetric or Hermitian positive de�nite band
PO symmetric or Hermitian positive de�nite
PP symmetric or Hermitian positive de�nite, packed storage
PT symmetric or Hermitian positive de�nite tridiagonal
SB (real) symmetric band
SP symmetric, packed storage
ST (real) symmetric tridiagonal
SY symmetric
TB triangular band
TG triangular matrices, generalized problem (i.e., a pair of triangular matrices)
TP triangular, packed storage
TR triangular (or in some cases quasi-triangular)

11

TZ trapezoidal
UN (complex) unitary
UP (complex) unitary, packed storage

Naming Conventions:
The naming scheme of each LAPACK routine is a coded speci�cation of its function

(within the very tight limits of standard Fortran 77 6-character names). All driver and
computational routines have names of the form XYYZZZ, where for some driver routines
the 6th character is blank.
The �rst letter, X, indicates the data type S, D, C or Z.
The next two letters, YY, indicate the type of matrix (or of the most signi�cant

matrix).
The last three letters ZZZ indicate the computation performed. For example, SGE-

BRD is a single precision routine that performs a bidiagonal reduction (BRD) of a real
general matrix. Their meanings are fully explained in the LAPACK Users' Guide.
Indexes of routine names are available in four data types. An individual routine or

routine plus dependencies can be selected. For brevity, only driver and computational
routine names are listed on these indexes. Auxiliary routines are not listed, but can be
downloaded via ftp in the respective subdirectories.

7. QR Factorization

(9/7/06) We develop both the reduced and full QR factorization by way of the classical
Gram-Schmidt algorithm. We also discuss issues of complexity via �op counts for a few
BLAS routines.

8. Gram-Schmidt Orthogonalizaton

(9/12/06) We discuss both classical and modi�ed forms of Gram-Schmidt and com-
plexity. Here is the non-algorithmic Math 314 style statement of the algorithm: given
linearly independent vectors a1, . . . , an ∈ Cm, set

q̃j = aj − (q∗1aj) q1 − · · · −
(
q∗j−1aj

)
qj−1

qj =
q̃j

‖q̃j‖
, j = 1, . . . , n.

For the record, here are the two Gram-Schmidt algorithms that implement the above
equations:

Algorithm 8.1. (Classical G-S) Input a1, a2, . . . , an, m = length (ai)
for j = 1 : n

vj = aj

for i = 1 : (j − 1)
rij = q∗i aj

vj = vj − rijqi

end
rjj = ‖vj‖2

qj = vj/rjj

12

end
Return q1, . . . , qn, R = [rij]

Algorithm 8.2. (Modi�ed G-S) Input a1, a2, . . . , an, m = length (ai)
for i = 1 : n

vi = ai

end
for i = 1 : n

rii = ‖vi‖
qi = vj/rii

for j = (i + 1) : n
rij = q∗i vj

vj = vj − rijqi

end
Return q1, . . . , qn, R = [rij]

9. Matlab

(9/14/06) We construct the function mgs.m from cgs.m and perform Experiment
2. First, we need to copy the �les in the subdirectory MatlabTools of the class home
directory to a suitable place in our home �les. When we run Matlab, �rst change the
working directory to this directory.
We will construct a random orthogonal matrices U, V of size 80 and singular values

σi = 2−i, i = 1, . . . , 80, then let A = UΣV ∗. Having done so, we can expect that the
singular values of A to be reasonably approximated by the diagonal entries of R where
A = QR is the QR factorization of A. Reason:

A = 2−1u1v
∗
1 + 2−2u2v

∗
2 + · · ·+ 2−80u80v

∗
80

so that the jth column of A is

aj = 2−1u1vj1 + 2−2u2vj2 + · · ·+ 2−80u80vj,80.

But the vj,k's are random, so we expect of a similar magnitude of about 80−1/2 ≈ 0.1.
So we expect that q1 ≈ u1 and r11 ≈ 2−180−1/2, then q2 ≈ u2 and r22 ≈ 80−1/2, etc. Here
is the code to execute, once we are in the right place:

randn('state',0);
[U,X] = qr(randn(80));
[V,X]= qr(randn(80));
S = diag(2.^(-1:-1:-80));
A = U*S*V;
[QC,RC] = clgs(A);
% Pause here and create function mgs
edit clgs
[QM,RM] = mgs(A);

13

% Let's hold Matlab's feet to the fire too
[QML,RML] = qr(A);
semilogy(diag(S));
hold on
semilogy(diag(RC));
semilogy(diag(RM));
semilogy(diag(RML));
norm(QC'*QC)
norm(QM'*QM)
norm(QML'*QML)
% now construct the matrix of Exercise 9.2 and play with it
help Tridiag
A = Tridiag(20,0,1,2)

10. Householder Triangularization

(9/14/06) We examine Householder re�ectors. This is used to develop a QR triangu-
larization algorithm and we discuss complexity, stability and implementation issues.

11. Least Squares Problems

We lay foundations for normal equations, give some examples and three di�erent
methods for solving these problems.

Part III: Conditioning and Stability

12. Conditioning and Condition Numbers

We discuss conditioning in a fairly general context of a computable function, then
specialize to linear systems and calculate a classical error bound in terms of condition
numbers.

13. Floating Point Arithmetic

We follow text and discuss some of the limitations of �oating point arithmetic. We
also discuss the two fundamental axioms that we expect our machine computations to
satisfy, namely the Rounding Axiom (RA) and the Fundamental Axiom of Floating
Point Arithmetic (FAFPA).

14. Stability

We discuss absolute and relative stability and settle on the latter as suitable for
numerical analysis. Also discuss the �big-Oh� notation.

15. More on Stability

Discuss accuracy, stability and backward stability, and do examples, including the
inner and outer products. Conclude with the powerful forward error estimate theorem
that connects backward stability, conditioning and accuracy.

14

16. Stability of Householder Triangularization

We show the backward stability of this algorithm under suitable hypotheses.

17. Stability of Backward Substitution

This was used for Section 16. We work through the details.

18. Conditioning of Least Squares Problems

We discuss the mathematical (forward) stability, i.e., sensitivity, of the least squares
problem.

19. Stability of Least Squares Algorithms

We discuss the hypothesis of backward stability by examining some numerical com-
putations on Matlab that suggest it indirectly by way of the forward error estimate
theorem.
Here are the Matlab commands we'll use:
% Build a least squares �tting of f (x) = esin(4x) on [0, 1] by a polynomial of degree

14 through least squares interpolation of 100 equally spaced points.
Setup:

m = 100; n = 15;

t = (0:m-1)'/(m-1);

A = [];

for i = 1:n

A=[A t.^(i-1)];

end

b = exp(sin(4*t));

b = b/2006.787453080206;
This odd calculation makes the true value of x15 equal to 1 rather than its true value,

the denominator above. Makes comparisons easier.

x = A\b; y = A*x;

kappa = cond(A)

theta = asin(norm(b-y)/norm(b))

eta = norm(A)*norm(x)/norm(y)

b2y = 1/cos(theta)

b2x = kappa/(eta*cos(theta))

A2y = kappa/cos(theta)

A2x = kappa + kappa^2*tan(theta)/eta
Householder Triangularization:

[Q,R] = qr(A,0);

x = R\(Q'*b);

x(15)
15

% Now do the implicit version of Q:

[Q,R] = qr([A b],0);

Qb = R(1:n,n+1);

x = R\Qb;

x(15)

% or just let Matlab do its job, which uses extra QR plus column

pivoting:

x = A\b;

x(15)
Gram-Schmidt:

[Q,R] = mgs(A);

x = R\(Q'*b);

x(15)

% However, with a little modification:

[Q,R] = mgs([A b]);

Qb = R(1:n, n+1);

R = R(1:n, 1:n);

x = R\Qb;

x(15)
Normal Equations:

x = (A'*A)\(A'*b);

x(15)

% This warrants discussion...BTW, a satisfactory

% backward stable method of solution is Cholesky, but...

% think about the condition number of the coefficient matrix.
SVD:

[U,S,V] = svd(A,0); % reduced svd

x = V*(S\(U'*b));

x(15)

20. Gaussian Elimination

At last. Most numerical linear algebra texts begin with this subject. Trefethen and
Bau wanted to loosen the tight connection in most peoples' minds between Gaussian
elimination � with its usual error analysis and �nite algorithmic feel � and the larger
subject of numerical linear algebra. And sure enough, we've had plenty to do up to now.
We discuss the basics of the algorithm and emphasize its formulation in terms of an LU
factorization. Also, we consider complexity of the algorithm with a �op count analysis.

16

21. Pivoting

We discuss pivoting strategies and algorithms, including the method of overwriting
the input matrix A with the L, U parts of A in a permuted order, returning this matrix
plus a permuted index array.

22. Stability of Gaussian Elimination

We discuss stability, and some worse case examples of column pivoting. Also, the
statistical graphs in this section.

23. Cholesky Factorization

We prove the existence of a Cholesky factorization for Hermitian matrices and describe
the overwriting algorithm for Cholesky. Also noted are the fact that this algorithm is
backward stable and that �op count is about half (m3/3) of what one would get with
Gaussian elimination.

24. Eigenvalue Problems

This is mainly a review of eigenvector-eigenvalue notation and basic results. Diagonal-
izability is discussed, along with defective matrices. The Jordan canonical form theorem
is discussed. We de�ne Jordan blocks as follows:JA Jordan block is de�ned to be a d×d
matrix of the form

Jd(λ) =


λ 1

λ
. . .
. . . 1

λ

 ,

where the entries o� the main diagonal and �rst superdiagonal are understood to be
zeros. This matrix is very close to being a diagonal matrix. Its true value comes from
the following classical theorem.

Theorem 24.1. (Jordan Canonical Form Theorem) A square matrix A is similar to a
block diagonal matrix that consists of Jordan blocks down the diagonal (i.e., there is an
invertible matrix P such that P−1AP has this form.) Moreover, these blocks are uniquely
determined by A up to order.

25. Overview of Eigenvalue Problems

We observe that the traditional idea of �nding the characteristic polynomial and
solving it is a loser, and in fact numerical eigenvalue methods can be used e�ectively to
�nd solutions of roots of polynomials by way of the companion matrix. The two phases
of eigensystem computation, namely (1) Reduction to a manageable form such as upper
Hessenberg and (2) Finding eigensystems for such matrices are brie�y touched upon.
We also discuss and experiment with the notion mentioned earlier, namely that de-

fectiveness is not easy to detect and involves some subtle ideas.
Start with the following problem: What is the rank of Jd (λ)− µI?
Answer: d if µ 6= λ and d− 1 otherwise.

17

Now remember that rank is invariant under a similarity transformation. Therefore

questions about rank
(
(A− λI)k

)
, k = 0, 1, . . ., may be answered by examining Jk,

where J is the Jordan canonical form of A, and conversely.
Question: how much de�ciency in rank does a single Jordan block contribute to

rank ((A− λI))? To rank
(
(A− λI)2)?

Now login, start up Matlab and cd to the correct directory for your class work. Grab
a copy of lect25.m if you haven't already done so. Now do the following, and let's
comment on each output before proceeding to the next line.

lec25
A
cond(A)
% Do we believe that A is diagonalizable?
[P,D] = eig(A)
norm(A-P*D*inv(P))
cond(P)
% Well,?
% Let's have a look at the eigenvalues of A
format long
d = sort(diag(D))
% So try one of our candidates:
lam = xxx
rank(A-lam*eye(10))
rank((A-lam*eye(10))^2)
% Repeat with the others, then nail the complex roots.

26. Reduction to Hessenberg, Tridiagonal or Bidiagonal Form

We exhibit the algorithms, mainly pictorially, leaving the exact write-up to the text.
We also discuss backward stability (it's there) and �op counts.

27. Rayleigh Quotient, Inverse Iteration

Follow the text discussion of these standard routines, con�nining attention mostly to
real symmetric matrices.
Here is a test matrix:

A =

 −8 −5 8
6 3 −8

−3 1 9

 .

Now we ask three questions about A:

(1) How can we get a ballpark estimate of the location of the eigenvalues of A?
(2) How can we estimate the dominant eigenpair (λ,x) of A? (Recall that �dominant�

means that λ is larger in absolute value than any other eigenvalue of A.)
18

−8 93

13 14

4
x

y

Figure 1. Gershgorin disks for A.

(3) Given a good estimate of any eigenvalue λ of A, how can we improve the estimate
and compute a corresponding eigenvector?

Theorem 27.1. (Gerschgorin Disk Theorem) Let A = [aij] be an n × n matrix and
de�ne disks Dj in the complex plane by

rj =
n∑

k=1
k 6=j

|ajk|,

Dj = {z | |z − ajj| ≤ rj} .

(1): Every eigenvalue of A is contained in some disk Dj.
(2): If k of the disks are disjoint from the others, then exactly k eigenvalues are
contained in the union of these disks.

Example 27.2. Apply the Gershgorin circle theorem to the test matrix A and sketch
the resulting Gershgorin disks.

Solution. The disks are easily seen to be

D1 = { z | |z + 8| ≤ 13} ,

D2 = { z | |z − 3| ≤ 14} ,

D3 = { z | |z − 9| ≤ 4} .

A sketch of them is provided in Figure 1. �
Now we turn to question (2). One answer to it is contained in the following algorithm,

known as the power method.
Algorithm (Power Method) To compute an approximate eigenpair (λ,x) of A with
‖x‖ = 1 and λ the dominant eigenvalue.

(1): Input an initial guess x0 for x
(2): For k = 0, 1, . . . until convergence of λ(k)'s:
(a) y = Axk,

(b) xk+1 =
y

‖y‖
,

(c) λ(k+1) = xT
k+1Axk+1.

19

You might notice also that the argument doesn't require the initial guess to be a real
vector. Complex vectors are permissible.
Finally, we turn to question (3). One answer to it is contained in the following

algorithm, known as the inverse iteration method.
Algorithm (Inverse Iteration) To compute an approximate eigenpair (λ,x) of A with
‖x‖ = 1.

(1): Input an initial guess x0 for x and a close approximation µ = λ0 to λ.
(2): For k = 0, 1, . . . until convergence of the λ(k)'s:

(a): y = (A− µI)−1xk,

(b): xk+1 =
y

‖y‖
,

(c): λ(k+1) = xT
k+1Axk+1.

Notice that the inverse iteration method is simply the power method applied to the
matrix (A−µI)−1. In fact, it is sometimes called the inverse power method. The scalar
µ is called a shift. Here is the secret of success for this method: we assume that µ is
closer to a de�nite eigenvalue λ of A than to any other eigenvalue. But we don't want
too much accuracy! We need µ 6= λ. The eigenvalues of (A − µI)−1 are of the form
1/(σ − µ), where σ runs over the eigenvalues of A. Since µ is closer to λ than to any
other eigenvalue of A, the eigenvalue 1/(λ−µ) is the dominant eigenvalue of (A−µI)−1,
which is exactly what we need to make the power method work on (A− µI)−1. Indeed,
if µ is very close (but not equal!) to λ, convergence should be very rapid.

28. QR Algorithm without Shifts

(11/14/06) Follow text discussion and note the connection between simultaneous it-
eration and the QR algorithm.
Algorithm (QR)

(1): Input A(0) = A, m×m matrix.
(2): For k = 1, 2, . . .
(a) Q(k)R(k) = A(k−1) % QR factorization
(b) A(k) = R(k)Q(k)

A more �practical� version:
Algorithm (Practical QR)

(1): Input A(0) = A, m×m matrix.

(2): A(0) = Q(0)T

AQ(0) % A(0) is upper Hessenberg form for A
(2): For k = 1, 2, . . .

(a) Select shift µk % e.g., µk = A
(k−1)
r,r , r last index with A

(k−1)
r−1,r 6= 0.

(b) R(k)Q(k) = A(k) − µkI % QR factorization
(c) Q(k)R(k) = A(k−1) + µkI

(d) If any subdiagonal element A
(k)
j−1,j ≈ 0, set it equal to zero to decouple

A =

[
A1 ∗

A2

]
and continue algorithm on A1 and A2 portions.

How expensive? This could be HUGELY expensive, given that the cost of a single QR
factorization is approximately 4

3
m3 and explicit formation of Q costs another 4

3
m3.

20

The problem is that standard Householder QR involves large scale zeroing out. We
need something a bit more delicate. One approach is to use Givens rotations to zero out
speci�c entries. Another is to use a scaled down version of Householder transformations
to get the job done.

29. QR Algorithm with Shifts

(11/16/06) Continue text discussion and perform numerical experiments with a non-
symmetric and symmetric matrix.
Numerical experiment test matrices:
% Script: lec25.m
% Description: Generates three matrices for
% analysis of iterative algorithms
disp('A is a non-symmetric matrix with fairly simple Gerschgorin disks and

eigensystem:')
A = [-8 -5 8; 6 3 -8; -3 1 9]
disp('B is a more complex found in exercises:')
m = 11;
B = toeplitz([1;-ones(m-1,1)],[1,zeros(1,m-1)]); B(:,m)=ones(m,1)
disp('C = B^T*B is a symmetric matrix.');
C = B'*B;
disp('D is a random matrix in the spirit of Exercise 12.3,')
disp('but with an inserted (1,1)th entry.')
randn('state',0)
m = 100;
D = randn(m,m)/sqrt(m);
D(1,1) = 1.5;
In all experiments below, let's start by naming E as the experimental matrix.
Apply the power iteration algorithm manually to each matrix, starting with a random

vector. In the non-symmetric cases of A and D, also try a complex starting point. Keep
count of the number of iterations you do before stopping. You can do this conveniently
by introducing a counter.
Next, try the inverse power rule with some guess for an eigenvalue other than the ones

you just found.
Finally, examine the QR algorithm and follow it up with an experiment with the

shifted QR.

33-34. The Arnoldi Iteration and Eigenvalues

(11/21/06) We will do a brief introduction to iterative methods followed by a discus-
sion of the Arnoldi iteration.
Question: Why iterate when we have e�ective direct solvers of

Ax = b

which terminate in a well de�ned �nite number of steps?
Answers: (Some)

21

(1) Speed: If A is very large (try m = 106), O (m3) is very intimidating.
(2) Storage: If we uncritically make space for A we're looking at 8m2 bytes, which

again could be a lot.

Disclaimer: Iterative methods are not a cure-all for either of the above problems. There
are, for example, very good direct solver routines that take advantage of properties like
a sparse matrix (enough zeros in it that you should pay attention to them), and sparse
matrix technology that gives very e�ective storage of data elements.
Classical Iteration Theory
One topic that I will discuss that is not in the text is the subject of iterative methods

generated by splittings. Here is the basic idea: to solve the linear system

Ax = b

we �split� A into two parts A = B−C. Here B should be a �simple� and easily inverted
matrix. Rewrite the equation as

Bx = Cx + b.

This is a so-called regular splitting, and it inspires the iterative scheme

Bx(k+1) = Cx(k) + b

or

x(k+1) = Gx(k) + d,

where G = B−1C and d = B−1b. This is an example of a stationary (because G doesn't
change from step to step) one step (because we only use the output of the previous step)
iteration method.
The basic theory is very simple: this method converges for all initial guesses x(0) if

and only if ρ (G) < 1, in which case convergence is linear and the asymptotic rate of
convergence is ρ (G). Of course, there is vastly more to it than this, and huge amounts
of research have been done on this topic.
Here are some of the classical splittings. In some of the following we use this notation

A = D − L− U,

where −L is the (strictly) lower triangular part of A, D is the diagonal and −U is the
(strictly) upper triangular part. For the iterations that use D, it is required that D have
nonzero diagonal entries.

• Richardson iteration: Write γA = I − (I − γA) and obtain the iterative scheme

x(k+1) = (I − γA) x(k) + γb, G = (I − γA) .

Note that if we allow the acceleration parameter γ to vary at each step (as
Richardson actually did), we have a nonstationary iterative method.

• Jacobi iteration:

Dx(k+1) = (L + U) x(k) + b, G = D−1 (L + U) .

• Gauss-Seidel iteration:

(D − L) x(k+1) = Ux(k) + b, G = (D − L)−1 U.

22

• Gauss-Seidel SOR (or just SOR):

1

ω
(D − ωL) x(k+1) =

1

ω
((1− ω) D + ωU) x(k) + b, G = (D − ωL)−1 ((1− ω) D + ωU) .

Note that ω = 1 is simply Gauss-Seidel. Bear in mind that that what we have above
are the theoretical tools for analyzing the methods. The great virtue of many of these
is that they can be calculated in place with minimal additional storage requirements.
Furthermore, their coding is extremely simple, which is why they are popular to this day
among engineers and scientists. For example, here is a practical formulation of GS-SOR:

y
(k+1)
i =

(
b−

i−1∑
j=1

aijx
(k+1)
j −

m∑
j=i+1

aijx
(k)
j

)
/aii

x
(k+1)
i = x

(k)
i + ω

(
y

(k+1)
i − x

(k)
i

)
.

Better yet, here it is in one line:

x
(k+1)
i = (1− ω) x

(k)
i +

ω

aii

(
b−

i−1∑
j=1

aijx
(k+1)
j −

m∑
j=i+1

aijx
(k)
j

)
.

It's remarkably simple to implement this formulation. The problem is determining the
acceleration parameter ω... or whether the method will converge at all.
A few well-known facts:

(1) If Gω is the iteration matrix for GS-SOR, then ρ (Gω) ≥ |1− ω|. Hence the
method does not converge for ω /∈ (0, 2).

(2) If A is strictly row (or column) diagonally dominant, GS-SOR and the Jacobi
method will converge for ω ≤ 1.

(3) If A is HPD, then GS-SOR converges for 0 < ω < 2.

Example. This is a famous test problem for iterative methods. Poisson's equation for
a two dimensional unit square

−4u ≡ −∂2u (x, y)

∂x2
− ∂2u (x, y)

∂y2
= f (x, y) , 0 ≤ x, y ≤ 1,

with the Dirichlet condition u (x, y) = g (x, y) on the boundary of the square, represents
a heat equation for a two dimensional insulated plate whose boundaries are kept at
constant temperatures and which has an internal heat source whose value may vary
from point to point. This is known to be a well-posed problem with a smooth solution
u (x, y).
This problem can be discretized on a uniform grid of points (xi, yj), 0 ≤ i, j ≤ N + 1

with equal spacing h = 1/ (N + 1) in the x and y directions leads to an approximation

u (xi, yj) = u (ih, jh) ≈ uij

where, by using centered second derivative approximations, we obtain the system

−ui−1,j + 2ui,j − ui+1,j

h2
+
−ui,j−1 + 2ui,j − ui,j+1

h2
= f (xi, yj) = fi,j,

23

that is,

(3) −ui−1,j − ui+1,j + 4ui,j − ui,j−1 − ui,j+1 = h2fi,j, 1 ≤ i, j ≤ N.

A practical observation: even if we solve this linear algebra problem exactly, we will
have O (h2) error as compared to the true solution to the model problem. This is not
due to any numerical error, but rather the mathematical truncation error approximating
derivatives by di�erences. Therefore, it might be a bit silly to want 12 digits of accuracy
in the solution of the discretized problem when, say, perhaps at most 4 digits of accuracy
to the real problem would be obtained if we were to solve the discretized system exactly.
Thus, iterative methods might make more sense in this context. We can easily code up
a GS-SOR for this problem leaving the variables in place in a (N + 2)× (N + 2) matrix.
This is a big system of N2 equations in N2 unknowns. Consider its size if, say, we want
h = 0.01.
Of course, there is an immediate issue: how to order the variables? Here is a convenient

�rst formulation of the problem. Notice that if we let U = [uij]N+2,N+2 be the array of
node values of the numerical solution, then although U is not a vector, this is a very
natural arrangement of the variables, since it matches the spatial arrangement of the
arguments (xi, yj). Let's try to keep this form.
To this end, observe that the Laplace operator is a sum of two di�erentiation operators,

one of which works on the rows of U (second derivative with respect to x) and the other
of which works on columns of U (second derivative with respect to y). So let's focus on
one space derivative. Suppose values of a su�ciently smooth function f (t) are known
at points f0, f1, . . . , fN+1, where fj (x) = jh, for positive constant h, and that we want
to approximate the second derivative at the interior nodes xj = jh, j = 1, . . . , N . By
adding up the Taylor series for f (x + h) and f (x− h) centered at x, one can show that

f (x− h)− 2f (x) + f (x + h)

h2
= f ′′ (x) +O

(
h2
)
.

(More speci�cally, the order coe�cient in the big-oh term is 1
4!

∥∥f (4)
∥∥
∞, where the max-

imum is taken over the interval in question.) This translates into the formula

fj−1 − 2fj + fj+1

h2
= f ′′ (xj) +O

(
h2
)
.

If we drop the O (h2) term, we obtain the approximation

fj−1 − 2fj + fj+1

h2
≈ f ′′ (xj) , j = 1, . . . , N,

or, for our purposes, take the negative and obtain

−fj−1 + 2fj − fj+1

h2
= bj ≈ −f ′′ (xj) .

24

Multiply both sides by h2, move boundary terms to the right-hand side, and we see that
the whole system can be written out nicely in matrix form as

TN


f1

f2
...

fN−1

fN

 ≡


2 −1 0

−1
.
. −1

−1 2




f1

f2
...

fN−1

fN

 =


h2b1 + f0

h2b2
...

h2bN−1

h2bN + fN+1

 .

The matrix TN is key here. Notice, it doesn't say anything about x or y. Back to our
model problem: let's de�ne

• V as theN×N sub-matrix of actual unknowns, so that V = U (2 : N + 1, 2 : N + 1)
in Matlab-ese;

• F = [fij], with i, j = 1, . . . N and fij = f (xi, yj);
• G =[gij], with gij = 0 unless i = 1, in which case g (x0, yj) is added in, or j = 1,
in which case g (xi, y0) is added on, or i = N , in which case g (xN+1, yj) is added
in, or j = N , in which case g (xi, yN+1) is added in.

Now observe that the (i, j)th entry of V TN + TNV is exactly the left-hand side of (3),
so that the resulting system can be written in the form

(4) V TN + TNV = h2F + G ≡ B.

Finally, if we want to put the system in the traditional Ax = b form, we have to do a
little more work using tensor products. Here's a whirlwind tour of what we need.
About Tensors...

We are going to develop a powerful �bookkeeping� method that will rearrange the vari-
ables of Sylvester's equation automatically. The �rst basic idea needed here is that of
the tensor product of two matrices, which is de�ned as follows:

De�nition 29.1. Let A = [aij] be an m×p matrix and B = [bij] an n× q matrix. Then
the tensor product of A and B is the mn × pq matrix A ⊗ B that can be expressed in
block form as

A⊗B =



a11B a12B · · · a1jB · · · a1pB
a21B a22B · · · a2jB · · · a2pB
...

...
...

...
ai1B ai2B · · · aijB · · · aipB
...

...
...

...
am1B am2B · · · amjB · · · ampB


.

Example. Let A =

[
1 3
2 1

]
and B =

[
4

−1

]
. Exhibit A⊗B, B⊗A, and I2⊗A and

conclude that A⊗B 6= B ⊗ A.
25

Solution. From the de�nition,

A⊗B =

[
1B 3B
2B 1B

]
=


4 12

−1 −3
8 4

−2 −1

 , B ⊗ A =

[
4A

−1A

]
=


4 12

−8 −2
−1 −3
−2 −1

 ,

and I2 ⊗ A =

[
1A 0A
0A 1A

]
=


1 3 0 0
2 1 0 0
0 0 1 3
0 0 2 1

 .

The following item is an operator that turns matrices into vectors.

De�nition 29.2. Let A be an m×n matrix. Then the mn× 1 vector vec A is obtained
from A by stacking the n columns of A vertically, with the �rst column at the top and
the last column of A at the bottom.

Example. Let A =

[
1 3
2 1

]
. Compute vec A.

Solution. There are two columns to stack, yielding vec A = [1, 2, 3, 1]T . �
The vec operator is linear (vec (aA + bB) = a vec A + b vec B). We leave the proof,

along proofs of the following simple tensor facts, to the reader.

Theorem 29.3. Let A, B, C,D be suitably sized matrices. Then

(1): (A + B)⊗ C = A⊗ C + B ⊗ C
(2): A⊗ (B + C) = A⊗B + A⊗ C
(3): (A⊗B)⊗ C = A⊗ (B ⊗ C)
(4): (A⊗B)T = AT ⊗BT

(5): (A⊗B)(C ⊗D) = (AC)⊗ (BD)
(6): (A⊗B)−1 = A−1 ⊗B−1

Here the key bookkeeping between tensor products and the vec operator.

Theorem. (Bookkeeping Theorem) If A, X,B are matrices conformable for multiplica-
tion, then

vec (AXB) =
(
BT ⊗ A

)
vec X.

Corollary. The following linear systems in the unknown X are equivalent.

(1): A1XB1 + A2XB2 = C
(2):

((
BT

1 ⊗ A1

)
+
(
BT

2 ⊗ A2

))
vec X = vec C

Now all we have to do is apply the bookkeeping theorem to (4) and we obtain the
system

(5) ((TN ⊗ IN) + (IN ⊗ TN)) vec V = vec B

(Since both IN and TN are symmetric, transposes do not appear in this equation.)
26

Normally, we prefer to avoid explicitly forming the full coe�cient matrix but it is very
useful for theoretical purposes. In particular, here is a quick overview of the analysis of
the mathematical discretization error. We have that the computed solution satis�es((

T T
N ⊗ IN

)
+ (IN ⊗ TN)

)
vec V = vec B,

while the matrix of exact solution values W = [u (xi, yj)], i, j = 1, . . . , N satis�es((
T T

N ⊗ IN

)
+ (IN ⊗ TN)

)
vec W = vec B +O

(
h4
)
.

The reason for h4 is that we multiplied both sides of the original equation, which involved
O (h2), by h2. Let A =

((
T T

N ⊗ IN

)
+ (IN ⊗ TN)

)
and e = vec W − vec V (the error

vector), and we subtract the above equations to obtain

Ae = O
(
h4
)
,

from which it follows that
‖e‖ ≤

∥∥A−1
∥∥O (h4

)
.

So we can see that the error estimate depends on an eigenanalysis of A. As a matter of
fact, A is symmetric positive de�nite with smallest eigenvalue equal to twice the smallest
eigenvalue of TN , which happens to be

2

(
1− cos

π

N + 1

)
=

(
π

N + 1

)2

+O

((
1

N + 1

)4
)

.

Now h = 1/ (N + 1), so one deduces that the error vector is O (h2).
One �nal application of this explicit matrix/vector form of the model problem is that

we can use Matlab to rather easily solve the system. Here's the code:

% script: modelproblem.m
% description: construct coefficient matrix and
% solution to model problem
N = 32
m = N^2
T = Tridiag(N,-1,2,-1);
h = 1/(N+1)
xnodes = linspace(0,1,N+2);
[X,Y] = meshgrid(xnodes,xnodes);
F = 13*pi^2*sin(2*pi*X).*sin(3*pi*Y);
G = X.*Y;
G(2:N+1,2:N+1) = 0;
G(2:N+1,2)=G(2:N+1,1);
G(2:N+1,N+1) = G(2:N+1,N+2);
G(2, 2:N+1) = G(2,2:N+1) + G(1,2:N+1);
G(N+1,2:N+1) = G(N+1,2:N+1) + G(N+2,2:N+1);
B = h^2*F+G;
B = B(2:N+1,2:N+1);
A = kron(T,eye(N)) + kron(eye(N),T);
b = reshape(B,N^2,1); % vec(B)

27

x = A\b; % solve the system
V = reshape(x,N,N);
W = sin(2*pi*X).*sin(3*pi*Y)+X.*Y;
W = W(2:N+1,2:N+1);
err = norm(reshape(V-W,N^2,1),inf)/norm(reshape(W,N^2,1),inf)
xint = xnodes(2:N+1);
[Xint,Yint] = meshgrid(xint,xint);
mesh(Xint,Yint,V-W);

N1. (Non-text exercise) Write up a script that applies Jacobi and Gauss-Seidel to
the model problem where

g (x, y) = xy

f (x, y) = 13π2 sin (2πx) sin (3πy) .

The exact solution is really u (x, y) = sin (2πx) sin (3πy) + xy. The numerical solution
is generated by the above script. Iterate your method until the relative error between
your solution and the numerical solution is at most 1e−3. Use N = 32.

28

An Arnoldi Experiment with Eigenvalues
lec28
A = D;
size(A)
A(1,1)
evals = eig(A);
plot(evals,'o')
n = 5
b = randn(n,1);
[Q,H] = arnoldi(A,b,n);
evaln = eig(H(1:n,:))
hold on
plot(evaln,'x')
% now repeat this with n = 8, 10 and compare eigenvalues

35. GMRES

(11/28/06) We largely follow text development. At some point, we do the following
experiment, which requires that the Matlab tool gmresid.m be downloaded. Just for
the record: Matlab does have a gmres routine. It's much fancier than the one we'll use,
which is a naive implementation of the algorithm detailed in class.

m = 200
n = 10
A = 2*eye(m) + 0.5*randn(m)/sqrt(m);
cond(A) % A well-behaved?
plot(eig(A))
axis([1, 3, -1, 1])
b = ones(m,1);
X = gmresid(A,b,n);
R = A*X - ones(m,n)
x = A\b;
r = zeros(n,1);
for ii = 1:n, r(ii) = norm(R(:, ii)); end
semilogy(r)
norm(X(:,n) - x, inf)

38. Conjugate Gradients

(11/30/06) We will outline the text development � too much here to do in detail in
one period � and will make this comparison between conjugate gradients and GMRES.
We have to load up the �les cg.m and lec38.m from MatlabTools. Here is the content of
lec38.m

% script: lec38.m
29

% description: performs some experiments with CG and GMRES.
m = 200
n = 40
randn('state',1)
A = triu(2*eye(m) + 0.5*randn(m)/sqrt(m));
A = A'*A; % create a SPD matrix
condA = cond(A) % A well-behaved?
b = ones(m,1);
x = A\b;
X = gmresid(A,b,n);
Y = cg(A,b,n);
R = A*X - ones(m,n);
S = A*Y - ones(m,n);
r = zeros(n,1);
s = r;
for ii = 1:n, r(ii) = norm(R(:, ii)); s(ii) = norm(S(:, ii)); end
figure;
plot(r);
hold on
plot(s);
grid
normx = norm(x);
norm(X(:,n) - x)/normx
norm(Y(:,n) - x)/normx
E = (X - repmat(x,1,n))/normx;
F = (Y - repmat(x,1,n))/normx;
for ii = 1:n, r(ii) = norm(E(:, ii)); s(ii) = norm(F(:, ii)); end
figure;
plot(r);
hold on
plot(s);

Run this program and examine the results. Then edit the line de�ning the matrix A
by doubling the coe�cient of the random part and repeat the experiment. Repeat until
the coe�cient is 8.

40. Preconditioning

(12/05/06) There are many big ideas here � domain decomposition, multigrid meth-
ods, etc. We're going to leave the extensive discussion to the reader and illustrate the
idea with a simple example of preconditioning.
In the spirit of the lecture notes for today, we will actually do some simple precon-

ditioning on a SPD matrix similar to the text. The mathematical formulation of such
precondtioners we have discussed: M = C∗C and

Ãx̃ =
(
C−∗AC−1

)
(Cx) = C−∗b = b̃.

30

Of course, we want M ≈ A−1 in some sense. We will not worry about implementation
niceties here. Edit and run the script lec40.m. We will use the simplest � Jacobi �
preconditioner.

Example. M = diag (A), C = M1/2.

Niceties Notes: Actually, there is a remarkable advantage to using SPD conditioners:
any such matrix M has a square root, that is, a SPD matrix C such that M = C2. This
is an improvement over the form given above, because it allows us to write the system
as

Ãx̃ =
(
C−1AC−1

)
(Cx) = C−1b = b̃.

If we stick to real matrices, then a careful analysis of the CG method applied to this
alternate system leads to a very simple formulation of preconditioned CG. See the �le
pcg.m for details and let's edit and run the script lec40alt.m.
One last comment about preconditioners and classical iterative methods: Consider

solving Ax = b by way of an iteration scheme derived from a regular splitting A = M−N ,
so that

x(k+1) = M−1Nx(k) + M−1b = Gx(k) + d.

We want ρ (G) small because this gives the asymptotic convergence rate coe�cient. Since
ρ (G) ≤ ‖G‖, we would like the latter term small. However

I −M−1A = I −M−1 (M −N) = G,

so we want ‖I −M−1A‖ small. From this, we see that M−1 would be a good precondi-
tioner if we make the ‖G‖ small, and we are in the curious situation where the interests
of (classical) iteration fans and (contemporary) Arnoldi iteration fans dovetail.
Finally, then, our authors assert:
�...we �nd ourselves at the philosophical center of the scienti�c computing

of the future....�

41. Review

(12/07/06) We will review and do class evaluations today. The take-home �nal will
be placed on the web (our Class Resources) on Friday, December

31

