| Exam 2 | Math 208 | Fall 2004 | |---|---|--| | Name: | | Score: | | for additional space, but clea
work to receive any credit. E | work in the spaces provided below for furly so indicate. You must clearly identify exact answers (e.g., π) are preferred to ine entheses. Notes or text in any form not al | all credit. Use the reverse side
answers and show supporting
exact (e.g., 3.14). Point value | | above the horizontal with an | ched on level ground due north from grounitial speed of 100 ft/sec . The only foreocity and position as functions of time in a | ce on the projectile is gravity | | | | | | | | | | | | | | (b) Use (a) to find the time | to impact and the velocity of the project | ile at impact. | | | | | (c) Suppose that the projectile is launched into a steady wind which blows the projectile due east at 20 miles per hour. What are the new position, velocity and acceleration vectors for the projectile? - (30) **2.** A function is defined by $f(x,y) = \ln(x^2 + 2x + 1 y)$. (a) Sketch the domain of f(x,y) and one contour of f(x,y) in the xy-plane. Where is f(x,y)continuous? Explain. (b) Find all first and second partials of f(x, y). (c) Find an equation for the tangent plane to the surface z = f(x, y) at the point (0, 0, 0). (10) **3.** Show that $\lim_{(x,y)\to(0,0)} \frac{x^2-y}{x^2+y^2}$ does not exist. - (20) **4.** Let $z = f(x,y) = x^2 + y^2 1$. (a) Find the total differential dz for f(x,y) at the point (2,1). (b) Use differentials to estimate the maximum variance of f(x, y) from f(2, 1) (this means |f(x, y) - f(2, 1)|) given that $|x - 2| \le 0.2$ and $|y - 1| \le 0.1$. (10) 5. A smooth function f(x,y) (this means f and its first partials are continuous) has the following contour graph. Use the contour graph to estimate $\partial f/\partial x$ and $\partial f/\partial y$ at (2,2).