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ABSTRACT. We show that, with a few familiar exceptions, every essential lamination
in an interval-bundle over a closed surface can be isotoped to lie everywhere transverse

to the I-fibers of the bundle.

§0
INTRODUCTION

In [B1], we showed that an essential lamination in a (closed) Seifert-fibered space
always has a ‘vertical® or ‘horizontal’ sublamination, that is, one which can be iso-
toped either to be transverse to all of the circle fibers of the Seifert-fibering, or to
contain every circle fiber that 1t meets. In addition, if the sublamination i1s hori-
zontal and contains no compact leaves, then we showed that the entire lamination
could be made horizontal.

In this paper we answer the one question left open by these results: what happens
if the horizontal sublamination does contain a compact leaf? What we find is that,

with some well-known exceptions, we can still make the entire lamination horizontal.
This will follow from the following two results, since a closed, connected Seifert-
fibered space split open along a horizontal surface is a collection of I-bundles over
closed surfaces.

Theorem 1. Any essential lamination £ in M, an I-bundle over a closed surface
I of genus 1, containing the associated OI-bundle as leaves, can be extended to a
foliation of M (although not necessarily a horizontal, one, i.e., transverse to the

I-fibers).

Theorem 2. Any essential lamination in M, an I-bundle over a closed surface F'
of genus >1, containing the associated OI-bundle as leaves, can be isotoped to lie
transverse to the I-fibers of M. (It therefore can also be extended to a foliation.)

These results are proved using a form of infinite isotopy as in [B1], [B2], and
[B3], which attempts to put the lamination into Haken normal form, using the
most standard cell decomposition of an I-bundle over a closed surface, namely, the
inverse image under the projection of the standard cell decomposition of a closed
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surface. This is described in Section 2. The isotopy construction is designed to
make our essential lamination horizontal, if the process terminates in finite time.
In the succeeding sections we give the proofs of the theorems; they amount to
analyzing what might occur to keep the isotopy construction from terminating. In
the present instance, the cell decomposition is simple enough that we can use a
case-by-case analysis to prove that in the first situation we can always extend the
lamination to a foliation (in the process, recognizing the lamination as a ‘standard’
one), and in the second situation we always arrive at a contradiction.

We deal first with the case that M =F x I, where F' is a closed orientable surface;
the other cases follow quickly, and in a completely analogous way, from the proof
of this case. We describe the changes required in Section 6.

§1

PRELIMINARIES

We refer the reader to [G-O] and [B1] for basic definitions and constructions
concerning essential laminations.

A closed orientable surface F' of genus ¢ has a standard cell decomposition, as a
single 4g-gon with edges labelled (clockwise) in the familiar pattern

ar,bi,ar bt agbgar bt
By taking the Cartesian product of these cells with I, we then get a cell decom-
position K of M=F xI with one 3-cell, 2942 2-cells (including one each from top
and bottom), 4g+1 1-cells, and two 0-cells; see Figure 1. One of the I-cells, the
‘vertical” one (which projects to the unique 0-cell in the decomposition of the base
surface), will play a key role; we denote it by Ij.

Given an essential lamination £ in M, we can make it transverse to this cell
decomposition (after possibly pushing the leaves of £ in dM into its interior), by
choosing a branched surface B carrying £ and making B transverse to the cell
decomposition. We can also use this branched surface to determine a ‘monogon
number’ € for £ w.r.t. the 1-skeleton of M; any two points of £ NKD) which are
within € of one another are contained in the same I-fiber of N(B).

Non-orientable surfaces have a similar standard cell decomposition; represented
as a connected sum of g projective planes, we obtain a decomposition as a single
2g-gon with edges labelled clockwise ay,a;,. ..,a4,a,. Crossing this with the interval
I gives us a cell decomposition of F'xI. I-bundles M which are not products have
a similar cell decomposition (since every I-bundle over a disk is a product), except
that when pairs of vertical 2-cells are glued together, some of them are glued with
a flip of the I-direction.

We assume that our essential lamination is carried by a branched surface. For
some laminations £, such as codimension-one foliations, this requires a preliminary
splitting of £ along a finite number of leaves. However, if we can show that this
split lamination satisfies the conclusions of our two theorems, then the original one
does, as well. For, in the first case if the split lamination can be extended to a
foliation, this just means that 1ts complementary components can be foliated, and
these pieces include all of the complementary components of the original lamination,
so the original laminaton can be extended to a foliation. In the second case, if the
split open lamination can be isotoped to be transverse to the [-fibering, then by
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collapsing the new lamination back to the old one; as in [B1], we see that the
original lamination can also be made horizontal.

Any essential lamination £ in an /-bundle M which is horizontal w.r.t the I-
fibering of M must contain a compact leaf; the first leaf that we encounter along
an I-fiber as we fall in from one of its ends must be compact (see Figure 1). This
is because the component of £ NA containing this point, where A is the annulus
or Mobius band lying over one of our 1-cells in F', is a closed loop; anything else
would, because L is horizontal, violate the fact that our point was the first one
encountered. So the leaf has a cell decomposition identical to our dl-bundle, hence
is compact.

Figure 1

Therefore, the first thing we will establish is that the same is true for every es-
sential lamination in ' xI. For any lamination the set of compact leaves is closed;
the usual proof of this fact for foliations works without any change. In our case,
the proof of [B1] insures us that these compact leaves, all of which can be isotoped
to be horizontal in M, can be made horizontal simultaneously. All such compact
leaves also separate M, into two copies of itself. By passing to a sublamination of
L, we can therefore assume, without loss of generality, that our essential lamina-
tion contains exactly two compact leaves, and that these leaves are the boundary
components of M. With this, we can then also assume that the branched surface
B has the property that 8, N(B)CL , and no component of N(B)|L is an I-bundle
with compact base, by erasing any such components that we happen to have; this
amounts to a splitting of B. Since each one uses up some of the components of
9y N(B), there are only finitely many such I-bundle components.

§2
THE ISOTOPIES

Starting with an essential lamination £ in F'xI, we now describe a sequence of
isotopies of £, which will attempt to make it horizontal w.r.t. the I-fibering of
M. In the present circumstance, making £ horizontal is the same as putting it
into Haken normal form ([H]) w.r.t the cell decomposition of M that we have built;
our 3-cell contains only one type of normal disk, namely the horizontal one. The
structure of the isotopy closely follows that of [B3].

Given a essential lamination £ transverse to our cell decomposition of M=Fx1,
L meets the boundary of the single 3-cell B3, whose own cell structure looks like
a 4g-gon crossed with I, in a collection of circles, which fall into a finite number
of parallel (w.r.t. the cell structure) families. The proof of this is standard. By
choosing 2-disks lying parallel to the boundary of the 3-cell which we than surger
L along, we may assume that all of these loops are bounded by disks of LNB3. By
throwing away any 2-spheres that may have been created by these surgeries, we
obtain a lamination isotopic to (and which we will still call) £. These disks in B3
are unlikely to be in normal form, at this point; if they were, we would be done,
since they could then be easily isotoped to be transverse to the natural I-fibering
of the 3-cell, and so £ could be made horizontal in M. The procedure in [B2],
for a triangulated 3-manifold (which we are going to adapt), was to go through
the 3-simplices one at a time, and surger these 2-disks to make them normal, by
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a process of ‘O-compression’. Here we have only one 3-cell, so this will not work;
anything we push out of the 3-cell is immediately pushed back in (Figure 2a).

Figure 2

We will not worry about this, however. Because we are dealing with a single
3-cell with the structure of a product, and the 2-disks of £LNB? do not meet the
‘top” and ‘bottom’ of this 3-cell, these 2-disks can fail to be in normal form in
only a very simple way - if a disk crosses the same 1-cell twice, then there is a
disk in the boundary of the 3-cell for us to use as a J-compressing disk (see Figure
2b). This disk crosses the vertical 1-cells of 9B many times, but each such disk
contains an ‘innermost’ disk, which meets the 1-cells only in its boundary. If we
focus on pushing these ‘obvious’ J-compressing disks instead, then the idea is that
we ‘should’ eventually reach a point where we will be killing the initial two points
that we identified.

What we shall do, then, 1s to order the vertical 1-cells in the boundary of the 3-
cell (perhaps cyclically), and then do only the d-compressions that are ‘innermost’
for that 1-cell; namely those whose compressing disk intersects only our chosen
1-cell. These d-compressions of course push things out of the 3-cell and then right
back in along all of the other 1-cells (possibly immediately creating innermost 9-
compressions for the edge we just fixed!), but the point is that we have forced any
problems that we once had at our 1-cell to move.

This is how we build our isotopies. We at each stage surger £ and throw away
any 2-spheres, to make £ meet the 3-cell in disks. Then we push any obvious §-
compressing disks w.r.t one of the vertical 1-cells in the boundary of the 3-cell. By
continually working cyclically through the 1-cells, this will create an infinite string
of isotopies of £, attempting to put £ into Haken normal form w.r.t. our chosen
cell decomposition (and hence make it horizontal). These isotopies I, have the
property that the resulting laminations intersect the vertical 1-cell in nested sets,
and do not move any point of this intersection that they do not erase.

Now the standard arguments of [B2] allow us to conclude that, first, the inter-
section of these closed, nested sets is non-empty. For otherwise it is empty at some
finite stage (by compactness of the 1-skeleton of F'xT), implying that our lamina-
tion is contained in the complement of the vertical 1-cell. But this is a handlebody,
and essential laminations do not live in handlebodies [B1]. We can also conclude
that out of this set of stable points for our isotopies, stable normal disks begin
to grow. This is because an arc of LNK(?) in one of the vertical 2-cells, which
contains a stable point in its boundary, can then only change by ‘splicing’ (Figure
3a), and therefore must eventually have a stable point as its other endpoint. For
otherwise the argument from [B1],[B2] will eventually find an arc in a leal which
together with too short an arc (i.e., length less than the monogon number €) in the
vertical 1-cell, bounds a disk in 9B3; so the two arcs are homotopic rel endpoints.
But this vertical arc must then be in the /-fiber of a branched surface carrying L,
contradicting [G-O, Theorem 1(d)].

Figure 3

This stable arc must be isotopic to a horizontal one, since otherwise it bounds
a J-compressing disk for the 1-cell that contains its endpoints. But we would then
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eventually be required to push along this disk, since no previous d-compression can
move the arc in its boundary - its endpoints would have to move - so it will be
available for pushing when we cycle around to the 1-cell again, a contradiction.
By continuing around the boundary of the 3-cell, we can string together these
horizontal arcs until we travel all of the way around the 3-cell. The string must
then close up; otherwise, we would instead be forced to continue to string stable
(horizontal) arcs together, winding around the 3-cell, until two of them pass within
€ of one another. Then, because the string is contained in the boundary of a disk
of £LNB3, there must be a (not necessarily innermost) d-compressing disk passing
between these two stable arcs (see Figure 3b), again contradicting [G-O, Theorem
1(d)].

Once the string closes up, we get a stable horizontal loop in the boundary of our
3-cell; after the next isotopy, it will then bound a stable horizontal disk. So every
stable point of the isotopies is eventually contained in a stable normal disk. The
union of these stable disks is a horizontal lamination; as in [B2], the only possible
problem is that the union is not a closed set in F'xI. But, as in [B2], the union
can fail to be closed only where two different normal disk types come together in
a 3-cell, and since in the present context there is only one normal disk type, this
cannot occur.

But because our 3-cell is actually a product, we can conclude that all of these
normal disks stabilize at some finite stage of our isotopies. For if not, then at every
stage of the isotopies there is some stable point which is contained in an arc of
LNK® which must later have its other endpoint move. We can, however, wait
long enough so that every stable point which is not already in a stable disk lies
between two stable disks which are everywhere within ¢ of one another. This can
be arranged by choosing finitely-many stable points in each vertical 1-cell of B3,
each within € of its neighbors, and then waiting until they are all contained in stable
disks. After that stage of the isotopies, if an arc containing a stable point were to
move, we would create a monogon whose vertical boundary had length less than ¢
(Figure 4a), a contradiction.

Therefore our essential lamination contains a horizontal sublamination, which
includes all of the compact leaves of £; ordinary induction on the number of points
of intersection of a compact leaf with the vertical 1-cell insures that the entire leaf
would eventually be stable. As discussed above in section 1, this sublamination
must contain compact leaves, whose union is a closed set, and by cutting down
our original lamination to the sublamination which lives between (and includes)
two adjacent compact leaves, we may assume that £ contains exactly two compact
leaves, which form the boundary of F'xI.

Figure 4

If in addition our lamination contains a non-compact horizontal leaf (which must
also have stabilized in finite time), then by the argument of [B1, Section 1] we can
make the entire lamination horizontal; all other leaves live in an I-bundle over a
non-compact base, and, since they are carried by a branched surface, are already
horizontal near infinity, so can be pulled horizontal. Therefore, we may assume,
from now on, that the only leaves of £ which stabilize in finite time are the boundary
leaves of F'x[I; all other leaves; and therefore all other points of intersection of £
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with the vertical 1-cell, are unstable and will disappear in the limit.

In particular, eventually, all of the points of LN(the vertical 1-cell Iy) which have
survived the isotopies up to that point are all within ¢ of the ends of Iy, where ¢
is our monogon number for £. This is because, setting Co=1Ip\(e-nbhd of J1Iy),
The sets I,,(£)NCy are nested, closed subsets of Cy, with empty intersection (since
(I, (£)NI)=081Iy). So, since Cy is compact, I, (£L)NCy=0, for some n. It then
follows that at no time in the remainder of the isotopies does a loop of LNB3 cross
a vertical 1-cell of B3 more than twice; for if it did, two of the points would be
within € of one another (Figure 4b), giving rise to a disk whose boundary consists of
an arc in a leaf and a vertical segment in Iy of length less than ¢, contradicting [G-
O, Theorem 1(d)]. Therefore, since for each 1-cell in dB3, the parity of the number
of times a disk crosses the 1-cell is the same, there are, for each disk, exactly two
possibilities; either it crosses each 1-cell exactly once, and is horizontal, or it crosses
some collection of 1-cells twice and the others not at all, and basically consists of
the boundary of a neighborhood of a horizontal arc joining the first edge it crossed
to the last (see Figure ba). Furthermore, if there are any disks of the second type,
then every horizontal arc in every vertical 2-cell stays within ¢ of the top or bottom
of B3; otherwise, we can again find an arc in B> which, together with a too short
arc in 1, bounds a disk in 9B?(Figure 5b).

Figure 5

Lemma. There is a stage I of the isotopies so that, for all successive isotopies I,,,
n > k, and every vertical 2-cell R, 1,(L)NR does not contain J-compressing arcs

on both ends of R.

Proof: We can assume, by performing a finite number of the isotopies, that all of
the unstable points in LNy that were at a distance greater than ¢ from 0Ip have
been erased. If we pass through a further full cycle of isotopies, so that we have
pushed the obvious d-compressing disks across each of the 1-cells in B3 at least
once, we will then find that no vertical 2-cell R in B3 has d-compressing disks on
both ends (Figure 6). This is because the arcs of £ in a vertical 2-cell change only
by erasure (during surgeries) and by being spliced together along the vertical 1-
cells of its boundary (during d-compressions). But d-compressions must now splice
together arcs whose endpoints lie on opposite ends of the vertical 1-cell; otherwise,
the ends of the d-compressing arc lie within € of one another, a contradiction. But
if we imagine gluing together the two sets of 9-compressing arcs from both sides of
the same 2-cell - the two vertical 1-cells are, after all, both copies of Ij - we must get
closed loops, because otherwise our lamination has non-trivial holonomy around a
null-homotopic loop, a contradiction. It follows that one set of arcs will be ‘larger’
than the other; when either collection of arcs is pushed (Figure 7), one set vanishes.
But once one set is gone, no d-compression will give both back simultaneously. To
get both back would require a J-compression whose endpoints are either all top
or all bottom (Figure 8), because going head-to-head one collection of arcs always
swallows the other, leaving only one type (Figure 8). I

Figure 6 Figure 7 Figure 8

What we have therefore is very simple behavior in the 3-cell, with an easily
catalogued collection of possible patterns for £NB3 in 9B3. We carry out this
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cataloguing in the next section, for the torus. By studying each case we can then
see that a lamination which has any of the patterns can be extended to a foliation;
we show this by showing that it is carried by a branched surface B such that
M\N(B) consists of product I-bundles.

This catalogue will also give us our basic building blocks for understanding the
higher-genus case. In that case, however, we find that because we must have at least
two of the patterns in succession around 9B3, we can always find a ‘compressing
disk’ for £ which | if ‘real’; gives an immediate contradiction, while, if not ‘real’,
allows us to show that some other condition of essentiality fails.

§3
THE CASE OF A TORUS

We have M =T7?x1I, which, with the cell decomposition we have described above,
is represented as a cube with opposite vertical faces identified. Given the restrictions
on how Lo=LNB3 can meet the boundary of this cube, which we have described
above, and the fact that £y must meet the opposite faces in the same way (so that
the arcs can be glued together to give L), there are, as a consequence only nine
(=3x3) patterns of J-compressing arcs with which £y can meet 9B3(and, up to
symmetry, only three; although, in anticipation of the next section, we catalogue
them all); these are shown in Figure 9. These pictures classify the pattern of ‘turns’
of £ in B3; but, for the last four, each pattern represents three patterns of loops
(see Figure 10). In each case these distinct laminations can be carried by a single
branched surface

Figure 9 Figure 10 Figure 11

The proof of the first theorem consists simply of, in each case, taking the ‘obvious’
branched surface B carrying our lamination, obtained by collapsing each family
of (normally) parallel disks to a single disk, and showing that every component
of M\N(B) is an I-bundle. Since N(B)|L is also a collection of I-bundles, and
the I-bundle structures can be assumed to agree along their intersection, which is
9y N(B), we can conclude that M|L consists of I-bundles, which can be foliated
transverse to the I-fibers, extending £ to a foliation of M without Reeb components.

For many of the cases, this process is immediate, and the laminations that we
have built are easily recognized, see Figure 11la. These laminations, coming from
the second through fifth patterns, are clearly the product of a Reeb foliation of
an annulus with S'. In the remaining four cases (Figure 11b), by assembling the
pieces of the complement of B in B> together, we can see that the complement of
Bin T?x1 is a product 3-ball; see Figure 12. Alternatively, one can simply see that
this complement is the union of 3-balls glued together, inductively, along 2-disks,
and hence is a 3-ball; and by tracing out the arcs which together form the branch
curves, we can easily see that there 1s only one branch curve, and therefore our
3-ball is a product. These laminations are also products of Reeb annuli with S* -
our cell decomposition, in some sense, simply chose the wrong ‘coordinates’.

Figure 12

Therefore, in every case we can extend our essential lamination to a foliation,
proving our first theorem, for M=T2x1.
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§4
THE BASIC CONTRADICTION

Before continuing on to consider the higher genus cases, we will now describe how,
using the pictures developed in the last section, we will derive our contradictions,
by finding ‘compressing disks’ for our essential lamination L.

We start with an essential lamination £, isotoped to the form described above,
so that it meets the 3-cell in a finite number of families of (normally) parallel disks,
each meeting a vertical 1-cell at most twice. £ carried with full support by a
branched surface B, which is obtained from £ in the usual way, by collapsing each
family of (normally) parallel disks to a single disk, as in Figure 13. Furthermore, in
terms of this branched surface, £ still has monogon number € w.r.t. the 1-skeleton
of M; this is because all points of LNK() are within € of the boundary of M (we
are assuming that the length of our I-factor is greater than 3¢). All of the branch
curves of B intersect B3, and so every component of d, N(B) contains an I[-fiber
which is part of a vertical arc in one of the vertical 2-cells.

Proposition. If £ and B are as above, then it is not possible to have a loop ~
in Iy N(B) bounding a disk D in My=MN\int(N(B)) which intersects transversely,
exactly once, an arc « in O N(B), joining two (possibly distinct) components of

0, N(B).

The proof of our second theorem will proceed, in large part, by showing that in
the presence of most of the configurations described in the previous section, we can
find such a disk and arc.

Proof: Suppose such a disk and arc existed. Then since £ is essential and
InN(B)CL, there exists a disk D’ in a leaf L of £, with boundary y. DUD'=S is
an embedded sphere in M, intersecting £ only in D’. Because M is irreducible,
S bounds a 3-ball A in M, and since SNL=D’, ANL=D" as well, since otherwise
LCA - no leaf of an essential lamination can lie entirely in a 3-ball.

Label the vertical annuli of 0, N(B) that « joins A; and A, (these may be
different labels for the same annulus). D splits My into components, and, since
ANL=D', A must contain one of the components which meets D (see Figure 13).
In particular, A must meet, hence contain, one of the vertical annuli, say A;.

Figure 13

But since A meets £ only in D’ it then also follows that both ends of the annulus
A; are contained in D’. But this is absurd; any arc 8 in D’ joining the ends of
one of the I-fibers of A;NK(?), together with the I-fiber J, forms a loop in A,
which is therefore null-homotopic in M, and are therefore homotopic rel endpoints.
By extending £ by adding onto our null-homotopy a vertical rectangle in N(B)|L
from .J to an arc of N(B)ﬁK(l), and letting this longer arc § flow back along the
isotopies of £ (which leaves its endpoints fixed, because they are stable) we get
an arc in our original lamination which i1s homotopic rel endpoints to an arc of an
I-fiber in our original N(B), contradicting [G-O, Theorem 1(d)]. |}
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§5
THE HIGH-GENUS CASE

If our surface F' has genus >1, then after a sufficient number of isotopies of our
essential lamination £, we have, around the boundary of our 3-cell, g copies of the
various patterns of intersection described in the previous section, strung together in
a circle. We will call each sequence of 4 vertical 2-cells, corresponding to a sequence
a;, b;, ai’', b7!, a place. What we will now show is that, because g is greater than 1,
unless we have the first pattern at every place, and so have a horizontal lamination,
we can always derive a contradiction.

So suppose, by way of contradiction, that in one of the places we have an obvious
O-compressing disk. We therefore have disks of £LNB3 other than horizontal disks.
These disks we will call vertical disks, since they are isotopic to disks in the vertical
part of B3, The first thing that we must notice is that somewhere in B> there
is a vertical 1-cell which 1s not crossed by any of these vertical disks. This is a
consequence of the previous lemma, which showed that no vertical 2-cell contains
OJ-compressing arcs on both sides. For then if both vertical 1-cells in the boundary
of a vertical 2-cell are crossed by vertical disks, then one of the vertical disks must
in fact cross both ends; see Figure 7. So if all 1-cells are crossed by vertical disks,
then if we shade in all of the disks in the vertical boundary of B3 that these vertical
disks cut off, the union of these disks form a shaded region R which includes an
annulus running completely around 9B3. This shaded region is also a closed set,
since the set of loops of £LNK(?) null-homotopic in the annulus of vertical 2-cells is
closed. But this situation is absurd; the boundary of this region consists of a finite
number of horizontal arcs, which must therefore (since R is closed) together form
horizontal loops of £LNOB3, which are certainly not null-homotopic in the vertical
annulus.

What we will show now is that, in the vertical boundary of the 3-cell B3, certain
of the patterns (2) through (9) cannot occur, either singly or in combination with
others. In the end, we will so restrict the boundary behavior of £LNB? that only
one possibility will remain - that all of the places have patterns of type (1). In
each case, we will, after assuming that a certain sequence of pattern types occurs,
derive our contradiction in one of two ways: either we will find two loops in 0, N(B)
which intersect in a point, one of which is null-homotopic in M, or we will find a
loop and arc as described in the proposition above. Each gives a contradiction; in
the first case, this is because the null-homotopic loop must be null-homotopic in
the leaf which contains it, but the intersection condition implies that it is in fact
homologically non-trivial in that leaf. The second case is our proposition. The
basic idea is that if the ‘complicated’ pieces are relatively sparse, it is fairly easy to
find the first kind of behavior, while if the complicated pieces are more prevalent,
we tend to find the second kind of behavior.

Lemma. If LNOB3 contains vertical disks, then every vertical I-cell J of B®, in
the interior of one of the places of four vertical 2-cells, is either not intersected by
any vertical disk of L, or is intersected by an obvious O-compressing arc in one of
the two adjacent vertical 2-cells of OB that contains it.

Proof: Suppose there were a 1-cell both intersected by a vertical disk, and missed
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by our obvious J-compressing arcs. Our situation would be like Figure 14a. Then
in B3 there is a -compressing disk for the outermost of these vertical disks, inter-
secting dB> in a subarc of Jy of J with £LNJy=0J,. This disk, together with the
obvious d-compressing disk which we know exists, forms a disk D whose boundary
lies in O, N(B). If one of the 2-cells adjacent to J does not contain any obvious
OJ-compressing arc, then the horizontal arc that it does intersect closes up in F'x I to
a loop, which lies in 8, N(B), so D intersects another loop in 9, N(B) exactly once,
a contradiction; see Figure 14b. If both 2-cells have an obvious d-compressing arc,
then D intersects exactly once an arc running between two components of 9, N(B),
contradicting the proposition; see Figure 14c. I

Figure 14

With the lemma we can begin to eliminate some of the pattern types which
we have listed in the T2 xI case above. The first four of these remaining types,
‘2’ through ‘5’, are fairly easy to deal with. In each of these we have a vertical
2-cell, which contains no obvious J-compressing arcs, yet is crossed by a vertical
disk of £LNB3. If, everywhere else around the boundary of the 3-cell B3, we have
no obvious J-compressing arcs, then our situation is like the one pictured in Figure
15; there 1s only one family of vertical disks, and they fail to intersect one of the
vertical 2-cells. We must then be dealing with either type ‘3’ or ‘b”: the other
two types would give us a situation violating the lemma above, since this family of
vertical disks would cross an entire place of 2-cells (hence one of its interior 1-cells).
Then it 1s an easy matter to construct a compressing disk D for £; this is a ‘real’
compression, because we can find another loop in the same leaf which intersects D
exactly once, using the fact that the vertical disk misses one of the 2-cells.

Figure 15

On the other hand, if one of the other places does have a 0-compressing arc,
then, for the types ‘3" and ‘5’, we can glue the three ‘corners’ of our 4¢-gon (that
the three central vertical arcs of our picture represent) together, and draw how
our lamination intersects this 3-fold corner; see Figure 16. We can then glue the
obvious J-compressing disk, lying in the interior of this 3-fold corner, to the disk
that the other d-compressing arc cuts off, to obtain a compressing disk for £ (see
Figure 16); the two vertical arcs that these d-compressing disks cobound are really
the same, living in the single vertical 1-cell of M. This compressing disk is ‘real’,
since the horizontal arc 3 in the 3-fold corner lying in the vertical disks and furthest
from the top (but still within € of the top) forms a closed loop in M, which lies in
9n N (B) and intersects our compressing disk, transversely, exactly once.

For types ‘2’ and ‘4’, there are two possibilities. One of the 2-cells (in our
type ‘2" or ‘4’ place) having no obvious J-compressing arcs is crossed by a vertical
disk; if both 2-cells are, then we can build a compressing disk and a loop in 9, N(B)
intersecting it, transversely, once; see Figure 17a. If the second 2-cell Ry in our type
‘27 or ‘4’ place is not crossed by a vertical disk, then there are still two possibilities.
If the pattern of the place which includes the second J-compressing arc is not type
‘9’ (note that types ‘3" and ‘5’ have already been eliminated), then the place has an
interior 1-cell which doesn’t meet any obvious J-compressing arc, and therefore, by
the lemma, 1s not crossed by a vertical disk. Therefore there is a vertical 2-cell R
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in that place which isn’t crossed by a vertical disk, but the 2-cell it is glued to is.
By drawing an arc in the horizontal disks from R; to Ra, and taking the vertical
rectangle lying below it, and then adding two J-compressing caps, we can create
a compressing disk (Figure 17b) which is intersected by a loop in 8, N(B) exactly
once.

Finally, if all of the remaining places have type ‘1’ or ‘9’ then since the vertical
disks originating from our original (type (2) or (4)) place continue out from the
end of the place, the first type ‘9’ place we meet starting from either end must
have a vertical disk crossing at least one of its ends. This gives us a 0-compressing
disk, at one end, which, together with another (obvious) one from the interior of
the type ‘9’ place, gives us a compressing disk for which we can find an arc joining
branch curves, intersecting our compressing disk exactly once; see Figure 17¢. This,
however, violates the proposition.

Figure 17

Consequently, none of the places around the boundary of the 3-cell have any of
the patterns ‘2” through 5.

This leaves four remaining types, ‘6’ through ‘9’. First, if we glue the three
‘corners’ of each pattern (6) through (9), that the three central vertical arcs of each
pattern represent, together, and draw the portions of our branched surface B that
live near this 3-fold corner, then we get the four figures of Figure 18. Note that
each of these corners have obvious J-compressing arcs on both ends. Between each
adjacent pair of 3-fold corners, there is also a ‘transitional corner’. The shape of the
branched surface B in these transitional pieces is determined by how the branched
surface intersects each end; in addition to the case that B consists only of the top
and bottom horizontal faces of the corner, we have one of 8 possibilities, see Figure

19.
Figure 18 Figure 19

We will deal first with the possibility of a type ‘6’ place, from Figure 9. There is
a fairly obvious compressing disk D in its 3-fold corner, formed (across the vertical
1-cell) from the two J-compressing arcs on either side of the 3-fold corner (see
Figure 18). Because in our present situation the transitional pieces (b) and (d)
cannot occur adjacent to our chosen corner (they imply that the next place over
is a type (1) place with a vertical disk crossing it, contradicting the lemma), it is
easy to see that if there is another J-compressing arc in one of the other places,
then we can join our compressing disk to a branch curve by an arc, outside of our
3-fold corner, in J, N(B). In every case but (a), this can be done in the adjacent
transitional piece; in the remaining case, it can be done immediately upon entering
the next 3-fold corner (which must be the left or right end of ‘6, the left of ‘7, or
the right of ‘8’). This together with the obvious arc in our original type ‘6’ corner
joing D to a branch curve in the 3-fold corner, gives an arc satisfying the conditions
of our proposition, a contradiction.

Similarly, the last of the types, type ‘9’ cannot occur. If there were any other
obvious @-compressing arc around the boundary of B3, then by gluing it to the
O-compressing arc in the middle of our 3-fold corner, we would get a compressing
disk D; see Figure 20a. The obvious arc in the neighborhood of the 3-fold corner
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joining the two branch curves intersects 9 transversely exactly once, contradicting
the proposition. On the other hand, if there are no other J-compressing arcs in
the boundary of B3, then we have the situation in Figure 20b; the only vertical
disks then live inside of our single type (9) place. We can then build a different
compressing disk for B, by chosing the vertical rectangles lying over the arcs shown
in Figure 20b, whose boundary intersects a loop 8 in 9, N(B) transversely in a
single point. This again is a contradiction, so the last of the four remaining types
also cannot occur.

Figure 20

This leaves only the two middle types, types ‘7" and ‘8’, remaining. Both of these
patterns have a 1-cell not meeting an obvious d-compressing arc, so the adjacent
2-cells are not completely crossed by vertical disks, by the lemma. Also, at least one
of the remaining two (end) 2-cells in each pattern is (obviously) crossed by a vertical
disk. As with the previous two types, if there is a place around B> which has a
type (1) pattern (i.e., has no obvious d-compressing arcs) , then that place would
either be crossed by an outermost vertical disk, contradicting the lemma, or is not
crossed by any vertical disk, allowing us to build a compressing disk intersecting
another loop exactly once; this is entirely similar to Figure 20b. Therefore, we may
assume that in none of the places around 9B? have a type (1) pattern; all of them
are type (7) or (8).

But now let us look in a neighborhood of our single vertical 1-cell in M this is
made up of our (type (7) or (8)) 3-fold corners, together with transitional pieces in
between each. What we will find is that no matter what sequence of type (7) or (8)
corners we fit together around our 1-cell, we can always find a compressing disk and
arc satisfying the hypotheses of the proposition. Finding a disk is easy; each 3-fold
corner contains an obvious d-compressing disk to act as ‘half’ of a compressing disk.
The problem is that in both of these remaining types, these halves are at the edges;
they don’t obviously separate two branch curves; as did the type (6) and (9) cases.
However, it is not hard to see that if two places of the same type occur side-by-side,
then the resulting compressing disk does separate a pair of branch curves, and so
we can find the extra arc we require to appeal to the proposition; see Figure 21a.
Two type ‘7" places are shown there; type ‘8’ is the mirror image.

This leaves only the possibility that these two types alternate as we travel around
the boundary of the 3-cell B3, and therefore there are an even number of places in
the boundary. If there are more than two places, we can once again find a com-
pressing disk separating branch curves, by gluing half-disks from two non-adjacent
places together; see Figure 21b. Finally, if there are only two places, then we can
draw exactly what B looks like in B3, since we know that the 1-cells in this figure
that are not met by a J-compressing disk are also not crossed by a vertical disk;
see Figure 21c. Then we can find a compressing disk and arc which satisfies the
hypotheses of the proposition.

Figure 21

This covers all of the possibilities, under the assumption that £NJB> con-
tains a J-compressing arc. In all of them, we found a disk D in M\N(B) with
ID=~Cd, N(B), together with either a loop in 9, N(B) intersecting 7 transversely
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in a single point, or an arc in 9, N(B) joining two components of 3, N(B) and in-
tersecting v transversely in a single point. But both of these situations contradict
the fact that £ is essential. Therefore, there can be no J-compressing arcs; so £
can be made horizontal in M = F'x[.

§6
THE MOST GENERAL SITUATION

We have dealt with the case that M=Fx I, where F is a closed orientable sur-
face. We now turn our attention first to the case that M =FxI, where F is a
closed non-orientable surface. Then, as we described before, F' can be represented
as a 2g-gon whose edges are labelled counter-clockwise aq,a1,...,a4,a,. The same
collection of isotopies, if it doesn’t make £ horizontal, will, we can assume, con-
centrate the unstable points within € of M. We get a collection of vertical disks,
whose boundaries each cross a vertical 1-cell at most twice. The resulting collection
of d-compressing arcs are found on at most one end of each vertical 2-cell, and no
horizontal arc can run from the top of a 2-cell to the bottom. Around the boundary
of the 3-cell B3 we therefore have g pairs of (length 2) places, and in each we have
one of three patterns, shown in Figure 22.

Figure 22

In the case of K2, we have two of these places. If we do not have a horizontal
lamination, then we must have J-compressing arcs in each pair, pointed in the
opposite directions; any other possibility would not give us any vertical disks (i.e.,
there would be holonomy around the union of the upper, say, boundaries of the
vertical 2-cells). But it is then easy to see that the obvious branched surface that we
build out of these disks has complement which 1s a product, and so the lamination
can be completed to a foliation; see Figure 23.

Figure 23

In the higher genus cases, we have three or more places around the boundary of
B3, and, again, if we have any d-compressing arcs, we must have at least two sets,
pointed in opposite directions. We can assume, as we travel in the counterclockwise
direction, that they open towards one another; see Figure 24a. If there is a collection
of horizontal arcs in between, then they are crossed by a vertical disk, contradicting
the lemma. If there is a third collection of J-compressing arcs, it opens up in the
same direction as one of the previous two; then their two obvious J-compressing
arcs together form a compressing disk, for which we can find an arc required for
the proposition; see Figure 24b. There are two cases, depending upon whether the
next place adjacent to one of the two also points in the same direction or not.

Figure 24

Therefore, we must have exactly two sets of J-compressing arcs, in adjacent strips
and opening toward one another. The remaining strips then have only horizontal
arcs running across them, and therefore have no vertical disks crossing them, by
the lemma. Then we can find a compressing disk D and a loop intersecting 0D
transversely in one point, as in our previous type (9) case; see Figure 24c.
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So in all cases, except when there are only horizontal disks (and therefore a
horizontal lamination), we arrive at a contradiction. So every essential lamination
in F'x1I, where F'is a closed surface of genus greater than one, can be isotoped to
a horizontal lamination.

Finally, we deal with the case that M is an I-bundle over a closed surface F,
but not necessarily a trivial /-bundle. This means that M is obtained by gluing a
4g-gon crossed with I, or a 2¢-gon crossed with I, together using the identifications
for the base surface, except some of the gluings flip the /-direction of the vertical 2-
cells. This flipping does alter the proofs that we have given for the trivial I-bundle
cases, although largely in a minor way. This is because all of the compressing disks
we have found in the course of our constructions have been vertical compressing

disks, as the reader can speedily check. This means that they can still be built,
even if some of the gluings flip the I-direction.

The isotopy construction we have given goes through without any change, so
we may, as in the previous cases, assume that the usual properties hold. So after
isotoping £, all of points of £ in the vertical 1-cell are within ¢ of M, LNB3
consists of a finite number of parallel families of disks, each of which crosses each
vertical 1-cell at most twice, each vertical 2-cell has at most one parallel family of
O0-compressing arcs, and no horizontal arc in a 2-cell runs from the top on one side
to the bottom on the other.

For the cases when the base of the bundle is 72 or K2, we can still casily see that
the lamination can be extended to a foliation. The pieces of the complement of B
in B3 still glue together to give a collection of I-bundles (and most of these are still
product I-bundles), so we can fill in these complementary pieces with (horizontal)
foliations.

In the higher genus cases, most of the constructions of compressing disks for the
non-type (1) cases will go through unchanged. In particular, any compressing disk
D that came equipped with an arc joining branch curves, and which crossed D
once, will still exist, as the reader can readily verify. This leaves the cases which we
dealt with by finding a compressing disk D and a loop intersecting 0D transversely
in a single point. Some of these must be dealt with slightly more carefully, since
we were tacitly using the fact that the gluings did not flip the /-directions.

However, if we assume that the boundary v of the compressing disk D that we
constructed in those situations bounds a disk D’ in the leaf L of £ that contains it
(which we can; £ is essential!), then we can create a slightly different contradiction.
Any loop @ that we find in L which is transverse to v then intersects D’ in arcs,
and so if we orient 8 and an annular neighborhood of 4 (it is annular because v
bounds a disk in L), then the intersection number of 5 with vy is zero, where this
number i1s counted by comparing the orientations of the loops with an orientation
of the annulus.

But now in each of the cases above where the contradiction was obtained by
finding an additional loop (rather than arc) we can find a loop with non-zero in-
tersection number. In the case of Figure 14b of the lemma, we choose instead a
loop as in Figure 25a; this loop has intersection number 2 with the boundary of the
compressing disk. In the cases analogous to Figures 15, 17b, 20b, and 24c, we find
the loop instead, if necessary (i.e., if the 2-cell we used was glued with a flip), by
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taking both a ‘top’ and ‘bottom’ arc, which together form a single loop which has
intersection number 2 with the boundary of the disk; see Figures 25bc.

Figure 24

So in the higher genus cases, we can still find all of the required compressing disks
needed to obtain our contradictions; every essential lamination can be isotoped to
a horizontal one.

§7
CONCLUDING REMARKS

The techniques used in this paper also give a simplified proof of the main result
of [B3] - Haken normal form for regular cell decompositions. Instead of using a
sequence of infinite isotopies, we build a single infinite isotopy, as we did here, by
making the lamination £ meet each 3-cell in disks and then, in turn, pushing all
of the identifiable d-compressing disks out of each 3-cell, not worrying if some of
them push problems back into the 3-cell. This sequence of isotopies only erases
points of intersection with the 1-skeleton (which is in some sense the crucial fact in
all of these proofs), giving us a non-empty set of stable points. Then the argument
outlined here implies that stable disks grow out of these stable points; we can then
finish by using the arguments of [B2] to show that the resulting ‘splitting of the
closure of the union of the stable disks’ contains an essential sublamination.

To make these techniques more useful, it would be good to know how to handle
the possibility that the intersections of the isotoped laminations with the 1-skeleton
is not necessarily nested. In this respect, the paper [B3] offers one such avenue.
The possibility that new points can be added to the intersection with the 1-skeleton
present the main obstacle to applying techniques like those of this paper to several
problems of central importance to the theory of essential laminations. Can one
always obtain an essential lamination (or the empty set) by repeatedly surgering
certain kinds of laminations; for example, the pullback of an essential lamination
under a map between 3-manifolds? A positive answer to this question would settle
the conjecture that 3-manifolds containing essential laminations are determined up
to homeomorphism by their homotopy type [B4]. Given an essential lamination
L in M and a knot x in M, can one find a new essential lamination £’ so that
L\int(N(k)) is essential in M\int(N(«))? The only obstruction is that there might
be compressing disks for L\int(N(x)) in M\int(N(x)), so it is again an (isotopy
through) surgery problem. A positive answer to this question would allow us to
conclude that if we can find an essential lamination after Dehn filling along a
knot, then there exists one before, which ‘survives’ the filling. It seems likely that
techniques along the lines of this paper sufficient to settle the first of these questions
would succeed in settling the second of these, as well.
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