
Essential laminations and Haken normal form, II:

regular cell decompositions

Mark Brittenham

This paper is a sequel to [B1]. In that paper we showed how, given a triangulation

� of a 3-manifold M, to use an essential lamination L in M to �nd a (usually di�erent)

essential lamination L0 which was in Haken normal form with respect to the triangulation

� . In this paper we show how to extend this result to more general cell decompositions.

A cell decomposition of a 3-manifold is called regular if every k-cell is a polyhedron, and

every face of every k-cell is glued to a (k-1)-cell by a homeomorphism. Such a decomposition

arises very naturally, for example, from a Heegard decomposition of M; the decomposition

then has one 0-cell and one 3- cell. A lamination is in normal form w.r.t. a regular

decomposition if it is transverse to the decomposition, and it meets the 3-cells B3
k in disks,

each meeting every 1-cell in the induced cell decomposition of @B3
k at most once. The main

result of this paper is:

Theorem: If M is a 3-manifold with a regular cell decomposition fB3
kg, and M contains

an essential lamination L0, then there is an essential lamination L in M which is in normal

form w.r.t. the cell decomposition.

This result extends that of [B1], showing that normal essential laminations can be

found for all reasonable decompositions of 3-manifolds. Essential laminations therefore

behave in essentially the same way that incompressible surfaces do, in terms of Haken

normal form.
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One interesting consequence of this theorem is:

Theorem: If M=H1 [ H2 is a Heegard decomposition of M and if M contains an

essential lamination L0, then there is an essential lamination L in M such that:

(1) L is transverse to @H1=@H2,

(2) L\H1 consists of compressing disks for @H1, which form �genus(H1) parallel

families, and

(3) L\H2 is a lamination in H2 with �1-injective leaves.

The proof of the main theorem is an extension of the proof found in [B1]. We start

by turning our cell decomposition into a triangulation, using a slight variation of the �rst

barycentric subdivision. We then use [B1] to develop an (in general in�nite-time) isotopy

which �nds an essential lamination L1 which is in normal form w.r.t. the triangulation.

It will not in general be in normal form w.r.t. the cell decomposition, so we take steps

to make it look `more' like one in normal form. Then we turn the isotopy machine on

again, to get another essential lamination L2 in normal form w.r.t. the triangulation. We

continue this process (taking in�nitely-many in�nite isotopies), all the time watching the

intersections of the laminations with the 1-cells of our decomposition. These turn out to

`almost' form a nested sequence, and by altering L0 slightly, can in fact be made into

a nested sequence, whose intersection forms a set of stable points under these isotopies.

Then, as in [B1], a new lamination can be seen to grow out of these points, which will turn

out to be essential and in normal form w.r.t. the cell decomposition.

This paper uses to a large extent the same techniques that were developed in [B1], so

a familiarity with that paper will be assumed. The reader is also referred to that paper

and [G-O] for de�nitions and basic notions regarding essential laminations.

The author wishes to thank Kerry Jones for several rewarding conversations.
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1. Proof of the theorem: the isotopies

Given a regular cell decomposition of M, we can subdivide the 3-cells in a natural way

to get a triangulation � of M whose 3-simplices are embedded, except possibly at their

vertices, and so that the 1-skeleton of � contains the 1-cells of M, with no subdivision - see

Figure 1. To �x notation, we will call the i-skeleton of the original cell decomposition K(i).

The union of the 1- simplices of � which are contained in the 2-skeleton of the original

decomposition will be called �
(1)
2 =� (1)\K(2); it therefore contains K(1). The union of the

1-simplices of � which meet the interior of the 3-cells of the original decomposition will be

called �
(1)
3 ; see Figure 1.

Figure 1

We assume, as in [B1], that every leaf of L0 is non-compact, and further, by passing to

a sublamination, that L0 is its own minimal sublamination, that is, every leaf of L0 is dense

in L0. These assumptions are made largely for convenience, to streamline the argument;

they do not weaken the results, because we are only interested in, and in general can only

expect, an existence result, so our starting point is fairly arbitrary. Any compact leaf could

be put into normal form using the usual techniques ([Ha], [Sch]).

Because the isotopies developed for triangulations in [B1] work perfectly well for a

`triangulation' with bad vertices (i.e., in which some of the 3-simplices have vertices iden-

ti�ed), as the reader can readily check, we can run the isotopies described there on any

essential lamination, to give an essential lamination in Haken normal form w.r.t. � . In an

abuse of notation we will call the end result of these `isotopies' I1(L0)=L1, thinking in our

minds that it is a lamination isotopic to L0 (instead of a sublamination of a splitting of

the closure of the eventually stable portions of L0 under an in�nite sequence of isotopies!).
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This lamination, however, is almost certainly not in normal form w.r.t. the original cell

decomposition. We next try to right all of the obvious 
aws that this lamination has, as

far as normal form for the decomposition is concerned.

The procedure of making a lamination meet an embedded 3-cell in normal disks is

fairly straightforward, and entirely similar to that of a 3-simplex (see [B1] for a discussion of

that case). The problem here is that our 3-cells in general are not embedded, which makes

the notion of `pushing your problems out' of the 3-cell intractible; things will generally get

pushed back in, from an unexpected direction. However, we can start by identifying all

of the things in a given 3-cell B1 which we want to push, and which, pushed out of an

embedded 3-cell, would give us a collection of normal disks, and push them, not worrying

about what is getting pushed back in.

Figure 2

Number the 3-cells of M by B1,...,Br. First notice that L1 meets each @Bk in a

lamination consisting of circles, because @Bk is a 2- sphere; otherwise, L1 has a monogon

or non-trivial holonomy around a null-homotopic loop. Start with B1, and surger L1 along

a 2-sphere in B1 parallel to @B1, and throw away any 2-sphere leaves created; as in [B1],

this gives a lamination isotopic to L1, which meets B1 in �nitely-many parallel families

of disks. Then we can locate a �nite number of disjoint embedded `@-compressing' disks

�2
1,...,�

2
n in B1 (see Figure 2) for which L1 meets B1n

S
(�2

k�I), in normal disks, where

the `1-skeleton' of this ball is obtained from the 1-skeleton of B1 by deleting the arcs

�2
k\@B1�K

(1) and replacing them with �2
k\int(B1) (see Figure 3). If we now,one at a

time, isotope L1 using these disks as a guide, we will, as a result of this isotopy I+1 have

removed points of intersection of L1\@�2
k�K

(1) from �
(1)
2 , at the expense of adding to

the points of intersection of L1 with �
(1)
3 , since both of these procedures could add points
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to the intersection of � (1) with the interior of the 3-cell. We now have a new lamination

I+1 (L1)=L
+
1 transverse to � (1), and we can use the machinery of [B1] to create an in�nite

isotopy I2 to create a new essential lamination L2 which is once again in normal form

w.r.t. � . In this way we can create an in�nite collection of in�nite isotopies Ik, along with

transition isotopies I+k , so that Lk=Ik(L
+
k�1) is in normal form w.r.t. the triangulation

� , and L+
k =I

+
k (Lk), where I

+
k has attempted to make Lk meet Bj in normal disks, where

k�j(mod r).

Figure 3

The isotopies I+k really achieve very little in a practical sense, and it is likely the case

that there will be no time during the sequence of isotopies in which Lk will meet all of Bj in

normal disks. However, we have won a moral victory - we know that everything that is bad

about the intersections of our lamination Lk with the 3-cells of M eventually moves. The

other main bene�t gained from this collection of isotopies is that we have arranged that

Lk\�
(1) is contained in L+

k�1\�
(1), modulo the splitting along �nitely-many leaves which

is required to obtain Lk from Xk; see [B1]. Also, L+
k \�

(1)
2 �Lk\�

(1)
2 , although L+

k \�
(1)
3

may be much larger than Lk\�
(1)
3 , because the surgeries along the 2-spheres in the Bj will

in general create many additional points. We will see in the next section, however, that

by an a posteriori splitting of L0 along a countable number of leaves, we can arrange that

Lk\�
(1)�L+

k�1\�
(1), on the nose. Then, out of the stable set - the intersection of these

nested collections of points - stable normal disks for the cell decomposition begin to grow.

Then we will once again be in the same situation encountered in [B1]; after altering the

union of these stable disks, we are able to �nd a lamination in normal form w.r.t. the cell

decomposition which, with some work, can be shown to be essential.
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2. Making the isotopies accomodate one another

We have now de�ned our sequence of isotopies, which, up to splitting, only remove

points of L0\�
(1)
2 , at the expense of possibly adding points to L0\�

(1)
3 . It is actually the

case that there are points of L0\�
(1)
2 which are never removed by these isotopies, although

they are hard to see, because they are continually moved by the splittings. To enable

ourselves to see them, let pk be the projection which is the inverse of the splitting required

to get (in the notation from [B1]) the lamination Lk from the closure Xk of the stable

disks of the k-th isotopy. Then pk(Lk\�
(1)
2 )=Xk\�

(1)
2 =Xk\�

(1)
2 �Lk�1\�

(1)
2 . So setting

�k=pk� � � � � p1, we have �k(Lk\�
(1)
2 )��k�1(Lk�1\�

(1)
2 )�L0\�

(1)
2 , and since each of the

pk's are closed maps, �k(Lk\�
(1)
2 ) is a closed set. So we have a nested sequence of closed

sets in the compact set �
(1)
2 ; so either eventually they are all empty, or their intersection

is non-empty.

But if one of these sets �k(Lk\�
(1)
2 ) is empty, then of course Lk\�

(1)
2 is empty. Then

because Lk is in normal form w.r.t. the triangulation � , it cannot meet K(2) either, because

�
(1)
2 �K(2) cuts the 2-cells into 2-simplices, and any loop of Lk\K

(2) in a 2-simplex bounds

a disk in both 3-simplices containing it, after the initial surgery- isotopy, hence is contained

in a sphere leaf of Lk, a contradiction. So Lk would be contained in the interior of the

3-cells, which is also a contradiction. The only alterative is that Lk is in fact empty. But

this is still another contradiction; the isotopies in [B1] always gave a non- empty lamination

if they started with one, so by induction if L0 is non- empty, so are all of the Lk.

So now we know that something survives the isotopies, but we can't necessarily see

it, because it might be forever moved by the splittings. We will now remedy this situation

by an a posteriori splitting of L0.
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This next step is motivated by the following observation. Suppose L is a leaf of Xk,

the stable leaves of the isotopy Ik, which meets (and hence is contained in) one of the

singular leaves of Xk, but is isolated on one side, in the transverse direction. Then when

the procedure of [B1] requires us to split along the leaf L and throw away anything which

is isolated on both sides, this amounts to just taking the singular leaf of Xk and throwing

away those portions of it which are isolated on both sides (see Figure 4). So, for example,

if all of the leaves of Lk�1 which give rise to singular leaves in Xk are isolated on one side,

then we may take Lk\�
(1)
2 �Lk�1\�

(1)
2 . The intersections of the Lk with �

(1)
2 would be

nested.

Figure 4

Consider the �nite collection of all leaves of Lk which are not ordinary leaves of the

isotopy Ik; that is, they are leaves of Lk which are not contained in Xk - they arise by

splitting. Under �k, these leaves are mapped into, but not necessarily onto, a �nite number

of leaves of L0. Taking the union over all k, we get a countable collection S 0 of leaves of

L0. Now among these, choose those which are limited upon on both sides, and call this

collection S. Split L0 along these leaves; we still call this new lamination L0. This is

in principle a splitting along a countable number of leaves; but it can be carried out in

entirely the same spirit as the splitting of a lamination along a single leaf.

Splitting along a single leaf L amounts to replacing L0 in a branched surface neigh-

borhood N(B) by (L0nL)[@N(L) in N=(N(B)nL)[N(L) (see Figure 5). By making sure

that the lengths of the I-�bers of N(L) tend to 0 fast enough as we tend to 1 in L, we can

insure that N is (I- �ber-preservingly) homeomorphic to N(B); this amounts to insuring

that the sum of the lengths of the I-�bers in N(L) added to each I-�ber of N(B) is �nite.
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Figure 5

For a countable number of leaves Li, we must then require that the maximum amounts

of `air' that each splitting adds to some I-�ber of N(B) together form a convergent series.

The sum, by scaling the splittings, we can then make as small as we like. This gives us a

lamination - the resulting set of `leaves' forms a closed set, because it meets the I-�bers in

closed sets - in (something homeomorphic to) N(B). By [G-O], this new lamination, which

we will still call L0, is therefore also essential, since it, too, is carried with full support by

the (we may assume) essential branched surface B.

Recall that a monogon number for a lamination L0 carried by a branched surface B

w.r.t. an arc or loop 
, transverse to L0 and meeting N(B) in I-�bers, is a number � so

that any two points in L0\
 within � of one another are in the same vertical �ber of N(B).

Now if we assume that, by scaling the splittings, our collection of splittings moves points

in N(B) by at most �/3, then �/3 is a monogon number for our new L0 w.r.t. B. This

is because any two points within �/3 of one another, when we collapse the splittings to

retrieve the old L0, are then within � of one another, so are contained in the same �ber of

N(B).

After carrying out this splitting, we can now run the exact same isotopies that we

had previously built, which allowed us to identify the leaves of S; but where previously

we had an arc or disk in one of the Li which needed pushing, now we �nd two parallel

arcs or disks, both of which we push. But now any time one of the isotopies requires a

splitting, the leaf we split along has already been split, so it is isolated on one side. Then

the splitting is really just an erasure, so the intersections of the associated Lk with �
(1)
2

will be nested.
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3. Stability

We are now in a position to establish the basic stability results analogous to [B1].

We have, beginning with an essential lamination L0, an in�nite collection fIkg of in�nite

isotopies giving essential laminations Lk in normal form w.r.t. the triangulation � , and

transition isotopies fI+k g of Lk which attempt to put the lamination Lk into normal form

w.r.t. the cell decomposition of which � is a subdivision. These isotopies are compatible,

in the sense that, for every k,

Ik+1(L
+
k )\�

(1)
2 =Lk+1\�

(1)
2 �I+k (Lk)\�

(1)
2 = L+

k \�
(1)
2 �Ik(L

+
k�1)\�

(1)
2 =Lk\�

(1)
2 .

In general, however, Lk\�
(1)
3 is not under such good control. We can assume, by passing

to a sublamination at each stage, that every leaf of the Lk is dense in Lk, and we can

assume that Lk doesn't contain, hence isn't, a compact leaf - otherwise, we could just quit

and put it into normal form in the

As before, the set of points P=
T
k�1(Lk\�

(1)
2 ) must be non- empty, since each Lk is

non-empty, and it consists of (not necessarily all) points of L0\�
(1)
2 which are never moved

under any of the isotopies Ik and I+k . We will now study the intersections of the Lk with

the 2-skeleton K(2) of M, and see, as in [B1], that stable arcs in the 2-cells begin to grow

out of each of these stable points. These arcs will together form the boundaries of disks

in the 3-cells which are themselves eventually stable. The arguments are very similar to

those given in [B1], except for the additional case when the point of P is in a splitting leaf

for one of the isotopies.

Now consider a point x2P and a 2-simplex �2 of � (2)\K(2) containing x in its bound-

ary. For each k, x is contained in an arc �k of Lk\�2. One end of �k is �xed (it is x),

while the other changes, as �k `grows', by boundary-compressions, as in [B1]. We should

note that the proof in [B1] of eventual stability of the other endpoint, under the isotopy
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I1, used only the existence of a monogon number for the lamination L0, and gave an upper

bound N, depending only on this monogon number, for the number of @-compressions that

the end of a half-anchored arc can undergo. But this upper bound can be chosen to be

universal over the entire collection of isotopies, at least for ordinary leaves of the Lk; be-

cause if an arc with one endpoint in P undergoes more than N @-compressions in the �rst

k isotopies (or transition isotopies), then the exact same argument will allow us to �nd

two points of the arc too close to one another, which give a monogon in the 2-simplex. We

can then let this monogon 
ow back under all of the isotopies; this is really only a �nite

amount of 
owing, because in each isotopy the arc is eventually stable. This will produce

an arc in a leaf of L0 which, because the ends are too close together, gives a monogon for

L0, a contradiction. If we are dealing with an arc in some split-and-paste leaf, we choose

a nearby arc in an ordinary leaf to apply this to; our original arc might not be able to 
ow

all of the way back. In particular, an arc, one of whose endpoints is a point of P which is

contained in an ordinary leaf of all of the laminations Lk , is eventually stable.

Unfortunately, we cannot guarantee that such points exist; it could be the case that

every point of P is contained in a splitting leaf of some Lk. Then the argument above

might not work - the arc �k may `jump' to the other side of the 2-simplex (see Figure

6), instead of being @-compressed. However, the arc �k can jump only in the direction in

which the leaf containing it is not isolated, i.e., only towards the side in which it is limited

upon by other leaves (see Figure 6). So if this arc in a splitting leaf is not eventually stable,

it is either @-compressed in�nitely-often, which could be detected as above, or it has to

jump in�nitely-often, always compressing less than N-times in between, in order not to

be detected as the ordinary leaves were. But because it can jump in only one direction,

it has to be @-compressed back at some stage. So if the arc �k jumps N times, it is also
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@-compressed at least N times. But at whatever stage so many jumps have occurred (say

Lk), there is an arc in a nearby leaf, which is ordinary for all of the isotopies up to Ik -

there are, after all, uncountably-many ordinary leaves in any neighborhood of �k. This arc

we can think of as having had its end near x anchored throughout these isotopies, and has

been @-compressed at least N-times; if it is close enough to �k , it has been @-compressed

each time that �k has been. But an ordinary arc cannot be @-compressed this often; so

the arc �k must in fact eventually stabilize, too.

Figure 6

Now the arguments from [B1] can be applied. These stable arcs start gluing end-

to-end around the boundaries of the 3-cells, and so must eventually close up - otherwise

the union of the arcs will be forced to wander from 2-cell to 2-cell and so eventually

cross a 1-cell in K(1) twice. This is because these arcs cannot wander in the interior of

a 2-cell inde�nitely. In fact, such a collection of arcs can consist of only n arcs, where

n=the number of 2- simplices in the 2-cell we are wandering in, before it violates either

the normality of Lk w.r.t � , or will be pushed by one of the transitional isotopies I+k (see

Figure 7).

But then the transitional isotopy I+k , for some k, would try to push a stable arc,

which is impossible. Therefore the arcs eventually grow together into stable loops in the

boundaries of the 3-cells, which are in normal form, and eventually are bounded by disks

in some Lk. These disks are stable - their boundaries no longer move, and the next isotopy

makes it parallel to @B3, hence a union of stable normal disks. The union of these stable

disks is an object we will call X.

Figure 7
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4. The normal lamination

Now the argument �nishes in much the same manner as in [B1]. X is a collection of

1-to-1 immersed surfaces with X\K(1) closed in K(1), and which meets each 3-cell Bk in

normal disks. X is in general not a lamination, as a result of bad limiting behavior similar

to that encountered in [B1]. This, however, occurs only �nitely-often (see Figure 8); there

can of course be more than two normal disks in each 3-cell added to X to give X, but, as

in [Br1], these disks occur only where di�erent normal disk types meet. After a smoothing

operation (as in [B1]) we can make the non-manifold points of X consist of loops in leaves

of X; the same parity condition which allowed us to smooth away high-valency vertices of

the graph �=X\(the added normal disks) will persist. We then split X along the �nitely-

many singular leaves of X to get a lamination L0. Then, as in [B1], we have the following

facts:

Figure 8

Lemma: Every leaf of X is �1-injective in M.

Proof: Let L be a leaf of X and 
 a loop in X which is immersed, transverse to itself,

and is null-homotopic in M. Then 
 meets only �nitely-many of the normal disks of L, so

is contained a leaf Lk of Lk for some k. It is therefore null-homotopic in Lk, and in fact if

we let A be the union of a neighborhood of 
 in Lk together with all of the pieces of the

complement of this neighborhood which are disks, then 
 is null- homotopic in A, because

then all of the components of @A �1-inject into LknA. Lknint(N(
)) has some �nite number

n=n(k) of disk components, and none of these disk components D, @D=�, can be later

replaced by a non-disk one in some later Lj. For if this were to occur it would do so by the

splitting of some Xj to get Lj. But because the boundary of the disk is stable - all of N(
)

is - and its boundary has no holonomy, the disk can be lifted to nearby ordinary leaves
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for the isotopy Ij, and because these loops are eventually stable, they bound disks in the

ordinary leaves, which, because they are compact, also eventually stabilize under Ij.

But because Lj is essential, � bounds a disk in its leaf; since by assumption it doesn't

bound a disk on the side it used to, it now bounds one on the `other' side. But then this

disk can be lifted to nearby ordinary leaves, implying that the lifts of � bound disks on

both sides. So nearby ordinary leaves are 2-spheres, contradicting the essentiality of Lj,

because these spheres consist of only �nitely-many normal disks, so they stabilize in �nite

time, so are isotopic to leaves of Lj�1.

Therefore this number n(k) can only increase with k, and is bounded above by the

number of components of @N(
), so n(k) eventually stabilizes. This collection of disk

components of the complement of N(
) then later stabilize also; they could a priori continue

jumping around, if they were in a splitting leaf, but to do so in�nitely often would require

some arc with one anchored end to jump in�nitely often, which is impossible.

As in [B1], every cut-and-paste leaf of L0 is limited upon by ordinary leaves of L0;

otherwise L0 would have only �nitely many leaves, all of which were limit leaves, giving

rise, transversely, to non-empty closed countable perfect sets, an impossibility. We also

have:

Lemma: If 
 is a loop in a leaf L of L0 which bounds a disk D in MjL0, then L has

trivial holonomy around 
.

Proof: The proof is the same as in [B1], although the notation means something

di�erent - we isotope 
 so that it meets K(1) in a point of P and look in the normal fence

over 
. Non-trivial holonomy would imply the existence of a (possibly di�erent loop 
0 in

a leaf of L0, with an in�nite ray in an ordinary leaf spiralling down towards it. Eventually,

though, two points of this ray must be within � of one another along the the 1-cell of K(1)
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meeting 
. The compact piece � of the arc between them meets only �nitely-many normal

disks and so is contained in a leaf of Lk for some k. If we graft the normal fence onto the

disk D and make this disk D+ transverse to Lk (rel �), then the arc � will be contained

in a leaf `0 of Lk\D+; see Figure 9. Then, as in [B1], we can use this leaf to �nd a disk

D0 with @D0=�0[�0, where �0�`0, �0 has length less than �, and @�0�K
(1). But then

letting a nearby arc, which is contained in a leaf which was never split under any of the

previous isotopies, 
ow back along the isotopies Ij, j�k, gives an arc in L0 which violates

the monogon number � for L0. Therefore there can be no holonomy around 
.

Figure 9

These three facts are the ones which were used in [B1] to show that L0 has a sub-

lamination L which is essential. Using the same procedure on our lamination L0, we can

conclude that L0 contains an essential sublamination L. Because L0 was a union of normal

disks, this lamination L is in normal form w.r.t. the cell decomposition of M.

5. Heegard decompositions

Given a Heegard decomposition M=H1[H2 of M, Hi=handlebodies of genus g, there

is a standard way to obtain a regular cell decomposition, given as a handle decomposition,

for M with H1=a neighborhood of the 1-skeleton=the union of a 0-handle and a �nite

number of 1-handles, and H2=the union of 2-handles and one 3-handle. Meridians for

the 1-handles of H2 are thought of as giving attaching maps for the 2-handles. Given an

essential lamination L0, the above result allows us to �nd an essential lamination L which

is in normal form w.r.t. this cell decomposition. What we will show is that interpreted as

being a lamination transverse to the surface F=@H2=@H2=@N(K(1)), this lamination is in

`normal form' w.r.t. the Heegard decomposition, in the sense of the theorem stated in the
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introduction. The �rst two properties are immediate, provided we think of H1 as being a

very small regular neighborhood of K(1), because L is transverse to K(1). It is the third

and last property which will need to appeal to the normality of L w.r.t. the 3- cells of M.

To show that the third property holds we will show that, for L2=L\H2, M0=H2jL2

has incompressible boundary. Because L2 must be end- incompressible - otherwise L would

not be, either - and has no leaves which are spheres or compressible tori, the proof of

[G-O, Theorem 1(a)] will show that L2 has �1-injective leaves. So suppose D is a disk in

H2jL2=M0, @D=
�L�L2; we will show that it is isotopic in M0, rel @D, to a disk in L2.

Make 
 and D transverse to the 2-cells fDig of M; then D\Di consists of a �nite

number of circles and arcs, for each i, and by disk-swapping we can remove all of the

circles of intersection. Now choose an outermost arc � of D\Di, cutting o� a disk ��D

which meets 
 in an arc 
i (see Figure 10).

Figure 10

Because � misses the 2-cells Di except on its boundary, it is contained in one of the

3-cells Bj, and so 
i is contined in a normal disk D0 in Bj. 
i cuts this disk into two

disks, one of which, �0, misses the 1-skeleton of M; this is because D0 is normal and the

endpoints of � are contained in the same face of Bj. But then � together with �0 form a

disk in Dj with boundary in a single face of Dj, and this cuts o� a 3-ball from Dj which

misses the 1-skeleton of M. This ball gives us a way to isotope D, keeping it's boundary

in L, to remove the arc � from D\Di. Continuing inductively, inducting on the number of

arcs in the intersection of D with the Di, we can �nd an isotopy of 
 in LnK(1) to a loop

bounding a disk D which misses the 2-cells. But then this loop is contained in a normal

disk which is contained in L, and D is isotopic to the disk that 
 cuts o� in this normal

disk. Letting things 
ow back along the isotopy, we see that our original loop 
 bounds a
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disk in L, which, because the isotopy never forced 
 to cross the 1-skeleton, misses K(1),

i.e., is contained in L2. Therefore H2jL2 has incompressible boundary.

We should note that the lamination L2�H2 cannot be essential; a lamination in a

handlebody, other than a collection of compressing disks, can never be @-incompressible.

For an essential lamination in a handlebody could be successively pushed o� of a set of

core disks for the 1-handles of H2, by the standard disk-swapping techniques, and so would

live in a 3-ball.

6. Concluding remarks

This paper marks a �rst step toward �nding an algorithm to determine if an irre-

ducible 3-manifold M contains an essential lamination. This paper reduces the problem to

determining if, w.r.t. some given cell decomposition of M, M contains a normal essential

lamination, i.e., one carried with full support by one of a �nite number (see [F-O]) of

`normal' branched surfaces.

To �nd such an algorithm, it seems that two pieces remain. The �rst is to generate a

new �nite list of branched surfaces, which are essential, and, assuming there is an essential

lamination, at least one of which carries a lamination with full support. (This sentence is

slightly strange, since, technically, one of the conditions of essentiality is that a branched

surface carry a lamination with full support - we therefore mean essential minus this con-

dition.) Techniques exist, largely using Haken's normal surface theory [Ha], to determine

(more or less) algorithmically if a `normal' branched surface is essential (in this sense), so

this step appears to be within the reach of the present technology.

The second step is to �nd an algorithm to determine when a branched surface carries

a lamination with full support. This appears to be far more elusive. Su�cient conditions

exist (e.g., [B2], [C1]), as well as necessary ones (e.g., [G-O]); the di�culty, of course, lies
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in achieving both at the same time! To date, work of Joe Christy [C2] seems to give the

best candidate.

With these pieces in place, we could construct our algorithm. If an essential lamination

existed, then one of our �nite number of `normal' essential branched surfaces could be

shown to carry a lamination with full support. If however, none of them did, then M

would contain no essential laminations.

This paper also gives further evidence that the notion of an in�nite isotopy will be an

increasingly useful tool in controlling essential laminations in a wider variety of contexts.

For example, with similar techniques it might be possible to show that a knot � in a

3-manifold M can be pulled taut w.r.t. some essential lamination L; that is, that for

some lamination L, Lnint(N(�)) is essential in Mnint(N(�)). This would be a large step

towards answering the question of what manifolds obtained by Dehn surgery on a knot

contain essential laminations. It is interesting to note that the corresponding `normal form'

problem for incompressible surfaces is, like Haken norm form, both short and easy.
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