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Abstract. We examine the existence of foliations without Reeb components, taut
foliations, and foliations with no S1 � S

1-leaves, among graph manifolds. We show
that each condition is strictly stronger than its predecessor(s), in the strongest pos-
sible sense; there are manifolds admitting foliations of each type which do not admit
foliations of the succeeding type(s).

x0
Introduction

Taut foliations have been increasingly useful in understanding the topology of
3-manifolds, thanks largely to the work of David Gabai [Ga1]. Many 3-manifolds
admit taut foliations [Ro1],[De],[Na1], although some do not [Br1],[Cl]. To date,
however, there are no adequate necessary or su�cient conditions for a manifold to
admit a taut foliation. This paper seeks to add to this confusion.

In this paper we study the existence of taut foliations and various re�nements,
among graph manifolds. What we show is that there are many graph manifolds
which admit foliations that are as re�ned as we choose, but which do not admit
foliations admitting any further re�nements. For example, we �nd manifolds which
admit foliations without Reeb components, but no taut foliations. We also �nd
manifolds admittingC(0) foliations with no compact leaves, but which do not admit
any C(2) such foliations. These results point to the subtle nature behind both
topological and analytical assumptions when dealing with foliations.

A principal motivation for this work came from a particularly interesting exam-
ple; the manifold M obtained by 37/2 Dehn surgery on the (�2,3,7) pretzel knot
K. This manifold is a graph manifold, obtained by gluing two trefoil knot exteriors
together along their boundary tori. We show that every essential lamination in M
contains a torus leaf, and therefore every essential lamination intersects the image
of K in M . This tells us a great deal about essential laminations in the exterior of
K. This is discussed in Section 5 below.

The paper is organised as follows. In Section 1 we give the necessary background
on Seifert-�bered spaces and graph manifolds, and introduce the appropriate nu-
merical coordinates for describing them. In Section 2 we gather the relevant results
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on foliations and essential laminations to carry out our proofs. Section 3 gives the
main reults of the paper, and Section 4 provides the proofs. Section 5 discusses
surgery on the (�2,3,7) pretzel knot. Section 6 �nishes with some speculations.

This research was conducted while the authors were visiting the University of
Texas at Austin in 1994-95. The authors would like to express their appreciation
to the faculty and sta� at that institution for their hospitality.

x1
Coordinates for graph manifolds

A Seifert-�bered space M is an S1-bundle whose base is a 2-orbifold. More pre-
cisely, a Seifert-�bered space begins with an honest circle bundleM0 over a compact
surface; for our purposes it will su�ce to think about a compact, orientable, surface,
possibly with boundary, crossed with S1. To some of the boundary components of
M0 we then glue a collection of solid tori, so that the meridional direction of each
solid torus does not correspond to the S1-direction on the boundary of M0. The
induced foliation of the boundaries of each of these solid tori by circles extends,
in an essentially unique way, to a foliation by circles of the solid torus, so that
the core of the solid torus is a leaf. This gives a foliation of M by circles, whose
space of leaves - the quotient space obtained by crushing each circle leaf to a point
- is a 2-orbifold. Its underlying topological space is called the base surface of the
Seifert-�bering of M . The cone points of the orbifold correspond to the cores of
the solid tori; these cores are called the multiple �bers of the Seifert-�bering of M .

A manifoldM is a graph manifold if it there is a collection T of disjoint embedded
tori so that the manifold M jT obtained by splitting M open along T is a (not
necessarily connected) Seifert-�bered space. We assume that the collection T is
minimal, in the sense that for no torus T in T is M j(T nT ) a Seifert-�bered space.
We adopt the convention that a Seifert-�bered space is not a graph manifold, so T 6=
;. Since the �bering of a Seifert-�bered space is essentially unique [S], we can give
a more constructive approach to minimality. Thinking in reverse, a graph manifold
is obtained by gluing Se�ert-�bered spaces together along some of their boundary
tori; the glued tori become the collection of splitting tori T . The collection T is
minimal if, in gluing, the homotopy class of the circle �ber in one boundary torus
is not identi�ed with the class of the �ber in the other boundary torus. The only
exceptions to this rule occur when some components are solid tori or T � I; for
solid tori, minimality requires that the meridion in the boundary of the solid torus
be glued to the S1-�ber, and a T � I can either be absorbed into a component of
M0 (if its ends are not glued together), or must have its ends glued together by a
map having (on the level of H1(T ;R)) no integer-valued eigenvectors.

Our results will be stated in terms of the Seifert-�bered pieces making up the
graph manifold, and the gluing maps between their boundary tori. To do so, we
will need a proper set of coordinates.

In [S] Seifert developed numerical invariants of what he called `�bered spaces',
and gave a complete classi�cation of them in terms of these invariants. They
describe the topological type of the base orbifold, and the way that the the regular
�bers spin around the multiple �bers. More explicitly, an orientable Seifert-�bered
space M can be described as follows: start with a compact surface F of genus g and
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b boundary components (the underlying topological space of the base orbifold), and
drill out k disks (one for each multiple �ber of the Seifert-�bering). To be sure the
resulting surface has non-empty boundary, drill out one more `zero-th' disk, giving a
surface F0. Now construct the (unique) S1-bundleM0 over F0 with orientable total
space. This bundle has a (not necessarily unique) cross-section s:F0!M0 (because
@M0 6= ;). The images of @F0 in @M0, together with the circle �bers in @M0, give
us a system of coordinates for curves in @M0, de�ning for each simple closed curve
in a component of @M0 a slope in Q[f1g, where the section de�nes slope 0 and
the �ber de�nes slope 1. We then glue k + 1 solid tori back onto M0 to obtain
M . The gluing of the i-th solid torus identi�es the boundary of a meridion disk to
some curve ai(�ber) + bi(section) in @M0. These gluings completely describe the
Seifert-�bered space, giving us its so-called Seifert invariant

M = �(� g,b; a0/b0,a1/b1,: : : ,ak/bk) .
� equals + if F is orientable, � if not. The rational numbers ai/bi are treated

as an unordered (k+1)-tuple. The denomenator of each rational number (in lowest
terms) turns out to be the multiplicity of the corresponding multiple �ber. Since
our zero-th disk did not correspond to a multiple �ber, its multiplicity is 1, so b0=1.

This invariant is dependent upon the choice of section for M0; the only way
this section can change, however, is by summing along vertical annuli and tori (see
Figure 1). Summing along a torus does not change the associated invariant, and
summing along an annulus changes the invariant in a very controlled way; it adds
and subtracts 1 each from the invariants associated to the two components of @M0

containing the boundary of the annulus.

Figure 1

We can actually remove this ambiguity by exploiting it; by a series of summings
along annuli one of whose boundaries lies over the boundary of the zero-th disk,
we can arrange that 0�ai/bi<1, for every i=1,: : : ,k; essentially, this amounts to
gathering the integer parts of the ai/bi into a0/b0 = a0. This gives us a normalized
Seifert invariant

M = �(� g,b; a0/1,a1/b1,: : : ,ak/bk)

where ai,bi2Z, and 0<ai<bi, for i=1,: : : ,k. Seifert showed that a Seifert-�bered
space is determined up to orientation- and �ber-preserving homeomorphism by
its normalized Seifert-invariant. The normalized Seifert-invariant for M with the
opposite orientation is

M = �(� g,b; (�a0�k)/1,1�(a1/b1),: : : ,1�(ak/bk)).
If M has non-empty boundary (b6=0), we can sum along annuli one of whose

components is over the zero-th disk and the other in @M , to make a0=0; this
means that the boundary of the meridion disk is glued to the boundary of the
section, allowing us to extend the section over the zero-th solid torus, and absorbing
the solid torus into the circle bundle without losing a section. In this case we can,
if we wish, delete a0 from the normalized invariant.

We must also be able to describe the gluings from which we build our graph
manifolds out of their Seifert-�bered pieces. A homeomorphism between two 2-tori
is determined by its action on �rst homologyH1(T ) =Z�Z, and is therefore given
by an element of SL2(Z), once bases for the �rst homology of the two tori have
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been �xed. We will use as our bases for H1(T ) the section-�ber pairs that we have
described above. If a Seifert-�bered piece has more than one boundary component,
there is still some freedom in the choice of section; when this occurs, we will simply
choose one best suited to our needs at that time.

In what follows, we will for notational convenience let `A = (a,b;c,d)' denote the
matrix

A =

�
a b
c d

�
.

Simple closed curves 
 in our boundary tori are represented by Z-linear combi-
nations �f+�s = (�,�)2Z�Zof our �ber/section basis, with � and � relatively
prime; we therefore often think of 
 as being represented by the rational number
�/�. A homeomorphism of boundary tori, represented by the matrix A=(a; b; c; d),
sends the curve 
=(�,�) to the curve

A(�,�) = (a�+b�,c�+d�) $
a�+ b�

c�+ d�
=

a�
�
+ b

c�
�
+ d

and so thought of as a map A:Q!Q, it is the map

A(x)=
ax+ b

cx+ d
.

This function A extends naturally over R, where it describes the e�ect of the
homeomorphism A on the slopes of irrational foliations of the torus, as well. It has

derivative A0(x)=
(ad � bc)

(cx+ d)2
, which always has the same sign (which depends upon

ad � bc=det(A)), so A maps any interval (x1; x2) not containing the asymptote
�d=c of A montonically to either (A(x1); A(x2)) or its reverse.

x2
Taut foliations, essential
laminations, and the like

The reader is referred to [Ga2],[Ga3],[G-O] for basic notions on taut foliations and
essential laminations. A codimension-one foliationF of a 3-manifoldM has no Reeb
components if no leaf of F is a compressible torus. The strongest known necessary
condition for a 3-manifold M to admit a foliation without Reeb components is
that its universal cover be homeomorphic to R3 [Pa]. A foliation F is taut if every
leaf has a closed loop passing through it which is everywhere transverse to the
leaves of F . Taut foliations have no Reeb components. It is an important result
of Goodman [Go] that if a foliation is not taut then it contains a (not necessarily
compressible) torus leaf. Therefore, foliations with no torus leaves are taut. Finally,
if a 3-manifold admits an Anosov 
ow (see, e.g., [Fe1]), then the stable foliation
of the 
ow is a codimension-one foliation whose leaves are (open) planes, annuli,
and M�obius bands. In particular, the foliation has no compact leaves, and hence no
torus leaves. Essential laminations generalize the notion of a foliation without Reeb
components to `partial' foliations, which �ll up a closed subset of a 3-manifold M,
and provide a convenient framework in which to discuss the sructure of foliations.

Our constructions rely on two main points. Every essential lamination (and
therefore every taut foliation) in a Seifert-�bered space M contains a sublamina-
tion which is either horizontal (its leaves are everywhere transverse to the circle
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�bers of M) or vertical (its leaves are foliated by �bers of M). Also, most (closed)
Seifert-�bered spaces do not contain horizontal laminations. Details are given in
the propositions gathered together below.

Proposition 1 [Th],[Le]. If M admits a taut foliation F , and T is an incom-
pressible torus in M , then T may be isotoped either to be everywhere transverse to
F , or to be a leaf of F .

If T is not isotopic to a leaf of F , then after making T transverse to F , FjT=F0

may not be an `essential' foliation in M jT=M0. The obstruction is a `half-Reeb'
component: a leaf of F0 which is a boundary-parallel annulus (Figure 2). But half-
Reeb components can be eliminated by a further isotopy of T ; this is most easily
seen by the following minimal surface argument, due to Joel Hass. In [Ha], Hass
shows that F and T can be isotoped so that the leaves of F , and T , are minimal
surfaces in M . This immediately implies that T is transverse to the leaves of F .
But it also follows that FjT has no half-Reeb components, since the annulus leaf of
FjT is isotopic rel boundary to the obvious annulus in T . Since minimal surfaces
are area minimizing over compact sets, the two annuli have the same area, but
then swapping them and rounding corners reduces the area of the torus T while
remaining in the same isotopy class, for example, a contradiction.

This result has also been extended to essential laminations by Roberts [Ro2].

Figure 2

Proposition 2 [Br2]. Let M be an orientable Seifert-�bered space with non-empty
boundary, which does not contain a horizontal annulus, and let L be an essential
lamination in M , meeting @M transversely in a lamination L\@M containing a
Reeb-foliated annulus. Then L contains a vertical sublamination, which intersects
@M . In particular, the Reeb annulus is vertical.

This means that usually a taut foliation in a Seifert-�bered space meets boundary
tori in suspensions. In particular, in the cases we will be consideringm where T
is a splitting torus of a graph manifold, the foliations FjT above will meet T in
suspensions. For otherwise they contain vertical sublaminations on both sides of
T , so the gluing map A has glued the circle �ber on one side to the circle �ber on
the other, so M is again Seifert-�bered, contradicting the minimality of T .

Proposition 3a [Br1],[Br2]. Every essential lamination in a Se�ert-�bered space
(with or without boundary) contains a vertical or horizontal sublamination.

Proposition 3b [Br1],[Br2]. Every essential lamination in a Seifert-�bered space
M , whose base orbifold B is S2 with three cone points, containing no (horizontal)
torus leaves, is horizontal. Every essential lamination in a Seifert-�bered space M ,
with base orbifold D2 and two cone points, containing no (horizontal or vertical)
annuli or (vertical, hence @-parallel) tori, is horizontal.

Proposition 3c [Br2]. If M is a Seifert-�bered space with boundary, which con-
tains no horzontal annuli, then every essential lamination which does not contain
a vertical sublamination is isotopic to a horizontal lamination.

In particular, for Seifert-�bered knot exteriors (i.e., torus knots), we have:
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Proposition 3d [Br2]. Every essential lamination in the exterior of a torus knot
either contains the (vertical) cabling annulus (or M�obius band) as a leaf or is iso-
topic to a horizontal lamination.

Proposition 4 [Sa]. If F is a C(2) foliation of a connected manifold M , and L is
a minimal set of F consisting of more than one leaf and such that each leaf of L
has trivial linear holonomy, then L = F .

A minimal set is a sublamination L so that every leaf of L has closure (in M )
L. Holonomy is the (germ at 0 of the) injective map between subintervals of [�1,1]
obtained by looking at how the leaves of a foliation F intersect a small annular
fence lying over a closed loop in a leaf of F (Figure 3). Linear holonomy is the
derivative at 0 of this map. A leaf L of F has trivial (linear) holonomy if for every
loop in L the induced map (or its derivative) is the identity (or 1). Note that linear
holonomy only makes sense for foliations with smooth transverse structure.

Figure 3

Finally, the most important facts we will use restrict the Seifert-�bered spaces
which can admit horizontal foliations. LetM be an orientable Seifert-�bered space
with orientable base orbifold and normalized Seifert invariant

�(g,b; a0/1,a1/b1,: : : ,ak/bk).
As our motivating example, let F=a 2-sphere with k punctures, and M=F � S1

(so M has Seifert invariant �(0; k; 0)). Label the components of @M by f1,: : : ; kg.
Suppose M admits a horizontal foliation F , meeting some subset J�f1,: : : ; kgof
the boundary components in parallel loops or a foliation with no compact leaves,
and meeting the other boundary components in more complicated, Kronecker-type
foliations. The induced foliations of the boundary components ofM can be assigned
a `slope' 
i, after coordinates are given for each torus; it is essentially the rotation
number of the return map given by following points on the slope 1 curve around
the leaves of the induced foliation, until they return to the slope 1 curve again.
Choose a section ofMnint(N (regular �ber)) so that all of these slopes 
i lie in [0,1).
Relative to this section, M then has Seifert invariant �(0; k; a0) for some integer
a0.

Proposition 5 [JN],[Na]. Let M be as above. Then F exists if and only if either
some number d of the 
i=0 and 2�k �a0� d� 2, or a0=�1 or �2, and for some
integers 1� c < m and some permutation

c1
m
; : : : ;

cn
m

of
a

m
;
m � a

m
;
1

m
; : : : ;

1

m
, we have

(a1=�1) (*) 
i<
ci
m

if i2J , and 
i�
ci
m

if i =2 J , or

(a1=�2) After replacing each 
i by 1�
i, (*) holds.

We note in passing that Proposition 5 immediately implies (by starting with a
horizontal foliation and then drilling out neighborhoods of the multiple �bers - in
this case J=f1,2,3g):

Proposition 6 [JN],[Na]. If g=0, b=0, and k=3, then M admits a horizontal
foliation if and only if a0=�1 or �2, and
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(a0=�1) there exists integers 1� a < m such that, up to permutation,

(*)
a1
b1

<
a

m
,
a2
b2

<
m � a

m
, and

a3
b3

<
1

m
, or

(a0=�2) the same condition (*) holds with each ai//bi replaced by 1-(ai/bi).

Similar conditions can be formulated for k>3, see [JN].

This result, together with [Br1],[Cl], provided the �rst examples of 3-manifolds
with universal cover R3 which do not admit any foliations without Reeb compo-
nents.

Similar results also hold for manifolds with higher genus base orbifold:

Proposition7 [EHN]. If g>0, and b=0 (i.e. @M=;), thenM admits a horizontal
foliation if and only if (2-2g)-k�a1�(2-2g)

As with the genus 0 case, there is an analogous statement for Seifert-�bered
spaces with boundary. We will only need the following special case:

Proposition 8 [EHN]. Every horizontal foliation in the Seifert-�bered space M
= �(1,1; 0) (i.e., M=(a once-punctured torus)�S1) meets the boundary torus in a
foliation of slope 
2[0,1). Furthermore, all slopes in [0,1) are realized by horizontal
foliations (and can be assumed to meet @M in a `linear' foliation of @M, if 
 6=0).

x3
The results

What we will now show is that, under appropriate conditions, a taut foliation
must meet each Seifert-�bered piece of certain graph manifolds in horizontal folia-
tions. Propositions 5 and 6, suitably applied, then yield restrictions on the gluings
which would allow horizontal foliations to match up, for our foliation to exist in
the �rst place.

Almost every graph manifold admits codimension-one foliations without Reeb
components; if none of the components of M0 is a solid torus, then taking a hor-
izontal foliation on each component of M0 and `spinning' them (see Figure 4) as
they approach @M0, we get a foliation without Reeb components onM , having the
tori T as leaves. However, nothing else comes for free.

Figure 4

Theorem A [Br1],[Cl]. There exist in�nitely many Seifert-�bered spaces with
universal cover R3 which admit no foliations without Reeb components.

Theorem B. There exist in�nitely-many graph manifolds M which admit no taut
foliations - every foliation contains a separating torus leaf.

Theorem C. There exist three Seifert-�bered spacesM which admit taut foliations,
but each must have a (non-separating) torus leaf.

Theorem D. There exist in�nitely-many graph manifolds M which admit C(0)

taut foliations with no compact leaf, but every C(2) foliation must have a torus leaf.
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Theorem E. There exist in�nitely-many graph manifolds M which admit C(0)

taut foliations with no compact leaf, but no Anosov 
ows.

What we in fact show is that the torus leaves that must necessarily exist are the
gluing tori used to build the graph manifold from its Seifert-�bered pieces. We shall
prove each case separately; each requires studying the existence of taut foliations
on a di�erent class of graph manifolds. Basically, by changing the toplogical type
of the base orbifolds of the Seifert-�bered pieces, we will guarantee the existence of
each type of foliation, while avoiding the existence of their stronger cousins.

The only one of these theorems which really is unsatisfying is Theorem C; the
examples we provide might be thought of as a coincidence. It is possible that
many examples can be found among the graph manifolds obtained from a Seifert-
�bered space over the annulus, with one multiple �ber, by gluing its two boundary
components together. The analysis of slopes of horizontal foliations over the annulus
must be re�ned, however; this will be addressed in a later paper.

x4
The proofs

Theorem B:
In this case we use a graph manifoldM consisting of two Seifert-�bered spaces

M0,M1 with baseD2 and two multiple �bers, glued together along their boundaries.
These have normalized Seifert invariants

�(0,1; 
1,
2) and �(0,1;
0

1,

0

2)
The �bering of each piece is unique, and therefore the manifold resulting from

gluing the two togther will be Seifert-�bered only if the gluing map preserves the
�ber direction on each torus; on the level of matrices, this means that the gluing
map is a `shear' A = (�1; n; 0; 1).

Let F be a taut foliation on M . No leaf of F can be isotopic to the torus
splittingM into its Seifert-�bered pieces, because then F induces a foliation without
Reeb components on each piece (minus a regular neighborhood of its boundary),
transverse to the boundary. With the exception of �(0,1;1/2,1/2), which contains
a horizontal annulus, these foliations must therefore be horizontal, by Proposition
3b. But this means F is transversely oriented and contains a separating torus leaf,
hence cannot be taut. Therefore F can be made transverse to the splitting torus
T with no Reeb annuli, and so, again, splits to give horizontal foliations of each
Seifert-�bered piece.

Using the (essentially unique) horizontal sections that allow us to de�ne the
normalized invariants of M1 and M2, we can assign slopes to horizontal foliations
in the @Mi. Let Fi be a horizontal foliation in Mi, with boundary slope 
. By
incorporating the normalizing term a0 into 
, Proposition 5 immediately implies:

Proposition. Let Mi be as above. Then Fi exists if and only if either 
=�1 or
there exists integers1� c < m and a permutation

c1
m
;
c2
m
;
c3
m

of
a

m
;
m � a

m
;
1

m
such that either


i<
ci
m
, for i=1,2, and 0�
3+1�

c3
m
, or
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1�
i<
ci
m
, for i=1,2, and 0� �(1+
3)�

c3
m
.

Note that for the �rst case to be possible, we must have 
1+
2<1, since 1=m <
a=m; (m � a)=m. Similarly, in the second case we must have 
1+
1>1. This
therefore gives us only the possibilities


1+
2= 1, and 
=�1 (which happens to correspond to a horizontal compact
surface; the condition is that the sum of the slopes equal 0),


1+
2< 1, and 
2[�1,
�1

m
]�[�1,0) for some m (since 
+1 can be at most

(m�1)/m), or


1+
2> 1, and 
2[�2+
1

m
,�1]�(�2,�1] (since �(
+1) can, again, be at most

(m�1)/m)).

Therefore, in every case, the slope of a horizontal foliation lies in (�2,0). Throw-
ing in the possibility of a vertical sublamination which intersects the boundary adds
slope 1. So to achieve our non-realizeability result, we must merely construct glu-
ing maps A:T!T so that, on the level of boundary slopes,

(**) A((�2,0)[f1g)\((�2,0)[f1g)=;.

This is quite readily done; for example the map A=(0,�1;1,0), which is the map
A(x)=�1/x, does this. With a bit of work, it is not hard to �nd many others.

For A=(a; b; c; d),1 =2A((�2,0) means�d=c =2(�2,0), while A(1)=2(�2,0)means
a=c =2(�2,0). Focussing on the case that Det(A)=ad � bc=1, we then have

A(�2,0) = (
2a� b

2c� d
;
b

d
), so (**) requires (in addition to ad� bc=1)

(1) �d=c � �2 (i.e., d=c � 2) or �d=c � 0 (i.e., d=c � 0),
(2) a=c � �2 or a=c �0, and
(3) b=d � �2 or (2a� b)=(2c� d) � 0.

The easiest way to arrange this is to make a; d > 0, while b; c < 0,
ad� bc = jajjdj � jbjjcj = 1, and jaj � 2jcj and jbj � 2jdj. For example,

A = (a; b; c; d) = (n+ 1;�(nd+ d� 1);�1; d) with n � 2 and d�1, or

A = (2n+ 1;�(2nm+m + n);�2; 2m+ 1) with n � 2 and m � 1

su�ce. The reader can easily supply more.
The requirement 
2(�2; 0) is of course necessary for the existence of a horizontal

foliation, but never, in fact, su�cient. Exact conditions depend upon knowing
what 
1 and 
2 are. For example, if 
1=1/3 and 
2=1/5, then 0�
+1�1/2=1=m
is possible, since 1/3< 1=2 = a=m and 1/5< 1=2 = (m � a)=m. This is in fact
the best possible, since it is the largest 1/m possible, and otherwise one of 1/3,1/5
would have to be < 1=m, so m=2,3, or 4, and each case can be checked separately
to see that it gives no better bounds. This analysis can be applied to any slopes

1 and 
2 supplied; after �nding one 
+1� 1=m which works, one can check all
smaller m's to see if a corresponding a lets 
+1� 1=m work. Then one �nds the
largest m so that one of 
1,
2< 1=m, and checks it and all smaller m's to see for
what a's does 
+1� a=m work. In this way, one can �nd, for example, that for


1=1/3,
2=1/5, then 
2[�1;�1=2], for

1=2/3,
2=1/5, then 
2[�1;�3=4], for
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1=1/7,
2=1/5, then 
2[�1;�1=4], for

1=2/7,
2=1/5, then 
2[�1;�1=3], for

1=1/3,
2=4/5, then 
2[�5=4;�1], and for

1=2/3,
2=4/5, then 
2[�3=2� 1;].

We know, however, from [JN], that any element 
 in the interior of such an
interval can be realized by a horizontal foliation which meets the boundary in
parallel loops of slope 
 . Therefore, if the gluing map A has A(interval for �rst
piece) meet the interval for the second piece in its interior, then we can glue two
such foliations together to obtain a taut foliation. Such a foliation usually has
no compact leaves; in fact, for only one 
 can the foliation on a Seifert-�bered
piece have a compact leaf (the one which sums with the 
i to give 0); gluing a
foliation with no compact leaves to a foliation all of whose leaves meet the boundary
obviously gives a foliation with no compact leaves.

We also note that the generalization of Theorem B to essential laminations is
true; every essential lamination in these manifolds contains a torus leaf. The result
has the identical proof, since an essential lamination can be made transverse to
the gluing torus, so that the split open pieces are essential; the split open pieces
must then be horizontal, or contain a vertical annulus by Proposition 3b (again,
except for �(0,1;1/2,1/2)). If they are horizontal, then they extend to horizontal
foliations, so their slopes fall into the same restrictive range.

Theorem C:
For this case we will use the three Seifert-�bered spaces �(0; 0;�1; 1=2; 1=3;1=6),

�(0; 0;�1; 1=2; 1=4;1=4), and �(0; 0;�1; 1=3;1=3;1=3), i.e., the three Seifert-�bered
spaces having base S2 with a Euclidean orbifold structure and 3 cone points. Each
of these manifolds contains a horizontal torus, so can be tautly foliated by horizontal
tori. By Proposition 3b, every essential lamination in these spaces is isotopic to a
horizontal one. But every horizontal lamination contains a torus leaf. Matsumoto
[Ma] outlines a proof of this in the C(2) case, using a result of Plante [Pl] on the
polynomial growth of leaves of foliations. Plante's argument is essentially C(1),
but the only place this hypothesis is used is to show that a hypothetical foliation
with no compact leaves admits no null-homotopic loops transverse to the foliation.
This assertion follows easily, however, either from the fact that our foliation is
horizontal (transverse loops must travel non-trivially around the �ber direction),
or, more generally, from the C(0) proof of Novikov's theorem [So].

Theorems D and E:
In these cases we will use a graph manifold M consisting of two copies ofMi=(a

once-punctured torus)�S1 i=1,2, glued together along their boundaries. They both
have normalized Seifert invariant

�(1,1; 0)
Again, the �bering on each piece is unique, so the resulting manifold is Seifert-

�bered if and only if the gluing map A is a shear. We therefore assume that A is
not a shear.

For all gluings A, the resulting manifold contains aC(0) foliationwith no compact
leaves. The foliation has three parts. In each piece Mi we put a vertical lamination
Li=�i � S1, where �i is a 1-dimensional lamination in the once-punctured torus,
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with no compact leaves, and having every leaf dense in �i. Such (measured) lamina-
tions are easily built carried by the standard train track in the 2-torus (Figure 5a).
For every gluing A, Mn(L1[L2) looks essentially like (annulus)�S1; if we choose
the standard branched surface B carrying L1[L2, then M0=Mnint(N(B)) has the
structure of the stutured manifold (annulus)�S1=(torus)�I, with two parallel su-
tures on each boundary component. By foliatingM0 by annuli, whose boundaries
are not parallel to either of the sutures, we can, as in [Ga1], spin the leaves in M0

along the annuli between the sutures to complete (L1[L2) to a foliation (Figure
5b).

Figure 5

The key fact in the proof of Theorem D is that no foliation of M which contains
a (vertical) sublamination like one of the Li can admit a transverse C(2) structure.
This is because for every (annular) leaf of the sublamination, the foliation meets
the normal fence over its core 
 in one of the patterns of Figure 6; there are closed
loops limiting on 
 on one or both sides. This implies each leaf of the sublamination
has trivial linear holonomy, if the foliation has class C(2). Proposition 4 says that
this is impossible, however, since the sublamination does not form an open set in
M .

Figure 6

If a C(2) foliation F of M has no compact leaves, then Proposition 1 and its
extension imply that we can make F transverse to the splitting torus T , so that
the induced foliations on the Seifert-�bered pieces Mi are essential. Each therefore
contains a vertical or horizontal sublamination, by proposition 3. If a vertical
sublamination misses T , then it comes from a 1-dimensional lamination in the
interior of the base surface. It must therefore contain either a closed loop (giving a
torus leaf of F) or a lamination like the one above, so our original foliation cannot
be made C(2). So any vertical sublamination must meet T , so the slope of the
@-foliation is 1, on one side. Since Mi does not contain a horizontal annulus,
Proposition 2 implies that F cannot induce a Reeb foliated annulus on T , because
it would have to be vertical when viewed from both sides, so M would be Seifert-
�bered. Proposition 3c and the observation above imply that if the foliation on
one of the Mi meets @Mi in a foliation of slope other than 1, then the foliation
is horizontal. Proposition 8 then implies that the induced slope is in [0,1). Put
together, any C(2) foliation with no compact leaves in M can be made transverse
to T ; the induced foliations on Mi meet @Mi in slopes lying in [0,1)[f1g.

So to build the examples required for Theorem D, we need to �nd gluing maps
A=(a,b;c,d) for which A([0,1)[f1g)\([0,1)[f1g)=;. As with the proof of The-
orem B, this is easily arranged. Since A(�d/c)=1, A(1)=a/c, A(0)=b/d, and
A(1)=(a+b)/(c+d), after choosing det(A)=ad�bc=�1 (for convenience, so that
A([0,1) will be [A(1),A(0)) ), we need

�d/c=2[0,1), a/c=2[0,1), and either b/d < 0 or (a+b)/(c+d) > 1.

One easy way to do this is to choose c>0, d>0, a<0, and b<0. for example,

A=(-1,-n;k,1+nk) with n,k�1, or

A=(-2,-(2n+1);2k+1,1+k+n+2nk) with n,k�0, work.
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Because in each list the matrices have di�erent traces, they are not conjugate,
and so the glued manifolds are distinct.

Theorem E, on the other hand, follows immediately from the following theorem
of Barbot:

Theorem [Ba]. If M is as above, then M admits an Anosov 
ow if and only if the
gluing map A is of the form A=(�(kn+1),k;�n(kn+2),kn+1) where n=1 or 2.

Every other possible gluing contains the foliation with no compact leaves that
we built above, but does not admit any Anosov 
ows.

x5
Surgery on the (�2,3,7) pretzel knot

The (�2,3,7) pretzel knot, also known as the Fintushel-Stern knot, is one of
the most well-studied knots in the 3-sphere, second perhaps only to the Figure-8
knot. Its exterior X(K) = S3nint(N (K)) �bers over the circle, with pseudo-Anosov
monodromy, and is therefore hyperbolic. By Thurston [Th], all but �nitely-many
Dehn �llings along K are hyperbolic. Bleiler and Hodgson [BH] have determined
all of the surgeries along K which have �nite fundamental group. With respect to
the standard meridian/logitude coordinates on @X(K), they are1, 17, 18, and 19.
In addition, it has long been known [HO] that the manifold M obtained by 37/2
surgery on K contains an incompressible torus. This was, in fact, the �rst non-
integral surgery on a hyperbolic knot (whose only closed incompressible surface in
X(K) is @X(K)) which was shown to contain an incompressible surface. Eudave-
Mu~noz [Eu1] has since shown that M is a graph manifold, obtained by gluing a
left-handed and a right-handed trefoil knot exterior XL and XR together along
their boundaries. Since trefoil knot exteriors are Seifert-�bered, with base a 2-disk
and two multiple �bers, M can be analyzed as in our proof of Theorem B.

The gluing map A from @XL to @XR is most easily described in terms of the
standard meridian/longitude coordinates for @XL and @XR. By Eudave-Mu~noz
[Eu2], A glues the meridian �L of @XL to the circle �ber of the (induced) �bering
of @XR, and glues the circle �ber of @XL to the meridian �R of @XR. The �ber
in @XL is represented by �6�L+�L in the standard coordinates (where �L is the
longitude in @XL), while the �ber in @XR is represented by 6�R+�R. This is
perhaps most easily seen by comparing the boundary of a Seifert surface in XL,
say, to the boundary of the obvious M�obius band in XL, which is the circle �ber in
@XL (since the M�obius band cuts XL into a solid torus); see Figure 7.

Therefore, the gluing map A sends �L to 6�R+�R, and sends �6�L+�L to
�R. This means that �L is sent to 37�R+6�R. In other words, with respect to
the standard meridian/longitude coordinates on @XL and @XR, A is the matrix
(6,37;1,6).

Figure 7

Given an essential lamination L in M , we can, as before, isotope it so that L
is transverse to the splitting torus, and L\XL and L\XR are essential in XL and
XR. In each piece it is therefore, by Proposition 3d, either horizontal or contains
a vertical sublamination. The slopes realized by horizontal essential laminations
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in XL and XR are [Na1], in the standard meridian/longitude coordinates, [�1,1)
for XL and (�1,1] for XR. But it is easy to see that the associated fractional
linear transformation A(x)=(6x+37)/(x+6) sends [�1,1) to (6,31/5], since [�1,1)
does not contain the vertical asymptote �6 of A(x), and det(A)=�1, so A(x)
is decreasing on [�1,1). Therefore the image is disjoint from (�1,1], so two
horizontal laminations cannot be glued together to form an (essential) lamination
in M .

Finally, a lamination cannot be built from laminations containing a vertical sub-
lamination in either piece, since a vertical lamination must consist, by Proposition
3d, either of a boundary parallel torus (our desired conclusion) or a collection of
annuli separating the two multiple �bers of the �bering of the knot exterior (and
perhaps a M�obius band containing the multiplicity 2 �ber). Such an annulus sepa-
rates XL (say) into two solid tori, which the lamination meets in horizontal leaves.
It therefore meets @XL = T in vertical loops (from the vertical sublamination) with
Reeb type leaves in between. But since the �ber in @XL is glued to the meridian in
@XR (and vice versa), this means that L meets @XR = T (say) in meridian loops
with Reeb leaves in between. But this contradicts Proposition 3d.

Therefore, no essential laminations in XL and XR can be glued together to give
a lamination in M , unless one contains a parallel copy of the splitting torus. In
other words, every essential lamination in M contains the splitting torus as a leaf.
Since this torus intersects the image of K (it can, in fact [Eu1], be made to intersect
it in exactly two points), we �nd in particular that every essential lamination in
M intersects the image of K. Therefore, there is no essential lamination in S3nK
(i.e., no essential lamination L in S3nint N(K) = X(K) with L\@X(K) = ;) which
remains essential after 37/2 surgery along K.

It was shown by Christy [Ch] that the essential lamination in X(K), obtained by
taking the suspension of the stable 1-dimensional lamination for the monodromy
of the �bering of X(K), has degeneracy slope (see [Ga3]) equal to 18/1. This
lamination therefore remains essential under every Dehn surgery along K, except
those with surgery coe�cient of the form (1 or 18 or) 18 � 1/n, for n�1. Among
these surgery coe�cients, the only ones which give manifolds which are known
not to contain essential laminations are 1,17,18, and 19, since these manifolds
all have �nite fundamental group. It has been a long-standing open problem (as
long-standing as anything in a �eld that is only ten years old can be, anyhow)
to show that all of the other surgeries yield laminar manifolds (or to prove that
one of them doesn't - this would probably yield the �rst example of a hyperbolic,
non-laminar, 3-manifold). Several people have attempted to do this by �nding an
essential lamination in S3nK with degeneracy slope 1/0, since the laminationwould
then remain essential under every non-integral surgery. The above result, however
shows that this is impossible; it could not remain essential under 37/2 surgery.
In fact, the result also shows that every essential lamination in S3nK must have
degeneracy slope a curve with intersection number 0 or 1 with the slopes 1, 17,
18, 19, and 37/2 (since otherwise the lamination would remain essential in one of
the resulting manifolds). The only slope for which this is true is 18/1, so every
essential lamination in S3nK has degeneracy slope 18/1.

These observations leave open the possiblity, however, of �nding essential lami-
nations in X(K), which meet @X(K) in curves with these missing slopes, and which
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remain essential after Dehn �lling and capping o� the boundary curves with disks.
This, for example, is how the laminations of [Na1],[Ro1] are constructed. Any such
construction must be somewhat subtle, however, since any lamination constructed
for slope 37/2 (and no other, since by [HO] every other missing slope gives a non-
Haken manifold) must contain a compact leaf.

x6
The future

This paper demonstrates that the set of manifolds admitting the various topo-
logically useful classes of foliations are all distinct. This suggests that a workable
necessary and su�cient condition for the existence of these classes of foliations will
be di�cult, if not impossible, to �nd. This contrasts with the case of embedded
incompressible surfaces, for example, which admits a fairly succinct (although per-
haps not practical) existence criterion; a 3-manifold M contains an incompressible
surface if and only if the fundamental group of M is a free product with amal-
gamation or HNN extension over a surface group [Fu],[FG]. We should also point
out that the work on essential laminations and foliations in closed Seifert-�bered
spaces ([Br1],[Cl],[EHN],[JN],[Na1]), which we have relied on throughout this work,
has already demonstrated that while among non-Haken Seifert-�bered spaces, the
manifolds admitting these di�erent classes of foliations are of course all identical -
any foliation with no Reeb components has all leaves �1-inject, so has no compact
leaves - the `dividing line' between those which do have essential foliations and
those which don't [JN],[Na1] is extremely complicated. One good open question,
in fact, is to �nd an explanation (in terms of the fundamental group, perhaps) for
this `dividing line'.

For a hyperbolic 3-manifold M, however, many of the distinctions we have ex-
plored here disappear. A closed hyperbolic 3-manifold contains no incompressible
tori, so a foliation without Reeb components has no torus leaves, and so is auto-
matically taut. Therefore, only a few of these distinctions survive.

Question. Does every hyperbolic 3-manifold admit a taut foliation?

Question. Does every tautly-foliated hyperbolic 3-mani
old admit a foliation with
no compact leaves?

Question. Does every tautly-foliated hyperbolic 3-mani
old admit an R-covered
foliation?

A foliation is R-covered if the space of leaves of the foliation, after being lifted
to the universal cover of M, is the real line R. Tautness is a necessary condition for
a foliation to be R-covered. Among non-Haken Seifert-�bered spaces, every taut
foliation is R-covered [Br4].

Question. Does every tautly-foliated hyperbolic 3-mani
old admit a non-R-covered
foliation?

We note that the answers to these last two questions are `No', in general; there
are, again, counterexamples among graph manifolds, see [Br3].
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The answers to these questions remain out of the reach of present technology
- our current understanding of the structure of taut foliations of hyperbolic 3-
manifolds is rather limited. The best results to date are those of Fenley [Fe1,Fe2]
who has some interesting results on the structure of stable foliations of Anosov

ows on hyperbolic manifolds, as well as on the limit sets of leaves of foliations in
hyperbolic 3-manifolds.
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