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ABSTRACT. In this paper we construct families of knots which have genus one free
Seifert surfaces which are not disk decomposable.

80
INTRODUCTION

A Seifert surface for a knot K in the 3-sphere is an embedded orientable surface
Y., whose boundary equals the knot K. Equivalently, it is a properly embedded
orientable surface ¥ in the exterior X (K) of K, whose boundary equals the lon-
gitude of K. A Seifert surface ¥ is free if 71 (S \ ) is a free group; equivalently,
S3\int N (X) is a handlebody.

Seifert’s algorithm [Se] will always build a free Seifert surface for a knot K. In
[Br] we showed that not all free Seifert surfaces can be built by Seifert’s algorithm;
we exhibited a family of hyperbolic knots having free genus one, whose surfaces
built via Seifert’s algorithm must always have large genus.

In so doing, we introduced a fairly general procedure for producing knots with
genus 1 free Seifert surfaces. In this paper we show that many of these surfaces fail
to be disk decomposable.

A sutured manifold (M ,y) is a compact 3-manifold M together with a collection
of disjoint embedded loops v in M, called the sutures. (Since we will apply this
theory to knots and Seifert surfaces, we will suppress the possibility that whole
components of M are sutures). The boundary of M can be expressed as M =
Ri(v) UR_(v), with Ry(y) N R_(y) = . We give R} a transverse orientation
pointing into M, and R_ a transverse orientation pointing out of M. We think of
each component of v as having as having a transverse orientation pointing from its
R, side to its R_ side, . For further details, see [Gal].

A decomposing surface for (M ,y) is a properly embedded, transversely oriented
surface F' which is transverse to v. We can , by matching the transverse orientations
for Ry, R_, and F, endow M split open along F, M|F, with the structure of a
sutured manifold; see Figure 1. The new sutures for M|F are obtained as an
‘oriented sum’ of v and OF. A sequence of such splittings is called a sutured
manifold decomposition of (M ).
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Figure 1

A Seifert surface X is disk decomposable if the sutured manifold

(S3\intN (2),SNION(K)) = (Xr,7)
admits a sutured manifold decomposition whose decomposing surfaces are all disks,
ending with a sutured manifold which is the disjoint union of sutured manifolds of
the form (B3, e), where e is the equatorial circle of the 3-ball B3. (A posteriori,
S$3\int N (X) is a handlebody, since it may be cut open along disks to 3-balls, so ¥
is free.) By Gabai [Ga2], if ¥ is disk decomposable, then the corresponding sutured
manifold is taut, and so in particular ¥ has minimal genus among all surfaces
representing its homology class. In other words, the genus of ¥ equals the genus of
K.

Disk decomposability therefore gives an effective way to compute the genus of a
knot. For example, Gabai [Ga2] has shown that every knot in the standard tables
[Ro] has a projection for which Seifert’s algorithm gives a disk decomposable surface.
A fairly natural natural question to ask, then, is: how can we tell, short of producing
a set of decomposing disks, that a Seifert surface is disk decomposable? Our main
result shows that being free and having minimal genus, which are necessary, are
not sufficient.

Theorem. There exist knots K in S which admit genus one incompressible free
Seifert surfaces which are not disk decomposable.

Our result leaves open the question of whether or not these knots admit other
Seifert surfaces which are disk decomposable; we discuss this possibility in the
concluding section of the paper.

Figure 2
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BUILDING FREE SEIFERT SURFACES

In [Br] we showed that, for the knot K and the free Seifert surface Fy for Ky in
S3, shown in Figure 2, 1/n Dehn surgery on any loop L in the 4-punctured sphere
P pictured there will essentially re-embed Ky and Fy as a new knot K and free
Seifert surface F' in S3. (There is, in fact, nothing special about this knot; any
free Seifert surface for a knot admits similar 4-punctured spheres.) What we will
show now is that for appropriate choices of L and n, F' will be incompressible but
not disk decomposable. Our sutured manifold Xr = S3\intN(F) will be a genus-2
handlebody, and the suture will be a loop v = FNOX (K) which splits X into
two once-punctured tori. The essential idea is that if « is complicated enough with
respect to a set of cutting disks for Xp, then F' must be incompressible in X (K)
but not disk decomposable.

?

"Inside" View "Outside" View_

Figure 4
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Our argument will be based on techniques of Goda [Go], who first showed that
there exist taut sutured handlebodies (H,7y) which are not disk decomposable. Our
main task will be to show that his arguments can be applied to some of the sutured
handlebodies built as in Figure 2. Because Goda’s techniques use the standard view
of a handlebody, as the inside of a standardly embedded genus two surface, we first
need to produce an ‘external’ view of X, . In other words, we need to understand
what our suture v looks like when X g, is pictured as the interior of a standardly
embedded handlebody in $3. This involves, essentially, determining what the two
annuli in 0Xf, that are cut off by 0P would look like on a standard handlebody,
while keeping track of the pattern of intersections of v and 9P with a set of three
‘obvious’ cutting disks for Xg,, whose boundaries are shown in Figures 3 and 4.
This pattern determines v up to homeomorphism, in fact, up to Dehn twists along
the three cutting disks, since these disks form a complete system of cutting disks
for Xpg,.

This change of viewpoint is carried out in Figure 4. Our suture v can be thought
of as four arcs lying on a 4-punctured sphere (essentially, P) in Xp,, together with
two pairs of arcs spiralling through the complementary annuli in 0 X, . The amount
of spiralling is determined by how many full twists we put in each arm of our original
Seifert surface Fy, and will not play a large role in our further discussions (although
the direction of spiralling is important).

§2 CHOOSING LOOPS L

It is easy to see what effect 1/n Dehn filling on a loop L in P will have on
the picture of our sutured handlebody (Xg,,7) above. The loop L will lie slightly
inside of the 4-punctured sphere P lying on 0Xp,, and the disk D it bounds will
lie for the most part outside of the handlebody X, since it mostly lies in N(Fp).
Inside of our handlebody we will see only an annulus running from L to a parallel
loop (L', say) in P. 1/n Dehn surgery along L will have the effect of replacing the
suture vy with its ‘sum‘ with n parallel oriented copies of the loop L’ (Figure 5). It
will in fact be the result of applying n Dehn twists in an annular neighborhood of
L’ to . This gives us a large family of sutured handlebodies to work with, each of
which is realized as the complement of some genus one free Seifert surface in S3.

[ 7
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Figure 5

We illustrate this with a somewhat more complicated loop L, in Figure 6; it
meets Ky in 8 points, and so n Dehn twists along L will result in a knot K, which
on 0H will be represented by the ‘sum’ of Ky and 8n parallel copies of L. We show
the results of one Dehn twist, in Figure 7.

This new suture C meets the standard cutting disks for the handlebody H (which
are the three disks where a horizontal plane perpendicular to the paper meets the

middle of the figure) only in arcs joining distinct cutting disks. These arcs run,
in each of the pairs of pants in H, above and below the cutting disks, between
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any pair of the cutting disks. It is also easy to see that there are no trivial arcs,
running from a cutting disk to itself. This implies that 0H \ C' is incompressible in
H ([St],[Kol]), and (H,C) is therefore taut.
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Figure 7

We can ‘encode’ this construction, and the Dehn twisting information, into a
train track 7 on OH (Figure 8a) carrying both 7, L, and the result C of ‘right-
handed’ Dehn twists of v along L. This allows us to see, even for a large number
of Dehn twists, that all of the loops so built represent sutures of taut sutured
handlebodies, since it is easy to see that any loop (which separates OH) carried
with full support by 7 has arcs running between any pair of the cutting disks D;,
on each side, as before, and has no trivial arcs. This is most easily seen by cutting
OH (and 7) open along our cutting disks (Figure 8b); the resulting train tracks
carry no trivial arcs or circles.

This curve L (and the resulting sutures C') will, in the end, still not be sufficiently
‘complicated’ for our purposes. But several, which will be, share many of the same
properties, being carried by the same train track 7.
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Figure 8

§3 COMPLICATED INTERSECTIONS IMPLY NO DISK DECOMPOSITION

Goda [Go] determined sufficient conditions, based on the intersections of the su-
ture C' in the boundary of a genus two handlebody H with a system of cutting disks
D1, Dy, D3 for H, to guarantee that the sutured handlebody (H, C) is taut but not
disk decomposable. We will prove here a slightly weaker form of Goda’s criterion,
which is sufficient for our purposes. Note that any loop C' in OH locally separates
OH (i.e., it separates a neighborhood of itself), so we can always unambiguously
talk about being on the ‘same side’ of C' in 0H.

Proposition 1. If D is a compressing disk for OH, with 0D transverse to C, such
that C|D contains three parallel arcs whose ends all lie on the same side of OD,
then (H,C') is not disk decomposable along D.

alﬁ \ljwj\))
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Figure 9

Proof: The picture we have is as in Figure 9. (All other possible choices of
normal orientation can be obtained from the one pictured by some combination of
changing every orientation or reflecting in a vertical axis, which will not change the
essential features of our argument.) Given a transverse orientation on the disk D,
the sutured manifold obtained by cutting H along D is one or two solid tori H|D,
whose sutures are obtained by cutting and pasting C' and 0D near their points of
intersection, as in Figure 1. However, because of our hypothesis, the sutures of
the resulting sutured solid torus (M, C”) will include a component which is null-
homotopic in M (Figure 9), and so (M, C’) cannot be taut. The key point here is
that C separates OH, and so the transverse orientations of C, seen along 0D, must
alternate.g

The reader can note that in Figure 7, each of the disks D; will have 3 such arcs
on each side. We illustrate one such collection in Figure 10.

Figure 10

We now assume that C' satisfies the conditions thus far introduced: the cutting
disks D; cut C into arcs in the two pairs of pants 0H|(0D1U0D2UID3)=P, U Ps.
Each arc joins distinct d-components in the P;, and there are arcs running between
all possible pairs of 0-components of the P;. We also have, for each disk D;, a set
of three parallel arcs in 0H|9D;, as in Proposition 1.

Proposition 2. Any disk D, isotopic to one of the disks D1, i =1,2,3 and trans-
verse to C, is not a decomposing disk for (H,C).

Proof: This is essentially Claim 3.6 of [Go]; for completeness, we reproduce the
argument here, since many of the same ideas will be used later.

Without loss of generality, we may assume the D is isotopic to D;; then by
[Ep,Lemma 2.5] there is an innermost disk A in 9H whose boundary consists of an
arc o of 9Dy and an arc 8 of 9D. C intersects A in arcs, and by our hypothesis,
none of these arcs have both endpoints on «. If any have both endpoints on (3, then
there is an outermost such arc §; but then it is easy to see that either decomposing
(H,C) along D yields a trivial suture, implying the (H, C) is not disk decomposable
along D (Figure 11a), or we may isotope C' across the outermost disk cut off by d,
without altering the sutured manifold obtained by decomposing along D (Figure
11b). Continuing, we can remove all such trivial intersections of C' with D (or
obtain our desired conclusion).
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Figure 11

We may therefore assume that C' meets A only in arcs running from « to 3,
which must therefore all be parallel to one another (Figure 11c), and so we can
isotope 0D across A, removing two points of intersection of 9D with dD;, without
changing the intersections of 0D with C'. Continuing, we can then assume that 0D
and dD; are disjoint, and so by [Ep,Lemma 2.4] they cobound an annulus B. By
the same argument, we may assume that C meets B only in arcs running from 0D
to dD1, and so we may isotope 0D to 0Dy without changing the intersections of
0D with C. Therefore the sutured manifold resulting from decomposing along D is
identical with the one obtained by decomposing along D;. But by our hypotheses
and Proposition 1, (H,C) is not disk decomposable along Dy, and so it cannot be
disk decomposable along D. g

Next we give a criterion which is sufficient to guarantee that every compressing
disk for 0H has a trio of parallel arcs in C.

Proposition 3. Suppose that for every pair of cutting disks D; and D;, i # j, and
for each side of 0D; COH, there is a collection of three parallel subarcs of C, with
endpoints on the same side of 0D;, which on both ends cross D; immediately before
meeting D; (see Figure 12). Then for every disk D in H, with 0D COH transverse
to C, (H,C) is not disk decomposable along D.

Proof: Suppose that D is a decomposing disk for (H,C). By Proposition 2,
D is not isotopic to any of the D;. Because it is a compressing disk, D cannot
be trivial in 0H. But since every simple loop in a pair of pants is either trivial
or isotopic to one of the d-components, this means that D cannot be isotoped to
be disjoint from all of the 0D;; it would then lie in one of our two complementary
pairs of pants.

oD, oD
aDj aDj

Figure 12

Consider an arc § of DN (D; U Dy U D3) C D which is outermost in D. The
arc 0 of 9D which § cuts off then lies in one of our two pairs of pants, call it P. If
[ is a trivial arc in P, then, together with an arc « in one of the 0Dy, it bounds
a disk A in P. The suture C' meets A in arcs, and, by applying the argument of
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the previous proposition, we may assume that each arc runs from « to 3, since, if
not, then either decomposing along D will create a trivial suture, implying that D
is not a decomposing disk for H, or we can isotope 0D across C without changing
what the sutures in the sutured manifold obtained by splitting along D will look
like. The pictures are identical to those of Figures 11a and b. A trivial arc cannot
lie on the §-side of A, by hypothesis.

But then, as before, we can isotope 0D across A to reduce the number of points of
intersection of 0D with the 9D;, without changing the sutured manifold (H|D, W).
After repeatedly carrying out these isotopies, we can then assume that every out-
ermost arc in D is non-trivial. By our argument above, there must be at least one
non-trivial arc, «, since otherwise D, hence 0D, is disjoint from the D;.

Figure 13

The arc @ that « cuts off in 0D, lying in one of the pairs of pants P, must
therefore separate the two 0-components 0D; and 0D; of P which it doesn’t meet.
It therefore must intersect the three arcs running from 0D; to itself, just before
and after passing through 0D;, which were given by our hypothesis (Figure 13).
As before, we may assume that § meets each arc of C' running between 0D; and
0D; exactly once, since otherwise we can find a trivial subarc of 3 in P|C, allowing
us, as before, to either reduce the number of points of intersection of 3 with C,
or find a trivial suture after decomposing along D. But then by truncating the
three arcs given by our hypothesis, by removing the short subarcs lying at the ends
between 0D; and 0D, we obtain three parallel arcs whose ends all lie on the same
side of 9D. Together with the obvious arcs in 9D, they bound a rectangle R in
OH.

These arcs in C' may not lie in 0H|0D (Figure 14); but since we may, as above,
assume that every other arc of RNJD has no trivial intersections with our triple of
arcs, some subrectangle bounded by arcs of 9D will lie in 0H|0D, with opposite
transverse orientations on the ends. The intersection of this subrectangle with C
will give us a triple of arcs with all of their ends on the same side of 9D, giving us
the triple of arcs in C' which we need to apply Proposition 1. Therefore decomposing
(H,C) along D will yield a trivial suture, so (H,C) is not disk decomposable along
D.

1F

Figure 14
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Note: We can weaken our hypotheses somewhat while still retaining the con-
clusion. From the proof we see the we need a trio of arcs which either end at D;
after passing through D; or end at D; after passing through D;, since we really
only need the fact that the ends of the arcs are passing between D; and D;. This
gives us only half as many conditions to check.

84
THE EXAMPLES

.
LY Y "

Figure 15

It is fairly easy to build examples of knots K satisfying the conditions of Propo-
sitions 1 and 3, by our initial Dehn twisting construction. We should note that the
example given in Figure 7 does not satisfy the conditions of Proposition 3; there
is no trio of arcs running from the middle disk which immediately run through the
right hand disk on both ends. However, a still more complicated choice of initial
twisting curve L will produce the examples we seek. Essentially, we need only make
sure to choose a loop L so that, for every choice of a pair of cutting disks, there
is one such arc in L; then the fact that Dehn twisting along L adds many parallel
copies of L to K will provide may parallel copies of each arc. One such example is
given in Figure 15. It is easy to verify that for each choice of disk D;, side of 0Dy,
and choice of disk Dj, j # 1, there is an arc in L beginning and ending at D; on
the chosen side, which immediately passes through D; at each end (or vice versa,
which suffices for our purposes by the comment following the proof of Proposition
3). Properly chosen subarcs of the pair of arcs shown in Figures 16ab will suffice.

Figure 16a
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Figure 16b

To be certain that, when we perform a Dehn twist along L, the resulting loop C’
will have at least three arcs parallel to each of the arcs given in the above figures,
we must check that the complement of each arc o in L meets C at least three
times. This is because as we traverse a, every time we cross C' one of the arcs in C’
parallel to « has been grafted to C' and (we must assume) no longer runs parallel
to a. Since we start with |C' N L| (= 22, in this case) arcs of C’ running parallel to
« at the start, and lose one at each crossing, we simply need to insure that we cross
C no more than 19 times to ensure that three arcs will run parallel to o in C’. The
reader can readily verify that for the arcs shown in Figure 16, the complementary
arcs always meet C' at least 6 times, by comparing with Figure 15.
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Figure 17b
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To see what L looks like in the complement of our original Seifert surface 3, we
work with the train track 7 in 0H of Figure 8. L is carried by 7 with weights 2, 3,
and 5, as in Figure 17a. By keeping track of the intersections of 7 with our cutting
disks and Ky, we can reconstruct how 7 would look in the interior version of our
picture of Xp,; see Figure 17b. This in turn allows us to reconstruct L, as it sits
on our 4-punctured sphere P (Figure 18).

Figure 18

According to the computer program SnapPea [We], the knot K that we obtain
from Ky by 1/1 Dehn filling along L is hyperbolic; by the above work, the Seifert
surface Fj is carried under the Dehn filling to a genus one free Seifert surface F' for
K, which is not disk decomposable.

We can readily construct many more such examples, since any collection of larger
weights on the train track of Figure 16b (which represent a connected loop, which
essentially means that our replacements for 2 and 3 must be relatively prime) will
also yield a knot and Seifert surface satisfying our theorem. Similarly, 1/n Dehn
filling along L or these more complicated loops will also suffice, since more twists
simply provide more parallel arcs for our arguments to use. We can also add full
twists to the ‘arms’ of our original Seifert surface, without changing the essential
features of the construction.

84
CONCLUDING REMARKS

The examples the we have obtained here, in some sense, manage to raise more
questions than they answer. Perhaps the most pressing question raised is: do these
knots that we build possess other Seifert surfaces which are disk decomposable?
These other surfaces must, of course, also be free and have genus one. More gener-
ally, we might ask:

Question 1. If the genus of K equals the free genus of K, does K always possess
a disk decomposable Seifert surface?

One way to show that the answer to this question is ‘No’ would be to show that
some of our examples possess only one minimal genus (free) Seifert surface. There
are several techniques for showing that a knot possesses a unique minimal genus
Seifert surface (see, e.g., [Ko2],[Ko3],[KK]). Most of these can be phrased as saying
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that the knot K is ‘simple enough’; since our approach to non-disk-decomposability
is that the suture (= the knot) is ‘complicated enough’, applying such techniques
will no doubt require some finesse.

While the Seifert surfaces that we build fail to be disk decomposable, they do
have minimal genus, and so Gabai [Gal] assures us that there is some sequence of
decomposing surfaces which will split our sutured handlebody to trivially sutured
3-balls. What we have really shown here is that the first surface cannot be a disk.
Since the decomposing surfaces must be incompressible, they will always (induc-
tively) split our sutured handlebody at each stage to another sutured handlebody.
The first splitting, then, cannot reduce the genus of the sutured handlebody (and,
except for the case of a non-separating annulus, must raise it). An intersting ques-
tion to ask, then , is: how high must the genus of the handlebody go? Are there, for
example, (free) Seifert surfaces (of minimal genus) for which the first decomposing
surface must raise the genus by an arbitrarily large amount?

Finally, we could attempt to strengthen our result by trying to replace ‘disk
decomposability’ with something weaker. For example, a disk decomposable Seifert
surface is always the leaf of a depth one foliation of the knot exterior [Ga2], and
so the knot K must have depth [CC] (at most) one. So one can ask the weaker
question:

Question 2. If genus(K ) = free genus(K ), then does K have depth (at most) one?

An answer of ‘No’ would be a stronger result. There is in fact a fairly simple
necessary condition for a Seifert surface to be the leaf of a depth one foliation
[CC]: the result of attaching a 2-handle to the suture of the associated sutured
manifold must be the total space of a fiber bundle over the circle. See [Ko3] for an
example which uses the Thurston norm to check this condition. Examples giving
a negative answer to Question 1, which failed to satisfy this property, would also
give a negative answer to Question 2.

Nowhere in our arguments is it really essential that our system of cutting disks
consists of three disks. The exact same conditions used here, describing how the
suture C' meets a complete system of cutting disks for a higher genus handlebody,
can therefore be used to find higher genus examples of sutured handlebodies which
are not disk decomposable. One must use different arguments to show that the
sutured handlebody is in fact taut; the conditions we impose only guarantee that
the complement of the suture in OH is incompressible in H, and do not imply
minimal genus.
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