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x0
Introduction

It is a long-standing conjecture in 3-manifold theory that every homotopy equiv-
alence f :M!N between closed, irreducible 3-manifolds M and N , with j�1(M)j
(=j�1(N)j) = 1, is homotopic to a homeomorphism. In [Wa], Waldhausen proved
that this conjecture was true, if we assume that N contains a 2-sided incompressible
surface S. The proof consists of �rst homotoping the map f so that the pullback
surface f�1(S) is an incompressible surface, and then splitting both manifolds open
along these surfaces, and proceeding by induction on a hierarchy of N - a collection
of incompressible surfaces in the successively split-open manifolds which end up
splitting N into a 3-ball. The base case is the Alexander trick.

In [Br1], we began a program to extend this theorem to the case that N is
laminar, i.e., N contains an essential lamination [G-O]. We showed that, given
a homotopy equivalence f :M!N between non-Haken, (irreducible) 3-manifolds
and a transversely-orientable essential lamination L�N , if the pullback lamination
f�1(L)�M is essential then we could homotope the map f to a homeomorphism. In
this paper we study the `other half' of Waldhausen's proof - when can one deform a
homotopy equivalence to give an essential pullback - by trying to understand what
structure the pullback of an essential lamination has, in general, under a homotopy
equivalence. We work, as in [Br1], under the hypothesis that M and N are non-
Haken; otherwise, all that we shall use about the map f is that it has degree 1 (in
particular, non-zero degree).

It has been conjectured that the method employed by Waldhausen - surgeries of
the pullback achieved as homotopies of the map f - will be successful (with some
modi�cation) in creating an essential pullback in the present context. We begin
this paper by showing that if the homotopy-through-surgery process will succeed
in making the pullback essential, then, at the very beginning, the pullback must
have had a fairly restrictive structure - each leaf of the pullback must map to its
corresponding leaf in L with degree 0 or 1. In the remainder of the paper we
attempt to show that leaves of a pullback do in fact have this property. We must
admit at the outset that we do not succeed in proving this - but we will see that the
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pullback has many of the same `tightly-wrappedness' properties that an essential
lamination in a non-Haken manifold has [Br2], which `almost' implies that all leaves
have degree 0 or 1.

x1
The homotopy through surgery process

Note: we assume, as in [B1], that the essential lamination L has
every leaf dense in L, i.e., for every leaf L of L, L = L. This
necessary hypothesis can be easily arranged, by throwing away all
but a minimal sublamination of any essential lamination L that we
start with. We also assume that L contains no open sets in M ,
i.e., that transversely L looks like a nowhere-dense closed subset
of an interval (typically, a Cantor set). This can be arranged, if
necessary, by splitting L open along a �nite number of leaves.

Given a homotopy equivalence f :M!N , where M and N are closed irreducible
3-manifolds, and an essential lamination L�N , we say that f is transverse to L if,
for every point x2f�1(L), Tf(x)(L) + f�(Tx(M) = Tf(x)(N). This is most easily
achieved by making f transverse to a branched surface B which carries L; then
by imagining that L lies very close to B, f is immediately transverse to L. This
method of achieving transversality is the one that we tend to think of as `standard'.
However, we will occasionally make use of the more general point of view, especially
when doing homotopies through surgery. Since for the most part we will be doing
surgeries in order to eventually lead to a contradiction, these `excursions' will from
one point of view be unnecessary (hence our adoption of the more restrictive notion
as `standard').

Given a map f :M!N transverse to the lamination L�N , the pullback L0 =
f�1(L) is a lamination. If the map f is transverse to the branched surface B
carrying L, then the pullback lamination L0 is carried by the pullback branched
surface B0 = f�1(B).

The main construction in our proofs will be that of surgering the pullback lam-
ination L0. This begins with a situation as in Figure 1a - a loop in leaf of L0,
and a disk D, which is embedded in M , but not necessarily embedded in M jL0,
and which compresses it. We assume that D is transverse to L0, so D\L0 is a
1-dimensional lamination in M . Note that since L is essential, D\L0 consists of (a
�nite number of parallel families of) closed loops - no loop of D\L0 can have any
holonomy around them. This is because they are null-homotopic in M , so their
images under f are null-homotopic in N , so (by the essentiality of L) their images
under f are null-homotopic in the leaves containing them, hence have no holonomy
around them. So the original loops have no holonomy - holonomy is preserved un-
der transverse maps. There can also be no non-compact leaves which don't limit on
compact ones, since this would imply (by pushing forward under f) the existence
of an end-compression for L.

We can then create a new lamination in M , by surgering L0 along this disk, by
cutting L0 open along D, and sewing in a collection of disks to the resulting circles,
working from innermost parallel family out (see Figure 1b). As with `ordinary'
surgery of a compact surface (see [He]), this operation can be achieved by a homo-
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topy of f ; the new lamination is the pullback of a map homotopic to (and which
we will still call) f .

Figure 1

In many cases (e.g., with a Reeb component (Figure 2)), this surgery will create
sphere leaves, or (necessarily inessential) leaves contained inside of embedded 3-
balls; but since we assume that both M and N are irreducible (so are both K(�,
1)'s), these spheres can be removed via a homotopy of f , as well, in the usual
way(see [Wa].

Figure 2

x2
The degree of a leaf should be 0 or 1

In this section we prove:

Proposition 1. If a �nite number of surgeries like those described above can make
the pullback lamination L0 essential (modulo leaves lying in 3-balls), then every leaf
of the pullback lamination maps to its corresponding leaf of L with degree either 0
or 1.

This follows fairly directly from the following results:

Lemma 2. Given f :M!N , L, and L0 = f�1(L) as above, let L00 be the result of
surgering L0, achieved as a homotopy of the map f to the map g. Then for any leaf
L0 of L0, mapping under f to the leaf L of L, if L0i, i=1,2,: : : are the leaves of L00
that L0 was surgered into, then

d(fjL0) = �1i=1d(gjL0

i
),

where d() refers to the degree of the map, thought of as a map into L.

Lemma 3. With the same initial conditions, if a leaf L0 of L0 is entirely contained
in the 3-ball, then d(fjL0) = 0.

Proof of Proposition 1: From [B1, Proposition 7], we know that when L0 is
essential, every leaf of L0 maps to its corresponding leaf of L with degree 1. By
our hypothesis, after a �nite number of surgeries, for each leaf L of L, f�1(L)
consists of a single leaf mapping with degree 1, and a collection of leaves in 3-balls,
which by Lemma 3 map with degree 0; in particular, the degrees of leaves are all
non-negative. We can therefore inductively conclude, by undoing each surgery and
appealing to Lemma 1, that the degree of each leaf at each stage is the sum of the
degrees of leaves, all of which are non-negative. Consequently, all leaves of f�1(L)
map with non-negative degree. But for each leaf L of L, the degrees of each leaf of
f�1(L) must add up to the degree of f :M!N , which is 1, so we can conclude that
one leaf of f�1(L) maps with degree 1, and all others map with degree 0.

Proof of Lemma 2:
The general case is not much di�erent, requiring just a bit more attention to

detail. By cutting up the family of loops around the innermost one into a �nite
number of `thin' pieces (using the fact that transversely they are nowhere dense),
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we can assume by deforming the map slightly that the family of loops map in
`vertically', i.e., the image of the annular region between innermost and outermost
loop maps to the normal fence over the image of the innermost loop. If we then
choose a null-homotopy of f of each loop to achieve our surgery, this null-homotopy
will lift to the nearby leaves. By cutting our family of loops into �nitely-many even
thinner families, we can then assume that every null homotopy for our loops is the
lift of the null homotopy for the innermost one. Now we replace, as in [He], a thin
annular region in each leaf with two copies of these null-homotopies; this can be
achieved by a homotopy of f . In this more genereal case, this could separate a
leaf into in�nitely-many leaves, but because the sewn-in disks all cancell out in any
degree calculation, the total degree of the surgered leaf remains the same. A �nite
number of applications of this completes the proof.

Proof of Lemma 3: Since L0 is contained in the ball B3, the inclusion-induced
map �1(L0)!�1(M) is the zero map, and consequently (if f(L0)�L�L), the map
f��1(L0)!�1(L) must be the zero map (since composing with the inclusion-induced
injective map �1(L)!�1(M) gives the zero map).

If L is not simply-connected, then j�1(L)j=1. By the lifting criterion, there is

a map ~f :L0!eL (where eL is the universal cover of L), so that

L0
~f
! eL
f

& #p
L

commutes. But now choose a regular value x for f :f�1(L)!L (so x is also a regular

value for f :L0!L). then f�1(x) = ~f�1(p�1(x) = ~f�1([xi) = [ ~f�1(xi), where figis
an in�nite index set. Since f is transverse to L, however, x is also a regular value
for f :M!N , so f�1(x) consists of �nitely-many points. Consequently, most of the
~f�1(xi) must be empty, so d( ~f )=0. Therefore the signed sum over each ~f�1(xi)
must also be 0, so the signed sum over f�1(x) (for f :L0!L) is a sum of zeros, so
d(f :L0!L) = 0.

If L is simply-connected, we will argue by contradiction. If L0 maps with non-zero
degree, then f(L0) = L, so f(L0) is a (compact, hence) closed set in N containing
L, hence contains L=L. But L contains a non-simply connected leaf L0 (else N
is the 3-torus [Ga1], hence Haken), so L0 contains leaves (in the 3-ball), namely
f�1(L0)\L0, which map to a non-simply-connected leaf, hence all map with degree
0.

x3
The structure of pullbacks, I:

degree-zero vs. non-zero degree leaves

In this section we begin to establish some of the properties that a pullback
lamination must always have. For this section, we assume only that the lamination
L has every leaf dense (and, tacitly, that the map f has non-zero degree, so that
some leaf of f�1(L)=L0 must map with non-zero degree). In many respects, the
arguments mimic those of [B1, Section 2].
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Proposition 4. If L0�f�1(L) is a sublamination, and z is a regular value of f
in L, with I a (short open) arc though z transverse to L, then for every x2I\L,
and every �>0, there exists y2I\L with d(x,y)<� and an open U�I containing y
such that (for f�1(I)=I1[I2[: : :[In) for each j=1,: : : ,n, setting f�1(U)\Ij= Uj ,
either Uj\f�1(L)�L0 or Uj\L0=; .

Proof: f�1(I)=I1[� � � [In, each mapping homeomorphically to I under f . Now
given x2I, and �>0, choose a y2I with d(x; y) <� such that f�1(y)\L0 consists of
the fewest number of points; call them fy1,: : : ,ykg. Note that, for i � k+1, since
yi =2L0, and L0 is closed, all of the points in Ii su�ciently close to yi are not in L0;
for some open Ui in Ii containing yi, Ui\L0=; (sse Figure 3).

Figure 3

Claim: for i � i � k, all points of f�1(L) su�ciently close to the yi are in L0.

For if not, then (passing to a subsequence and renumbering as necessary) there
is a sequence of points z1,z2,: : : in Ii, converging to yi, such that zj =2L0 for every
j. Renumber so that i=k. Then if we set xj=f(zj )2I, then the xj converge to
y, and so for large enough j, the xj 's are within � of x. But for large enough j,
f�1(xj )\Ii is a point in Ui, for k+1� i � n, so is not in L0, while f�1(xj )\Ik=zk,
so is also not in L0. So f�1(xj) contains fewer points of L0 than f�1(y) does, a
contradiction.

Therefore, for 1� i � k, there is an open interval Ui of Ii about yi such that
Ui\f�1(L)�L0. Now set U=f(U1)\� � � \Un.

Corollary 5. If L0 is a leaf of f�1(L), and L0 is a proper sublamination of L0,
then f(L0) is nowhere dense in L (i.e., Lnf(L0) is open and dense in L). In
particular, every leaf of L0 maps to L with degree zero.

Proof: By the proof of the proposition, for every regular value x of f in L , and
�>0, there is a regular value y of f in L, within � of x along a transverse arc I, and
an open interval U in I about y such that Uj\f�1(L)�L0 or Uj\L0=; But our
hypothesis implies that for each j it must be that Uj\L0=;; for otherwise given
any point z2Uj\f

�1(L)�L0 , L0, which is not in L0, passes arbitrarily close to z,
and hence intersects the open arc component Uj that contains z, a contradiction.
Therefore U\f(L0)=;; in particular, y =2 f(L0). So A = Lnf(L0) is an open subset
(since f(L0) is the continuous image of a compact set) of L, and any (regular) point
of L has a point of A arbitrarily close (in the transverse direction) to it (since x was
arbitrary). So A is dense in L (since regular values are dense in L). In particular,
A contains a regular value x for f in L. For any leaf L00 of L0, mapping under f to
the leaf L0 of L, since L0 passes arbitrarily close to x (all leaves of L are dense in
L), L0 contains a nearby regular value y in A (since A is open). Then f�1(y)\L0

= ;, so f�1(y)\L00 = ;, so L00 maps to L0 with degree zero.

Corollary 6. If L00, L
0 are leaves of L0 mapping with non-zero degree, and L00�L

0,

then L00=L
0.

Let H denote the leaves of L having no holonomy; by [EMT], this is a dense
subset of L. Let H0= f�1(H); this is a (saturated) subset of the set of leaves of
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f�1(L) = L0 having no holonomy, since a loop in H0 with non-trivial holonomy
would be carried under f to one in H with non-trivial holonomy, since transverse
pictures are preserved under f . H0 is also dense in L0, because transversely it looks
the same as H in L (again, since transverse pictures are preserved under f).

Proposition 7. If L0�L0 maps to L�L under f , with non-zero degree, then (f(L0)=L,
so) HL0=L0\H0 6= ;, every leaf of HL0 maps to its corresponding leaf either with de-
gree 0 or with the same (non-zero) degree d = d(L0), and every leaf of L0 maps to
its corresponding leaf with degree a non-negative multiple of d.

Proof: Pick a regular value x for f in a leaf of H, satisfying the conclusions
of Proposition 4. That is, pick a regular value in a leaf of L satisfying the condi-
tions, and then (since H is dense in L) pick a nearby point in H. Let f�1(x)\L0

= fx1,: : : ,xkg�HL0 . One of the leaves that these points lie in must map to its
corresponding (H-) leaf with non-zero degree; otherwise, following the argument of
[B1, Lemma 5], we can join these points together by arcs in their leaves, as the
vertices of a tree, such that for each component of the tree the sum of the signs of
its vertices is zero (i.e., the degree of the leaf containing it). Then by lifting these
trees to nearby leaves (see Figure 4), since the resulting endpoints are all in the
inverse image under f of the same point (because we are lifting from a leaf with
no holonomy), we see that the degree of every nearby leaf (including L0) is a sum
of 0's, hence 0, a contradiction. So some HL0-leaf L00 has non-zero degree, so by

Corollary 5, L00 = L0. But now we can easily see, �rst, that every leaf of HL0 the

same degree; this is because each is dense in L0 (by Corollary 6), and so they pass
arbitrarily close to one another. The argument of [B1, Lemma 5], applied verbatim,
then gives the result. The �nal statement then follows by taking all of the points of
fx1,: : : ,xkg�HL0 and stringing them together in their leaves (so the resulting trees
each have vertex-sum either d or 0), and then lifting them to the leaves containing
any other inverse image of a point close to x. The leaves have degree the sum of
the degrees of the point inverses that lie in them, but since our trees lift to trees
in these leaves (so any leaf containing one vertex contains them all), this sum is a
sum of d's and 0's, hence is a non-negative multiple of d.

Figure 4

Proposition 8. If L0 maps with non-zero degree, then the set NL0 of leaves in L0

which map with non-zero degree is open in f�1(L) = L0.

Proof: Let x be a regular value chosen as in Proposition 7, and let L00 be a HL0 -
leaf mapping with non-zero degree d. Let I be an arc, transverse to L, passing
through x, and I1 the arc in the inverse image of I passing through a point x1of
f�1(x) in L00. Assume that x=y has been chosen so that the number distinct leaves
of HL0 meeting f�1(y) is minimal among the points y lying in I\H (otherwise,
move to a di�erent point!).

Claim: All of the leaves of HL0 meeting f�1(x) map with non-zero degree.

Proof of claim: As before, join together the points of f�1(x)\L0 contained in
the same leaves, as the vertices of a tree; this tree lifts to nearby leaves, and the
vertices of the lifted trees all lie in the inverse image of a single point lying near x.



Structure of pullbacks 7

If L01 is a HL0-leaf meeting f�1(x) and mapping with degree 0, then, since L00=L
0,

L00 limits on L01. But then when we lift the trees to L00(which corresponds to a point
z near x), the vertices of the component contained in L01, since their degrees add up
to 0, do not contain all of the points of f�1(z)\L00. So more than one component
of the lifted tree lives in the same leaf, so the number of leaves of HL0 intersecting
f�1(z) is smaller, contradicting our choice of x.

This in turn allows us to conclude that every leaf su�ciently close to L00 maps
with non-zero degree. All of the leaves of L0 meeting f�1(x) map to the leaf
containing x with the same degree d 6=0. Building our by now familiar trees joining
the points of f�1(x) together, and lifting these trees to any nearby point-inverse,
we see that the degrees of these nearby leaves (in L0) are positive multiples (each
contains at least one such tree) of d, and hence are all non-zero. Since any non-zero
degree leaf L01 in L0 limits on L00, L

0

1 is among these nearby leaves, so all of the
leaves around it have non-zero degree (and are contained in L0). So the non-zero
degree leaves of L0 form an open set in L0.

Corollary 9. If L0 maps to L with non-zero degree, then ZL0 , the set of leaves of
L0 mapping to L with degree 0, is a closed set, forming a proper sublamination of
L0 (so f(ZL0)�L is nowhere dense in L).

Proof: By Proposition 8, ZL0 = L0nNL0 is a (relatively) closed set in L0, hence
is closed. So it is a sublamination of L0. Because L0 =2ZL0 , ZL0 is a proper sublami-
nation of L0.

Corollary 10. A leaf L00 of L0 mapping with degree zero cannot limit on a leaf L0

mapping with non-zero degree (i.e., L00 consists of degree-zero leaves).

Proof: Suppose it could; L0�L00. We cannot have L00�L
0, since then L00�ZL0 ,

which is, by Corollary 9, a (closed) sublamination consisting of degree-zero leaves,

yet L0�L00�ZL0 , a contradiction. Consequently, L0is a proper sublamination of L00.
But then Corollary 5 implies that every leaf of L0 (e.g, L0) maps with degree zero,
a contradiction.

Corollary 11. The set Z of leaves of L0 which map under f with degree zero is a
closed set, hence forms a sublamination of L0.

If L0 is a leaf mapping with non-zero degree (to the leaf L), then we know that
f(L0)=L. But even more, since NL0 is open in L0, if we pick a regular value x for
f in L, some inverse image of x is in L0, and since a small transverse arc I through
x intersects every leaf of L (since every leaf is dense), and the component of the
inverse image of I meeting L0 intersects only leaves of NL0 , this means that every
leaf of L is the image of some (non-zero degree) leaf of NL0 ; i.e., f(NL0 )=L.

Corollary 12. For any two non-zero degree leaves L01, L
0

2, either NL0

1
=NL0

2
or

NL0

1

\NL0

2

=; .

Proof: SupposeNL0

1

\NL0

2

6= ;, so there is a leaf L0 contained in both (hence map-

ping with non-zero degree). Since L0�NL0

i
�L0i for i=1,2, NL0�L0�L0i, so NL0�NL0

i

for i=1,2. If either of these containments is proper (say, for i=1), then there is a
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(non-zero degree) leaf of NL0

1
not contained in NL0 , hence not contained in L0. So

L0 is a proper sublamination of L01, so, by Corollary 5, all of its leaves (including
L0) maps with degree 0, a contradiction. Consequently, NL0

1
=NL0= NL0

2
.

Corollary 13. The set N of leaves of L0 mapping with non-zero degree can be
written as a disjoint union of �nitely-many of the sets NL0

1
,: : : ,NL0

k
.

Proof: For each leaf L0 mapping with non-zero degree, f(NL0 )=L. If we pick a
regular value x for f in a leaf L of L, f�1(x) consists of �nitely-many points, and
since every set NL0 has a leaf mapping (with non-zero degree) onto L, each set NL0

contains at least one of the points of f�1(x). Consequently (since any two of the
sets NL0 are either disjoint or identical) there are only �nitely-many distinct sets of
the form NL0 . Since any leaf L0�N is contained in one of these sets (the set NL0 ,
in fact!), the result follows.

x4
The structure of pullbacks,

II: tightly-wrappedness

Now we add the hypothesis that our domain manifold, M , is irreducible and
non-Haken. This allows us to mimic the arguments of [B2].

Proposition 14. If L01 and L02 are leaves of L0 mapping with non-zero degree, then

L01\L
0

2 6= ; .

Proof: If L01\L
0

2 = ;, then the two laminations have disjoint (�bered) neighbor-
hoods, so they can be separated by a �nite collection F of disjoint compact surfaces
(e.g., the boundaries of one of the �bered neighborhoods); L01 and L

0

2 are contained
in distinct components of MnF . Because M is non-Haken, F cannot be incom-
pressible, and, in fact, there must be a sequence of compressions of F (through
surfaces F=F0, F1, : : : , Fn) so that Fn is a collection of disjoint 2-spheres; Fn =
S1[� � � [Sk. Because M is irreducible, each Si bounds a 3-ball Bi.

Lemma 15. At most one component of MnFn is not contained in one of the 3-balls
Bi.

Proof: This is a consequence of the fact that every surface in an irreducible,
non-Haken 3-manifold M separates M . Every one of our 2-shperes Si bounds a 3-
ball Bi on only one side (otherwise M=S3, which can't map, with non-zero degree,
to a manifold having in�nite fundamental group). This allows us to de�ne a partial
ordering on the Si; Si<Sj if Bi�Bj . If we take the maximal elements under this
ordering, then they form a collection F 0 of spheres bounding disjoint 3-balls. They
also split M into one more component than the number of spheres, so exactly one
component, M0, isn't a 3-ball. M0 is a component of MnFn, because any 2-sphere
of Fn, in M0, would not be maximal, so would be contained in one of the 3-ball
components of MnF 0, and hence would not be in M0. So every component of
MnFn, except M0, is contained in one of the maximal 3-balls.

The two sublaminations L01 and L02 will meet our compressing disks; otherwise,
by the lemma, one or the other is contained in a ball, so all of its leaves map with
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degree zero, a contradiction. But we can make L0 transverse to these disks; L0 then
meets the disks in a collection of circles and arcs. More importantly, L01 and L02
meet the disks in a collection of circles only, because an arc of interscetion would
require one of them to intersect our surface F . If we �rst surger the L0i along

these circles, we can then surger F without intersecting the (surgered) L0i. So after

surgery (whose e�ect we will denote by s()), s(L01) and s(L02) are disjoint from the

2-spheres, so, again, one of them (s(L01), say) is contained in a ball. So Lemma 2

implies that every leaf of s(L01) maps with degree zero. But because L01 maps with
non-zero degree, Lemma 3 and induction on the number of surgeries involved in
s implies that some leaf of s(L01) maps with non-zero degree, a contradiction. So

L01\L
0

2 6= ;.

Proposition 16. If L01, : : : , L
0

n are leaves of L0 mapping with non-zero degree,

then L01\� � � \L
0

n 6= ;.

Proof: This follows by induction on n. n=2 is Proposition 15. If n is the
smallest number where we have leaves with L01\� � � \L

0

n = ;, then L01\� � � \L
0

n�1

= L00 6= ;, and L00\L
0

n = ;. But now if we apply the argument of Proposition 15,
there is a sequence of surgeries s such that one of s(L00) and s(L0n) is contained in a
ball. s(L0n) can't be (it contains a leaf mapping with non-zero degree), so s(L00) is
contained in a 3-ball. A further sequence of surgeries can therefore reduce it to a
collection of 2-spheres; so we can assume that s(L00) is a collection of 2-spheres. By
Reeb stability, these spheres have neighborhoods meeting only other sphere leaves,
so no non-zero degree leaf can limit on any leaf of s(L00). But by Lemma 2, there

is a non-zero degree leaf L00i in every s(L0i), and L
00

1\� � � \L
00

n�1�s(L
0

1)\� � � \s(L
0

n�1)

= s(L01\� � � \L
0

n�1) = s(L00), so L001\� � � \L
00

n�1 = ;, since none of these leaves can
actually limit on any leaf of s(L00). This is not actually a contradiction; we've
reduced the number of leaves it takes to end up with the empty set, but we've
done it for a di�erent pullback lamination, s(L0). However, we can then continue
this same process, lumping together the �rst n-2 leaves. Eventually we will �nd a
pullback lamination having two non-zero degree leaves with disjoint closures. But
this would contradict Proposition 15.

Proposition 17. No sublamination of Z is essential.

Proof: Suppose L00�Z is an essential sublamination. Either L00\N=; or not. If
L00\N=;, surround L00 by surfaces missing N and surger them to spheres, bound-
ing ball. s(L00) must end up contained in the balls, because s(N ) contains leaves
mapping with non-zero degree. But if L00 is essential, then s(L00) is isotopic (modulo
sphere leaves) to L00, a contradiction; an essential lamination cannot be contained
in a 3-ball.

But if L00\N 6= ;, then L00\L
0=L01 6= ; for some leaf L0�N . But then (since L01

is a proper sublamination of L0) f(L01)6=L, By Corollary 5. Since L01 is essential,
every leaf �1-injects into M , so every leaf �1-injects to its corresponding leaf under
f. Since every leaf maps with degree zero, [B3] says that every leaf of L01 is a plane
or annulus. If every leaf of L01 is a plane, [Ga1] implies that M is a 3-torus, hence
Haken, a contradiction. So some leaf L01 of L01 is an annulus, so [B3] L01 must map
under f onto a representative of an end � of the corresponding leaf L1 of L. So
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f(L01)� f(L01)� lim�(L1), where lim�(L1) is the limit set of the end � of L1, which
is a non-empty sublamination of L, hence equals L. So f(L01)=L, a contradiction.

x5
Concluding remarks

It still remains to show that every leaf of L0 maps with degree either 0 or 1. Thus
far this has eluded us, but it seems that it should follow from the analysis we have
presented here and the additional fact that our map f actually has degree 1. This
means that if there are two inverse image leaves of a leaf L, each mapping with
non-zero degree, then there are two such leaves with degrees of opposite sign. This
in turn means that, `morally', one maps orientation-preservingly, and the other
orientation-reversingly. Yet they have, by Proposition 15, intersecting closures.
This seems impossible.

Conjecture. If f :M!N is a map of positive degree between non-Haken 3-manifolds,
and L is an essential lamination in N , with pullback L0, then no leaf of L0 maps to
its corresponding leaf with negative degree.

Of course, this has `seemed' impossible (to me) for quite some time, without
being provably impossible!

x6
The (hypothetical) end

This last part is an attempt to give a very rough idea of where all
these ideas might be leading. As such, we cannot make it particularly
rigorous.

This conjecture would of course be wasted without some idea of how to use it
to deform homotopy equivalences to homeomorphisms. There are (at least) two
approaches:

(1) With the better understanding of the structure of pullbacks achieved, try to
show that you can surger the pullback to make it essential, or

(2) cheat.

The `cheat' we have in mind is to try to mimic the argument of [Br1]. That is,
we pick an essential loop 
 in a leaf L of L, and look at f�1(
)�f�1(L)=L0. The
idea is that f�1(
) is a �nite collection of loops 
1,: : : ,
n. If L0 is the (conjectured)
degree-one leaf mapping to L, containing the loops 
1,: : : ,
k, say, then the sum of
their degrees (thought of as mapping to 
) is one, and for all of the other leaves
mapping to L, the sum of degrees of loops in each leaf is zero. This means that we
ought to be able to splice together the inverse images in each leaf, and then make the
resulting degree-zero loops go away; they would, after all, map null-homotopically
into the loop 
. This would make the inverse image of the loop 
 a single loop 
0,
so f induces a map f:Mn
0!Nn
. This is precisely the setting of [Br1].

So we should try to show the same thing that was shown in [Br1]; namely that
this map is injective on the level of �1. This would then allow us to deform the
homotopy equivalence f to a homeomorphism, as in [Br1].
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It won't be, in general, of course. But we can make some more conjectures:

Conjecture. If L0 is the (hypothetical) unique leaf of f�1(L) mapping to L with
degree one, then f�1(
)\L0 consists of a loop mapping with degree one, together
with loops mapping with degree zero. If L00 is a leaf mapping to L with degree zero,
then every loop of f�1(
)\L00 maps to 
 with degree zero.

The �rst part of this is false; `folding' across 
 can create parallel loops mapping
with degree 1 and -1. But if we change `a loop mapping with degree one' to ` parallel
loops mapping with degree �1', then this conjecture is perhaps not altogether far-
fetched.

Then we could `clean up' everything, by splicing together loops, leaving a single
degree-one loop 
0 in L0 without altering the complement of this remaining loop
(I think - this `cleaning up' nonsense is kind of complicated). Then the question
really becomes whether or not 
0 can cross in�nitely many (really, really (whatever
that means)) distinct surgery disks. This problem (assuming we could get this far)
at least seems easier than (1).

Much of the argument of [Br1], to establish the �1-injectivity of this restricted
map, actually goes through, except where the assertions that �1(L0)!�1(L) and
�1(L0n
0)!�1(Ln
) are �1-injective are invoked. The �rst could probably be side-
stepped by surgery, but the second one sounds a bit tougher. But it also doesn't
seem like the second assertion should be quite as essential (pardon the pun) to
the whole argument, since it is not really saying much (assuming the �rst can be
sidestepped) about the complement of 
0 in M (if you think of 
0 as already being
as `simple' as possible).

This whole idea might make some people nervous - there are homotopy equiv-
alences between 3-spheres, for example, which have a knot as the inverse image
of the unknot, so the restricted map certainly cannot be �1-injective. Nor does
it seem easy to �gure out how to deform the map, in those situations, so that it
would be �1-injective. But since we are looking at loops in a pullback lamination,
we are dealing with (two levels of) pullbacks of codimension-one objects, which
tend to be far more tractible. There is also a growing body of work showing that
one can establish the sort of result we are after here, by �nding the `right' loop in a
3-manifold. This is the approach both of Casson and Jungreis' proof of the Seifert-
�bered space conjecture [C-J], and Gabai's recent work on deforming homotopy
equivalences for hyperbolic 3-manifolds [Ga2].
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