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In this paper we develop techniques for using essential laminations to

deform homotopy equivalences of 3-manifolds to homeomorphisms.

0. Introduction

One of the most important principles which guides our understanding of 3-manifolds is

the belief that one can derive geometric-topological consequences about a 3-manifold from

homotopy-theoretic data. The Poincar�e conjecture is just one example of this. Another

(more pertinent) example is the belief that if two (closed, say) 3-manifolds M and N

are homotopy equivalent, then they are homeomorphic. This of course is false - lens

spaces give counterexamples. Still, it is widely believed that if we restrict our attention to

manifolds which have in�nite fundamental group (to avoid lens spaces) and are irreducible

(to avoid their connected sums), then this should be true: such 3-manifolds should be

determined up to homeomorphismby their fundamental group alone (since under the above

conditions they are both K(�,1)-spaces, hence determined up to homotopy equivalence by

their fundamental groups).

This conjecture has been veri�ed in many instances, usually by imposing some extra

conditions on one of the 3-manifolds involved. Of these, perhaps the most important has

been that one of the manifolds contains a 2-sided incompressible surface (i.e., the manifold

is Haken). With this assumption the conjecture was proved by Waldhausen [Wa], who in

fact proved something somewhat stronger:

Theorem [Wa]: If f:M!N is a homotopy equivalence between closed 3-manifolds,

with M irreducible and N Haken, then f is homotopic to a homeomorphism.
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Other instances in which the conjecture has been proved include when one of the

manifolds is a Seifert-�bered space [Sc], when one contains a �1-injective immersed surface

of the right sort [H-S], and when both are hyperbolic [Mo].

In this paper we begin a program to generalize Waldhausen's result, by generalizing

his assumption (in a di�erent direction than [H-S]): we will assume instead that N contains

an essential lamination. Essential laminations are a recently-de�ned [G-O] generalization

of both the incompressible surface and the codimension-1 foliation without Reeb com-

ponents. In essence, it is a codimension-1 foliation of a closed subset of N, which has

�1-injective leaves and irreducible complement. The presence of such objects has very

nice consequences for their ambient 3-manifold ([G-O],[G-K]), similar to those known for

incompressible surfaces; at the same time, essential laminations seem to exist in far greater

abundance (see, e.g., [De], [Na], [Ro]) than incompressible surfaces do. In fact, it has been

suggested that, except for a class of Seifert-�bered spaces which are known ([Br1], [Cl])

not to contain essential laminations, every irreducible 3-manifold with in�nite fundamental

group contains an essential lamination.

In proving this generalization, our intent is to follow the outline of Waldhausen's

proof as closely as we can. Waldhausen's proof consists of choosing a (connected, 2-sided)

incompressible surface S�N, making f transverse to S, and surgering its inverse image

f�1(S) (by homotoping the map f) until it is incompressible. With further work (using,

essentially, the h-cobordism theorem for 2-manifolds) one can then make f�1(S) connected,

and the restriction of f, f:f�1(S)!S, a homeomorphism). One then splits M and N open

along these surfaces, and continues with the induced map f. The argument is �nished by

an induction on a hierarchy of N - N can be successively split along incompressible surfaces

into a collection of balls. The base case is Alexander's Theorem.

What we show in this paper is that we can achieve the `last 2/3rds' of this outline:
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Theorem: If f:M!N is a homotopy equivalence of (closed, orientable) 3-manifolds,

M irreducible, L�N essential and transversely orientable, and if f is transverse to L and

f�1(L) is essential in M, then f is homotopic to a homeomorphism.

This reduces the task of proving this (conjectured) generalization to showing that one

can always deform a homotopy equivalence to give an essential pullback. To date it is not

known if this is always possible - this is an area of very active research at this time, and

may be considered one of the most important unsolved questions in the theory of essential

laminations. In a sequel to this paper [Br3], we report on some progress on the question

of essential pullbacks.

It is worth noting that our approach to this problem will in the end appeal to Wald-

hausen's Theorem, so we will not be giving an alternate proof of that theorem. Because

we do not seek to reprove the old result, we can therefore focus on those cases in which the

theorem will say something new. In other words, we can assume at the outset that neither

of our 3-manifolds M or N contain an incompressible surface (since Waldhausen's Theorem

says that one is Haken i� the other one is). Remarkably, this assumption is exactly what

is needed to �nd a way to use Waldhausen's Theorem. Essential laminations in non-Haken

3-manifolds inherit extra structure from the fact that there are no incompressible surfaces

around, and this added structure is exactly what makes it possible to utilize Waldhausen's

Theorem in an underhanded way.

1. Preliminaries

The reader is referred to [G-O] for de�nitions and basic results concerning essential

laminations. As with a foliation, a lamination can be covered by a collection of coordi-

nate charts for the 3-manifold, in which the leaves of the lamination appear as horizontal

plaques. A lamination has a well-de�ned tangent space TL, and we assume that these

tangent planes vary continuously as one moves from point to point in N. We assume that

M and N are both orientable and non-Haken, and that the essential lamination L�N is
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transversely oriented, i.e., it is carried by a transversely orientable branched surface B (this

is the natural generalization of the 2-sidedness of incompressible surfaces). Consequently,

every leaf L of L is orientable (and non-compact, because N is non-Haken).

We say that a map is transverse to a lamination if for every x2f�1(L),

f�(TxM)+Tf(x)L=Tf(x)N.

One of the simplest way of achieving this is by starting with a branched surface which

carries L, and making f transverse to B; then by embedding L in a �bered neighborhood

N(B) of B with very short �bers, f will then be transverse to L as well. Some of our

constructions will force us to work with the more general point of view, however. (This

fact will cause us some trouble, by requiring us to prove some rather technical facts which,

from the branched surface point of view, are essentially trivial.)

We will make it a common practice in this paper to label with a prime `0' any object

which is the inverse image under f of something in N which f is transverse to (or otherwise

corresponds to it); thus f�1(L)=L0 . This rule is broken so infrequently that it should cause

no problem.

Every essential lamination L contains a minimal sublamination L0 ; this follows easily

from Zorn's Lemma applied to the collection of non-empty sublaminations. Since f�1(L0)

is essential if f�1(L) is (a sublamination of an essential lamination is essential), we may

as well assume that L is its own minimal sublamination. Consequently, every leaf of L is

dense in L.

However, we cannot yet know that the same is true of f�1(L)=L0 (it is, but will take

some work). But because M is non-Haken and L0 is (assumed) essential, we already know

that this is `almost' true:

Proposition 1: An essential lamination L0 in a non-Haken 3-manifold M contains a

unique minimal sublamination L0; in other words, for every leaf L0 of L0, L0�L0.
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A proof of this may be found in [Br2]; a di�erent and much shorter proof of this

statement (giving less information about the structure of the complement of L0) can also

be found in [Br3].

Finally, we will be making heavy use of the following result in the next section - it

gives us a convenient way to `map out inverse images'.

Theorem [EMT]: The collection H�L of leaves having no holonomy is dense in L .

Recall that a leaf L�L has no holonomy if for every (embedded) loop 
 in L, the

leaves of L intersect a small (normal) annulus over 
 only in closed loops.

Of course, in the present situation, that only means that there is at least one such leaf,

but that one will be enough. Note that f�1(H )=H0 consists of leaves with no holonomy in

f�1(L)=L0, because transverse pictures are preserved under f (a loop in H0 with holonomy

around it would be carried under f to a loop in H with holonomy around it), and that H0

is dense in L0, because f maps short arcs � transverse to L0 homeomorphically to short

arcs f(�) transverse to L; then since f(�) intersects H in a set dense in L, � intersects H0

in a set dense in L0.

2. The inverse image of a leaf is connected

Because f is a homotopy equivalence of orientable, closed (because they are non-

Haken) manifolds, f therefore has degree 1 or -1, and we can, by choosing orientations

appropriately, assume that f has degree 1. We are going to show that the inverse image

f�1(L) of a leaf L is a single leaf of L0, by counting the degrees of the map f, thought of as

a (smooth) map from a leaf of L0 to a leaf of L, and showing that these degrees are always

1.

It is not hard to see that the inducedmaps between the leaves of L0 and L, f:f�1(L)!L,

where each has the leaf space topology (making each a smooth surface), are proper; the

inverse images of compact sets are compact. This is because if C�L is compact (hence

compact in N, since the leaf space topology is �ner than the subspace topology), then
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f�1(C)�f�1(L) is compact in M. If it is not compact in f�1(L), then there is a sequence

fxng
1
n=1 which has no convergent subsequence in (the leaf space topology on) f�1(L). But

since f�1(C) is compact in M, there is a subsequence converging to a point x of f�1(C)

(in the topology on M). Looking in a coordinate chart about x, this convergence must be

occurring in the transverse direction; the subsequence must be living in in�nitely-many

distinct plaques of L0 (see Figure 1). But pushing this forward under f, we can then

conclude (since f is transverse to L) that f(f�1(C))=C intersects in�nitely-many plaques

of L in a coordinate neighborhood of f(x), a contradiction, since a choice of a point in each

would give an in�nite discrete set in C (in the leaf topology on L).

Figure 1

Because L (and therefore L0) are transversely-oriented, we can, using the orientations

of M and N, assign orientations to the leaves of L and L0 (as, say, the second and third

vectors of an orienting frame which starts with the normal orientation). These maps can

therefore be assigned degrees, by the usual method of counting inverse images of regular

values, giving each a sign according to the orientations described above.

Because L and L0 are both essential, their leaves �1-inject into N and M, respectively,

and because f itself is an injection on �1, it follows that for any leaf L of L, and any leaf

L0 of L0 in f�1(L), the induced map f:L0!L is an injection on the level of �1. Therefore,

the next result becomes relevant:

Proposition 2: Let f:S!T be a �1-injective, proper map between connected, ori-

entable, non-compact open surfaces, T6= R2. Then either

(a) (degree(f)=0) S=R2 or S1 �R, and f can be properly homotoped outside of any

compact subset of T, or

(b) (degree(f)6=0) f is properly homotopic to a �nite-sheeted covering map.

The proof [Br4] is somewhat tedious, though not hard, and is in fact much in the

spirit of a published proof of the analogous 3-dimensional result; see [B-T].
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Lemma 3: Let L0 be the minimal sublamination of L0. Then f(L0)=L.

Proof: L0 contains a non-simply-connected leaf L0, for otherwise L0 is an essential

lamination consisting of planes, and a result of Gabai [Ga] implies that M is the 3-torus,

which is Haken. Let L be the leaf that L0 maps to; then f:L0!L sati�es the conditions

of the proposition above. So either (in case (b)) f(L0)=L, so f(L0)=f(L0)� f(L0) =L=L

(where the middle containment is because f is a closed map), or (in case (a)) L0=S1 �R

and maps onto some end � of L. But then f(L0)=f(L0)� lim�(L)=L (because lim�(L) is a

non-empty sublamination of L).

Using an argument similar to the one above, we can show that for every leaf L, f�1(L)

consists of only countably-many leaves. For if there were uncountably-many leaves, then for

any �nite cover of M by coordinate charts for L0, some chart intersects uncountably-many of

these leaves, and so contains uncountably-many plaques of f�1(L). But it is a standard fact

(by repeatedly cutting an interval in half) that for any uncountable set A in an interval

I, there is a point x of the interval so that every neighborhood of x intersects A in an

uncountable set. Therefore, there is a point y in a plaque of L0 (corresponding to x) so that

every neighborhood of x intersects uncountably-many plaques of f�1(L). In particular, any

(short) transverse arc through y intersects an uncountable number of such plaques. But the

image under f of this arc then gives an arc transverse to L intersecting uncountably-many

plaques of L, in some coordinate neighborhood about f(y), an impossibility, since L can

intersect a chart in at most countably-many plaques (surfaces do not contain uncountable

discrete sets, being second countable).

Therefore, we can apply Sard's Theorem to conclude that our map f:f�1(L)!L has

regular values. In particular, since f is transverse to L, any regular value for this map

is also a regular value for f:M!N. Therefore, there are regular values for f which live in

leaves of L. Given any such regular value x, we can �nd a small neighborhood V (in N)

of points which are also regular values for f, and f�1(V)=V1;[ � � � [ Vn, each mapping

homeomorphically down onto V under f. In particular we can �nd a small arc I�V (which

7



we can think of as a short vertical interval in some coordinate chart) transverse to L(and

therefore intersecting every leaf of L, since every leaf is dense) consisting of regular values

for f. This arc then has n disjoint inverse images I1 [ : : : [ In, and every y2I\L, y2L1�L,

is a regular value for f:f�1(L1)!L1) with f�1(y) consisting of n points. We can therefore

use the points of I\L to calculate the degrees of the maps induced from f on the leaves of

L0.

Lemma 4: L0=L0.

Proof: If not, then there is a leaf L0 of L0, not contained in L0, with L0�L0 and

L0 6=L0. Consider a point x2I\L and the points fx1; : : : ; xng=f�1(x)�L0 . Some collection

fx1; : : : ; xkg lies in L0nL0, and the rest fxk+1; : : : ; xng lie in L0. Because L0 is a closed set,

for each xi 2L0nL0 there is an open neighborhood Oi of xi in Ii�f�1(I) which misses L0.

Consider O=f(O1)\ : : :\ f(Ok)�I. Because f maps the arcs Ii homeomorphically to I,

this is an open subset of I containing x. Consider f�1(O)�f�1(I); note that f�1(O)\Ii�Oi

for 1�i�k.

Now look at f�1(O)\Ik+1=O0. This is an open neighborhood of xk+1 in Ik+1. Because

L0 contains (L0 and hence) xk+1, there are points of L0 in Ik+1 which pass arbitrarily close

to xk+1 and hence are contained in Oi. Choose one; call it x0k+1. Then x0k+1 =2L0, and

f�1(f(x0k+1))\Ii=f
�1(y0)\Ii 2Oi are not in L0 for 1�i�k. So we have increased the number

of points in the inverse image of a point of L\I which are not in L0. Continuing, we can

therefore �nd a point y of L\I with jf�1(y)\(L0nL0)j=n, i.e., f�1(y)�L0nL0. But this

means that y=2f(L0), contradicting the previous lemma. So L0=L0.

Lemma 5: All leaves of f�1(H) map to their corresponding leaves of L with the same

degree.

Proof: Suppose not; let L1 and L2 be leaves of f�1(H) which map with di�erent

degrees. Because L0=L0, we have L2�L1 and L1�L2. Because they have di�erent degrees,

one of them has non-zero degree, say L1. f maps L1onto some leaf L of L.
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Pick a point y in the arc I which lies in the leaf L, and consider all of the points

fy1; : : : ; ykg, k�1, of f�1(y) which lie in L1. We can join them together by arcs, each point

joined to y1, say, to form a (singular) tree �=�y in L1. Each arc descends under f to a

loop in the leaf of L containing f(L1); because this leaf is in H, the normal fence over this

loop meets all of the nearby leaves of L in closed loops. In M, this means that the normal

fence over each of our arcs meets all of the nearby leaves in arcs whose endpoints map to

the same point under f, i.e., the lifts �z of �y along the normal fence (lifting y1 to z1 over

z) have all of their endpoints lying in f�1(z).

But because L2 passes arbitrarily close to L1, It must intersect the normal fence over

�y in some �z and so fz1; : : : ; zkg�L2\f�1(z). But because �(local degrees at zi)=�(local

degrees at yi)=degree(L1) 6=degree(L2), there must be additional points of f�1(z) in L2.

But then we can apply the same argument in the other direction to show that there must

be another point w of I for which L1 contains even more points of f�1(w). But because

jf�1(w)j= jf�1(x)j=n for all w in I, continuing such arguments eventually forces us into a

contradiction; we can't always �nd more points. So degree(L1)=degree(L2).

Corollary 6: Every leaf of f�1(H) maps with degree one; in particular, for every leaf

L of H, f�1(L) is connected.

Proof: Every leaf of f�1(L), L2H, maps with the same degree, but the sum of these

degrees is the degree of f:M!N, which is one. Therefore, there can be only one leaf in each

inverse image, and it maps with degree one.

Proposition 7: For every leaf L of L, f�1(L) is connected.

Proof: Let L0 be a leaf of f�1(L); because L0=L0, L0 limits on a leaf L1 of f�1(H). Pick

a point y of I contained in f(L1); because f�1(y)�L1, we can join all of the inverse images

together in a tree �y�L1. But then L0 meets the normal fence over �y arbitrarily close to

�y, so there is a point z in I near y for which �z�L0, and so L0 contains all of the inverse

images of z. Therefore degree(L0)=degree(f)=1; as before, this implies that L0=f�1(L).
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3. The homotopy equivalence of Mn


Choose a non-simply-connected leaf L of L (again, [Ga] says that either such a leaf

exists or N is a 3-torus, hence Haken). L0=f�1(L) is connected, hence is mapped to L by

f with degree one, so f:L0!L is properly homotopic to a 1-sheeted covering map, i.e., a

homeomorphism. In particular (from the proof in [Br4]), if 
 is an essential simple loop in

L, there is a homotopy H of f:L0!L, supported on a compact set C�L0, making f�1(
)=
0

a connected, essential, simple loop mapping homeomorphically to 
 under f.

For our next step we must �rst alter L (and L0) by splitting L along L (see [G-O]),

and �lling in the resulting (product) I-bundle with (a Cantor's set-worth of) parallel copies

of L. We also do the same thing with L0 in L0. Then by rede�ning f to be fjL0�I on the

I-bundle and the old f elsewhere, we get a new map (still called f), homotopic to the old

one, transverse to a new essential lamination (still called L), and with a new essential

lamination (still called L0) as a pullback. We label as L (and L0) the leaves in the `center'

of the two I-bundles. These laminations no longer have every leaf dense (but we won't be

needing that fact any more).

We can then deform f to a new map (still called f) with f�1(
)= 
0 by rede�ning f on

C�I (in the I-bundle over L) to be two copies of H glued together along the face where

the inverse image of 
 is 
0. This map is still transverse to L and L0 is its pullback.

By taking small tubular neighborhoods of 
 and 
0, we get induced maps f:Mn
0!Nn


and f:Mn
�

N(
0)!Nn
�

N(
), with f:@N(
0)!@N(
) a homeomorphism. Note that the inclu-

sions Mn
�

N(
0) and Nn
�

N(
) into Mn
0 and Nn
 are homotopy equivalences, and the map

f:Mn
�

N(
0)!Nn
�

N(
) has degree one, hence is a surjection on �1. Also, Mn
�

N(
0) and Nn
�

N(
)

are irreducible, with incompressible boundary: for example, if S�Nn
�

N(
) were a reducing

sphere, then in N it bounds a ball; this ball would then have to (meet, hence) contain N(
),

implying that 
 was not essential (in N, hence) in its leaf. Also, if @N(
) were compressible

in Nn
�

N(
), then Nn
�

N(
) would be a solid torus, implying that N was the union of two
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solid tori joined along their boundary. But being laminar, N has universal cover R3 [G-O],

while the union of two solid tori does not.

So Mn
�

N(
0) and Nn
�

N(
) are K(�,1) spaces, and so the map f:Mn
�

N(
0)!Nn
�

N(
) is a

homotopy equivalence i� it is injective on �1, or equivalently, if f:Mn
0!Nn
 is injective

on �1.

Proposition 8: f:Mn
0!Nn
 is injective on �1.

Proof: Let �0 be a loop in Mn
0 with f(�0)=� null-homotopic in Nn
, and let H:D2!Nn


be a null-homotopy. � is in particular then null-homotopic in N, so by the �1-injectivity

of f:M!N, �0 is null-homotopic in M, by some null-homotopy H0:D2!M. Because

f�H0j@D2=f��0=Hj@D2 ,

we can form a map G=f�H0[H:S2!N, a map equal to f�H0 on the upper hemisphere S2+

and to H on the lower hemisphere S2� (see Figure 2). We can assume this map is transverse

to L and 
, by making each piece so transverse, using a Morse theory argument. Cover

our laminations L and L0 by �nitely-many coordinate charts; in each chart our lamination

looks like a Cantor's set-worth of horizontal disks. Then we can put the maps H and H0

into Morse-normal form w.r.t the vertical direction of each chart, dragging the singularities

up or down into the regions between leaves, if necessary.

Figure 2

Now consider �=G�1(L)�S2; it is a 1-dimensional lamination in S2 transverse to the

equator S1�S2. Because L is essential and G is transverse to L, � has no monogons and

no non-trivial holonomy around closed loops, and so it follows (see, e.g., [G-O, p.51]) that

every leaf of � is a closed loop. Also, G�1(
) consists of a �nite number of points, all in

the upper hemisphere S2+.

What we wish to do is to remove the points G�1(
)= (f�H0)�1(
)=(H0)�1(
0) from the

upper hemisphere S2+. If some point x is in a loop of G�1(L) which is entirely contained

in the upper hemisphere (so it is in a loop of (f � K)�1(L)= K�1(L0)), then this loop
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bounds a disk � in the upper hemisphere, which represents a null-homotopy (under H0)

of the loop into M. Because L0 is essential, this loop is also null-homotopic in the leaf L0

of L0 containing it. By rede�ning H0 on � to lie in L0, and pushing o� L0 slightly, we

can remove the loop from G�1(L), in so doing removing points of G�1(
) from the upper

hemisphere. In this way we can remove any points of G�1(
) which lie in such loops, by

simply rede�ning the null-homotopy.

Our only problem is that some points could lie on loops which are not entirely con-

tained in the upper hemisphere. What we need to do is to show how to `pull' these loops

into the upper hemisphere. This will involve deforming the loop �0; but we will show that

this deformation need not cross 
0. So in the end we will have shown that �0 is freely-

homotopic, in the complement of 
0, to a loop which is null-homotopic in the complement

of 
0. Therefore, �0 itself is null-homotopic in Mn
0.

It is actually technically easier to pull all of G�1(L) into S2+; this is what we will seek

to do. This will require three facts. First, the induced map f�:�1(Ln
) !�1(L) is injective:

this follows because 
 is essential in L. Second, the map f�:�1(M,L0n
0)!�1(N,Ln
) is

injective. This follows from the commutative diagram

�1(L0 n 
0) ! �1(M) ! �1(M;L0 n 
0) ! �0(L0 n 
0)
# # # #

�1(L n 
) ! �1(N) ! �1(N;L n 
) ! �0(L n 
)

where all of the maps are induced by f, together with (half of) the �ve lemma, since

the �rst vertical arrow is surjective (it's degree one), the second is injective, and the

fourth is injective for homological reasons (
0 separates i� 
 does). Finally, the map

f�:�1(L0,L0n
0)!�1(L,Ln
) is injective; this follows by a similar �ve lemma argument. (Of

course, half of the objects in these diagrams are not groups! However, since by `injective'

we mean only that the only element that these maps send to the trivial element is the trivial

element, and this is proved in the �ve lemma without appealing to any group structure,

this lapse will cause no di�culty.)
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In what follows we will always write as if the circles and arcs we are dealing with

are contained in L and L0(so that we need to arrange things to avoid bumping into 
 and


0), even though this is not always true; this is assumed only for the convenience of the

reader. If we are not working in these leaves, we run into fewer problems, and the reader

can supply his or her own arguments.

By an argument like the one above we can remove any circles of G�1(L)=� which are

entirely contained in the lower hemisphere S2�.

Now consider an innermost arc ! of an outermost family of parallel arcs of �\S2�,

cutting o� an outermost disk � from S2�, and set �0=�\@S2� (see Figure 3). What we

wish to do is `pull' this disk over from S2�to S
2

+ (i.e., replace H restricted to this disk with

the image under f of a map into Mn
0). To be careful about this, we must �rst divide this

family of parallel arcs into a �nite number of (disjoint) families, on each of which we will

then carry out this `replacement'.

Figure 3

Choose a branched surface B carrying L and a �bered neighborhood N(B) with

@hN(B)�L. By splitting B if necessary, we can assume that N(B)jL, a collection of I-

bundles over surfaces, has no component which is an I-bundle over a compact surface (by

deleting such bundles and then collapsing the �bers). Because � and @hN(B)\@vN(B)

(a �nite collection of loops) are both one dimensional, we can assume that they miss one

another. Now look at the set H�1(N(B)\�0=A. This is a closed subset of �0, and (because

H is transverse to L) every point of H�1(L)\A is contained in a (maximal) interval in A

which is not a point. Also, if an endpoint of one of these intervals maps to @hN(B) (hence

to L), then it is isolated on one side. Our �rst claim is that there are only �nitely-many

such intervals. For suppose there were in�nitely-many, and suppose �rst that in�nitely-

many had endpoints mapping to @hN(B). This sequence of intervals must then have lengths

tending to 0, and their endpoints contain a subsequence converging to a point x mapping
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to @hN(B) (since its inverse image is closed). But this point x is then isolated in A on one

side, contained in a non-trivial interval of A on the other, and limited on by the endpoints

of a sequence of intervals in A, which is clearly absurd. Therefore, in�nitely-many of these

intervals would have to have (both of their) endpoints in @vN(B). But since by hypothesis

each also intersects H�1(L), we then get a sequence of points in H�1(L) converging to a

point y mapping to L. But since the lengths of our intervals tend to zero, their end points

also converge to y, so (since the endpoints map to @vN(B)) y also maps to @vN(B), so

f(y)�L\@vN(B) = @hN(B)\@vN(B), a contradiction. So there are only �nitely-many such

intervals.

N(B) can be foliated (by foliating the I-bundles between the leaves of L) with L as

a sublamination. By imagining that we locally crush leaves of this foliation to a point

(in coordinate charts, say) we obtain local maps of I into an interval, which (since H

is transverse to L) is non-singular (i.e., locally injective) at the points of I\H�1(L)=C.

Our next claim is that we can �nd a �nite number of disjoint subintervals of I, whose

union contains C, each of which is mapped injectively under one of our local maps. This

is because since the local maps are non-singular on C, for each point z of C, there is a

neighborhood of it on which the local map is injective. This gives an open cover of C,

which has a �nite subcover; by breaking ties (C is a Cantor set and the cover consists of

intervals - pick points not in C in each overlap and shorten each interval using that point),

we obtain our disjoint intervals.

This gives us in total a �nite number of intervals covering one end of our family of arcs

(by only taking those which intersect that end), for which the points of C map injectively

into a local model of N(B) with its leaves crushed to points. These intervals partition our

family of parallel arcs into a �nite number disjoint, parallel subfamilies. We will now show

how to pull the (outermost) subfamily into S2+, leaving the rest of the subfamilies �xed;

by induction we can then pull the entire family into S2+.
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Let !0 be the innermost arc of this outermost subfamily, cutting o� the subdisk �0 of

�, and let �0=�0\S1. Under H, �0 represents a homotopy of f��j�0 :(�0,@�0)!(N,Ln
)

into Ln
; by the injectivity above, in follows that there is a homotopy J0 of

H0j�0:(�0,@�0)!(M,L0n
0)

to an arc !00 in L0n
0. Because L0 is two-sided, we can continue the homotopy and push

this o� of L0 (in the direction that the arc �0 was heading at its endpoints) to an arc

�0. This gives us a map J0:�0
0!M, which is transverse to L0 along its boundary; we can

therefore, by a small deformation �xed on the boundary, make J0 transverse to L0 (and


0); any loops in (J0)�1(L0) can be removed as before (see Figure 4).

Figure 4

f�!00 and H�!0 are both homotopic rel endpoints to H��0=f�H0��00 (under f�J0 and

H), and both map into Ln
, so together they form a loop in Ln
 null-homotopic in N;

by the injectivity of the composition �1(Ln
),!�1(L),!�1(N), this loop is therefore null-

homotopic in Ln
, by a homotopy J+. After pushing this homotopy o� of L (as before),

we can think of it as a homotopy in the complement of L between f(�0) and �. We can

now replace Hj� with (f�J0)[J+ to get a picture like Figure 5; this, together with f�H0 and

HjS2
�
n� form a new map G transverse to L. Notice that the lamination (J0)�1(L0) consists

of arcs joining the same pairs of points as H�1(L)\�0 did; for if any are knocked `o�-line'

we would be able to �nd either a monogon side of our subfamily ( the (image of) the disk

the outermost such arc cuts o� can be completed to a monogon, because N(B)jL has no

compact I-bundles; see Figure 6), or non-trivial holonomy around a null-homotopic loop in

G�1(L) (which is impossible for an essential lamination - it implies non-trivial holonomy

around a loop null-homotopic in its leaf). If we rede�ne K=K[J, we then succeed in

`pulling' the outermost family of arcs into S2+. J may meet 
0; however, it is still true that

Gj@(S2
+
[�) is homotopic to GjS1=� in the complement of 
0.

Figure 5 Figure 6
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To see this, consider the (�nite number of) points of (J0)�1(
0); they are contained in

(�nitely-many) arcs �01; : : : ; �
0
k of J�1(L0). The endpoints of each of these arcs �0i bound

an arc �i of H�1(L)\�; since both f(�0i ) and �i are homotopic rel endpoints to (a subarc

of) �0, they are therefore homotopic rel endpoints to one another in N. They are therefore

homotopic rel endpoints to one another in L, by the �1-invectivity of L. In other words,

f(�0i ) is homotopic rel endpoints, in L, to an arc missing 
 (because �i misses 
). By the

third injectivity result above, this implies that �0i is homotopic rel endpoints, in L0, to a

map missing 
0. If we imagine tacking these homotopies onto J0 (in the normal direction;

see Figure 7), they give us a prescription for lifting �00 in M over the points of (J0)�1(
0)

to !00, i.e., �0 is homotopic to !00, rel endpoints, in the complement of 
0.

Figure 7

Continuing inductively, since there are only �nitely many parallel families of arcs in

�\S2�, and only �nitely-many subfamilies in each parallel family, we can pull all of the arcs

of G�1(
) in the lower hemisphere into the upper hemisphere (at the expense of deforming

�0 in the complement of 
0); then by doing disk-replacements as above, we can remove all

points of (H0)�1(
0) from S2+, achieving our desired null-homotopy of �0.

This proposition completes the theorem. f:Mn
�

N(
0)!Nn
�

N(
) is then a homotopy

equivalence between 3-manifolds with incompressible boundary, which is a homeomorphism

on the boundary; Waldhausen's Theorem [Wa] says that f is homotopic, rel boundary,

to a homeomorphism. By gluing on the homeomorphism f:N(
0)!N(
) by a constant

homotopy, this gives a homotopy of f:M!N to a homeomorphism.

4. Concluding remarks

The question that we leave unanswered here - can we deform a homotopy equivalence

to give an essential pullback - seems to be a rather elusive one. It is even unclear whether

one should expect a �nite number of `surgeries' to su�ce, as inWaldhausen's original proof,
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or whether something more like a `convergence' result (like that of [M-S], for example) will

be required. Evidence seems to point to the latter [Ga2], but it is possible that this could

be changed by once again invoking the hypothesis that both manifolds be non-Haken [Br3].

One direction in which to improve the result presented here is to remove the hypothesis

that L be transversely orientable. This hypothesis was used to allow us to make coherent

choices of orientations for leaves, in order to carry out our degree calculations. Losing

this hypothesis would only a�ect the proof of Lemma 5, however. For example, if we

only assume that every leaf in the range is orientable (a fact which seems to be true for

nearly all of the known examples), we can by the same method of proof recover the fact

that all leaves in the inverse image of a leaf with no holonomy have the same degree, up

to sign (and that degree must therefore be 1). For all leaves in the domain must then

be orientable, since otherwise an orientation-reversing loop in a leaf L0 is a transverse

orientation-reversing loop (since M is orientable), so maps (since f is transverse to L)

to a transverse orientation-reversing loop in a leaf L, hence (since N is orientable) an

orientation-reversing loop.

In fact, if we assign a (temporary) orientation to our transverse arc I, in so doing

assigning orientations to each of its pullbacks (since they map homeomorphically), we can

then assign (temporary) orientations to the leaves of L0, by completing the transverse

orientation to the orientation of M. The orientations so assigned at the inverse image of a

point all agree with orientations on the leaves containing them; otherwise, as before, we

could draw an arc between two points with opposite orientation, which therefore 
ips the

transverse orientation, as well; the arc would then map to a transverse orientation-reversing

loop in our leaf.

Then the local degree of f at a point agrees with the local degree of f restricted to

our leaf L0; this gives us a degree of the map f:L0!L, well de�ned up to sign, which can

be calculated by using the local degrees of f thought of as a map from M to N. But then
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if two leaves in f�1(H) have di�erent degrees (up to sign), we can use the same see-saw

method of proof in Lemma 5 to manufacture a contradiction.

This allows us to give a di�erent proof of Lemma 5 (and Corollary 6) if we assume

that our lamination L is (a sublamination of) a foliation with orientable leaves. For then

by passing to a 2-fold covering in the range (and the corresponding 2-fold covering in the

domain), we can make our split foliation (and hence its pullback) transversely orientable.

Then since (by [Br2]) both laminations still have every leaf dense, we can then recover

Lemma 5 and Corollary 6 for these new laminations.

But this in turn allows us to easily recover these results for our original lamination.

For either a leaf in the range has a single inverse image under the orienting cover, or two

inverse images. If it has one inverse image, then the cover of the pullback also consists

of a single leaf, and so the pullback does. If the leaf in the range has two inverse images

under the covering, then the covering of the pullback consists of two leaves, so the pullback

consists of one or two leaves. But if there are two, they map to our original leaf with the

same degree, up to sign, which implies that our map f has even degree, a contradiction.

So all leaves still have inverse images consisting of a single leaf.
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