
Math 221

Topics for the second exam

Don’t forget the topics for the first exam!

Basic object of study: second (and higher) order linear differential equations
(H) y′′ + p(t)y′ + q(t)y = g(t)

Initial value problem:
y(t0)=y0 and y′(t0)=y′

0

Basic fact: if p(t), q(t), and g(t) are continuous on an interval around t0, then any initial
value problem has a unique solution on that interval. Our Basic goal: find the solution!
Homogeneous: g(t) = 0 Constant coefficients: p(t) and q(t) are constant.

Operator notation: write L[y] = y′′ + p(t)y′ + q(t)y (this is called a linear operator),
then a solution to (H) is a function y with L[y] = g(t).
For a linear differential equation, L[c1y1 +c2y2] = c1L[y1]+c2L[yt], and so if y1 and y2 are
both solutions to L[y] = 0 then so is c1y1 +c2y2 . c1y1 +c2y2 is called a linear combination

of y1 and y2. This is called the Principle of Superposition: more generally, if L[y1] = g1(t)
and L[y2] = g2(t), then L[y1 + y2] = g1(t) + g2(t) .

With (the right) two solutions y1, y2 to a homogeneous equation
(HH) y′′ + p(t)y′ + q(t)y = 0

we can solve any initial value problem, by choosing the right linear combination: we need
to solve

c1y1(t0) + c2y2(t0) = y0

c1y
′

1(t0) + c2y
′

2(t0) = y′

0

for the constants c1 amd c2; then y = c1y1 + c2y2 is our solution. This we can do directly,
as a pair of linear equations, by solving one equation for one of the constants, and plugging
into the other equation, or we can use the formulas
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= ad−bc . This makes it clear that a solution exists (i.e., we have the ‘right’

pair of functions), provided that the quantity
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W is called the Wronskian (determinant) of y1 and y2 at t0 . The Wronskian is closely
related to the concept of linear independence of a collection y1,. . . ,yn of functions; such a
collection is linearly independent if the only linear combination c1y1 + · · ·+ cnyn which is
equal to the 0 function is the one with c1 = · · · = cn = 0 .
Two functions y1 and y2 are linearly independent if their Wronksian is non-zero at some

point; for a pair of solutions to (HH), it turns out that the Wronskian is always equal to
a constant multiple of

exp(−
∫

p(t) dt)
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and so is either always 0 or never 0. We call a pair of linearly independent solutions to
(HH) a pair of fundamental solutions. By our above discussion, we can solve any initial
value problem for (HH) as a linear combination of fundamental solutions y1 and y2. By
our existence and uniqueness result, this give us:

If y1 and y2 are a fundamental set of solutions to the differential equation (HH), then any

solution to (HH) can be expressed as a linear combination c1y1 + c2y2 of y1 and y2.

So to solve an initial value problem for (HH), all we need is a pair of fundamental solutions.

Homogenous equations with constant coefficients: ay′′ + by′ + cy = 0

Basic idea: guess that y = ert, and plug in! Get:
(ar2 + br + c)ert = 0 , so ar2 + br + c = 0

Solve: get (typically) two roots r1, r2, so y1 = er1t and y2 = er2t are both solutions.
The equation ar2 + br + c = 0 is called the auxiliary equation for our differential equation.

If the roots of the characteristic equation are real and distinct, r1 6= r2, then a fundamental
set of solutions is

y1 = er1t, y2 = er2t

If the root of the characteristic equation are complex α ± βi, then a fundamental set of
solutions is

y1 = eαt cos(βt), y2 = eαt sin(βt)
If the roots of the characteristic equation are repeated (and therefore real), r1 = r2 = r,
then a fundamental set of solutions is

y1 = ert, y2 = tert

Reduction of order is a general technique for finding a second, linearly independent,
solution y2 to (HH), given a (non-zero) solution y1; if y1 is a solution to (HH), then so is

y2 = y1(t)

∫

exp(−
∫

p(t) dt)

(y1(t))2
dt

This formula was found by assuming that y2(t) = c(t)y1(t), and then determining what
differential equation c(t) must satisfy! It turns out to be a first-order equation (hence the
name reduction of order).

Higher order equations: Much of what we just did for second order equations goes
through without any change for even higher order (linear) equations:

(�) L[y] = y(n) + a1(t)y
(n−1) + · · ·+ an−1(t)y

′ + an(t)y = g(t)
and its associated homogeneous equation

(��) y(n) + a1(t)y
(n−1) + · · ·+ an−1(t)y

′ + an(t)y = 0
In this case the correct notion of an initial value problem requires us to specify the values,
at t0, of y and all its derivatives up to the (n − 1)st:

y(t0) = y0 , y′(t0) = y′

0 , . . . , y(n−1)(t0) = y
(n−1)
0

As with the second order case, we have a principle of superposition: L[y1] = g1 and L[y2] =
g2, then L[y1 + y2] = g1 + g2 . This means that linear combinations of solutions to the
homogeneous equation (��) are also solutions. And the general solution to (��) can always
be obtained (uniquely) as a linear combination of n linearly independent (or fundamental)
solutions. Linear independence can be determined by computing a Wronskian determinant
W (y1, . . . , yn).

2



The theory we developed for homogeneous equations with constant coefficients can be
similarly extended. The equation

a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0

has a fundamental set of solutions determined by its characteristic equation
a0r

n + · · ·+ an−1r + an = 0

Real roots r correspond to solutions exp(rt) ; complex roots to solutions exp(αt) cos(βt)
and exp(αt) sin(βt) . The only extra wrinkle is that we can have repeated roots which
repeat many times, and even repeated complex roots! For each, we do as we did before
and create new fundamental solutions by multiplying our basic solution by t, as many
times as it repeats. For example, the equation

y(4) + 2y′′ + y = 0

has a characteristic equation with roots i, i,−i, and −i, and so its fundamental solutions
are

cos(t), t cos(t), sin(t), and t sin(t)

Inhomogeneous linear equations: We can solve an inhomogeneous equation
(�) L[y] = y(n) + a1(t)y

(n−1) + · · ·+ an−1(t)y
′ + an(t)y = g(t)

with g(t) 6=0, by using our knowledge of the solution to its associated homogeneous equa-
tion. The principle of superposition tells us that for any pair of solutions Y1, Y2 to (�),
L[Y2 − Y1] = 0, and so if we have a fundamental set of solutions to the associated homo-
geneous equation, y1, . . . , yn, we can write

Y2 = Y1 + c1y1 + · · · + cnyn

In other words, we can find any solution to (�) by finding one particular solution, together
with a fundamental set of solutions to the associated homogeneous equation (��). Any
initial value problem can then be solved by solving the system of equations

Y1(t0) + c1y1(t0) + · · ·+ cnyn(t0) = g(t0)
Y ′

1(t0) + c1y
′

1(t0) + · · · + cny′

n(t0) = g′(t0)

all the way to

Y
(n−1)
1 (t0) + c1y

(n−1)
1 (t0) + · · ·+ cny

(n−1)
n (t0) = g(n−1)(t0)

for the constants c1, . . . , cn .

The only part of this we haven’t really explored yet is finding a particular solution to (�).
For this we have two techniques.

Variation of parameters: the idea is to start with a pair of fundamental solutions y1, yt
to the associated homogeneous equation

(HH) y′′ + p(t)y′ + q(t)y = 0

and then guess that the solution to our inhomogeneous equation
(H) y′′ + p(t)y′ + q(t)y = g(t)

is of the form y(t) = c1(t)y1(t) + c2(t)y2(t), and plug in. The resulting equation is too
complicated, but if we make the simplifying assumption

c′1(t)y1(t) + c′2(t)y2(t) = 0

then the equation becomes
c′1(t)y

′

1(t) + c′2(t)y
′

2(t) = g(t)

which we can solve:

3



c′1 =
−gy2

∣

∣

∣

∣

y1(t0) y2(t0)
y′

1(t0) y′

2(t0)

∣

∣

∣

∣

c′2 =
gy1

∣

∣

∣

∣

y1(t0) y2(t0)
y′

1(t0) y′

2(t0)

∣

∣

∣

∣

Here again, the by now familiar Wronskian appears! Note that we must still integrate these
functions, to determine c1 and c2 .

Method of Undetermined Coefficients: Our second approach to solving inhomoge-
neous equation involves “educated guessing”.

Important: This generally works only for equations with constant coefficients!

The basic idea behind the technique is that for most kinds of functions, like polynomials,
expoential, sines and cosines, or products of these, all of the derivatives of the function are
of the same basic form. So if the function g(t) in

(I) L[y] = a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = g(t)

is one of these kinds, what we do is guess that our solution y is the same kind. We
include undetermined coefficients in the solution (hence the name), and by plugging into the
differential equation and setting equal to our target function, we solve for the undetermined
coefficents. In particular,

If g is a polynomial of degree n, we set y to be a (different) polynomial of degree n,

If g is a multiple of an exponential exp(rt), we set y to be a a multiple c exp(rt) of g,

If g is a multiple of sin(βt) or cos(βt), we set y to be a linear combination

a sin(βt) + b cos(βt),

If g(t) = exp(rt) cos(βt) (or has a sine), we set y to be a exp(rt) sin(βt)+b exp(rt) cos(βt),

If g is a polynomial of degree n times one of these, we set y to be a (different, unknown)

polynomial of degree n times the corresponding function above.

Then we must plug this function into (I), and solve for the undetermined coefficients.

Of course, there is one wrinkle; sometimes our choice of y cannot work, because it is a
solution to the associated homogeneous equation. For example, for the equation

L[y] = y′′ + y = cos(t)

The function y = a cos(t) + b sin(t) will never solve it, because for such a function, L[y] =
0. In this case what we must do is multiply our guess by t, or more generally, by a lowest
power of t to insure that our guess is not a solution to the homogeneous equation. For
this, we must first determine the number of times the root which corresponds to our target
solution occurs among the roots of the associated characteristic equation. This can be a
trifle tricky to determine; for example, for the equation

y′′ − 2y′ + y = tet

we should guess that our solution is y = t(at + b)et, since our original guess would be
y = (at + b)et, but this is a solution to the homogeneous equation, while t times it is not;
but for

y′′ − 2y′ + y = 3et

we should guess that our solution is y = at2et, since tet is still a solution to the homogeneous
equation, but y = t2et is not.
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Finally, if our function g(t) is a linear combination of such functions, we can use this
method to solve L[y] = each piece, and then use the Principle of Superposition to find our
solution by taking a linear combination.

Higher order equations: The method of undetermined coefficients works equally well
for higher order inhomogeneous equations with constant coefficients; the exact same steps
will lead you to a solution.

Spring - Mass problems

Basic setup: an object with mass m is attached to a spring along a track. If a force of
F0 is used to pull the mass, stretching the spring, it displaces a distance of u0. The mass
is then displaced from this equilibrium position and released (with some initial velocity).
Position at time t is u(t) .
Newton: mu′′ = sum of the forces acting on the object. These include:

gravity: Fg = mg
the spring: Fs = −ku (Hooke’s Law)
friction: Ff = −γu′

a possible external force: Fe = f(t)

Force of F0 displaces spring by u0: F0 − ku0 = 0 (applied force and spring force balance;
use to compute k !)
So: mu′′ = −ku − γu′ + f(t), i.e.,

mu′′ + ku + γu′ = f(t)

Some special cases:
No friction (γ = 0) = undamped, no external force (= free vibration); solutions are

u = c1 cos(ω0t) + c2 sin(ω0t) = C cos(ω0t − δ)
where ω =

√

k/m = the natural frequency of the system, C = amplitude of the vibration,
δ (= ‘delay’) = phase angle

C =
√

(c2
1 + c2

2), tan(δ) = c2/c1

[[You are not responsible for these formulas; they are included FYI only.]]
T = 2π/ω0 = period of the vibration. Note: stiffer spring (= larger k) gives higher
frequency, shorter period. Larger m gives the opposite.

Damped free vibrations; solutions depend on γ2 − 4km = discriminant
γ2 > 4km (overdamped); fundamental solutions are er1t, er2t, r1, r2 < 0
γ2 = 4km (critically damped); fundamental solutions are ert, tert, r < 0
γ2 < 4km (underdamped); fundamental solutions are ert cos(ωt), ert sin(ωt), r < 0 , ω =
√

ω2
0 − (γ/2m)2

In each case, solutions tend to 0 as t goes to ∞. In first two cases, the solution has at
most on local max or min; in the third case, note that the frequency of the periodic part
of the motion is smaller than the natural frequency. T = 2π/ω is called the quasi-period

of the vibration.

Forced vibrations
Focus on periodic forcing term: f(t) = F0 cos(ωt) .
Undamped: if ω 6= ω0, then (using undetermined coefficients) solution is
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u = C cos(ω0t − δ) +
F0

m(ω2
0 − ω2)

cos(ωt)

This is the sum of two vibrations with different frequencies.
In the special case u(0) = 0, u′(0) = 0 (starting at rest), we can further simplify:

u =
2F0

m(ω2
0 − ω2)

sin(
ω0 − ω

2
t) sin(

ω0 + ω

2
t)

When ω is close to ω0, this illustrates the concept of beats; we have a high frequency
vibration (the second sine) with amplitude a low frequency vibration (the first sine). the
mass essentially vibrates rapidly between to sine curves.

When ω = ω0, our forcing term is a solution to the homogeneous equation, so the general
solution, instead, is

u = C cos(ω0t − δ) +
F0

2mω0
t sin(ωt)

In this case, as t goes to ∞, the amplitude of the second oscillation goes to ∞; the solution,
essentially, resonates with the forcing term. (Basically, you are ‘feeding’ the system at it’s
natural frequency.) This illustrates the phenomenon of resonance.

Finally, if we include friction (γ 6= 0), then the solution turns out to be
u = homog. soln. +C cos(ωt − δ), where

C =
F0

√

m2(ω2
0 − ω2)2 + γ2ω2

, tan(δ) =
γm

m(ω2
0 − ω2)

But since γ > 0, the homogeneous solutions will tend to 0 as t → ∞; they are called the
transient solution. (Basically, they just allow us to solve any initial value problem. We
can then conclude that any energy given to the susystem is dissipated over time; leaving
only the energy imparted by the forcing term to drive the system along.) The other term
is called the forced response, or steady-state solution.
Note that the amplitude C of the forced response goes to 0 as the driving frequency, ω,
goes to ∞. Notice also that tan(δ) can never be 0, so the forced response is always out
of phase with the forcing term. When we are driving the system at it’s natural frequency
ω0, the system is 90 degrees out of phase; as ω → ∞, the system approaches being 180
degrees out of phase, i.e., the motion of the mass is almost exactly opposite to the force
being externally applied!

Systems of Equations

Basic idea: we have several unknown functions x, y, . . . of time t , and equations describ-
ing the derivatives of each in terms of t, x, y, . . . . The goal: determine the functions
x(t), y(t), . . . which solve all the equations at the same time. Initial value problem: the
value of each function is specified at a specific time: x(t0) = x0, y(t0) = y0, . . . .

Example: Multiple tank problem: several tanks connected by pipes, with solutions of
varying concentrations in them. Applying

rate of change of amount of solute =
(rate at which solute comes in) − (rate at which solute goes out)

to each tank gives a system of equations.

A multiple tank problem gives a linear system of equations: each equation has the form
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y′

i = a1y1 + · · ·anyn + fi(t)

for some collection of (often constant) functions of t, a1, . . . , an, and (usually constant)
function fi(t) . When the ai are constant, such systems can be solved by the elimination

method; the first equation can be rewritten as yn = (some expression), which can then
be substituted into the remaining equations to give n − 1 equations in n − 1 unknown
functions. The process can then be repeated, yielding, in the end, a single n-th order
linear equation (with constant coefficients) in a single unknown function. This can then
be solved by our earlier techniques.

[ For further details, see the handout from class! ]

Autonomous systems: The other kind of system of equations which earlier techniques can
help us solve is autonomous systems; this means that each equation in the system has the
form

y′

i = fi(y1, . . . , yn)

with no independent variable t appearing on the right-hand side. For these, we can use
the direction field just as we did for autonomous equations before. For the sake of our
exposition, we will deal with an autonomous system of two equations

x′ = f(x, y) , y′ = g(x, y)

Our solution would be a pair of functions (x(t), y(t)), which we can think of as describing
a parametrized curve in the x-y plane. The tangent vector to this curve is (x′(t), y′(t))
= (f(x(t), y(t)), g(x(t), y(t)) = (f(x, y), g(x, y)). So every solution curve is tangent to
the direction field (f(x, y), g(x, y)) at every point along the curve. So by drawing the
direction field, we can estimate the trajectories of solutions (but not, in general, their
actual parametrizations), by finding curves tangent to the vectors of the field.

The task of drawing a direction field can be simplified by drawing the nullclines of the field,
that is, the curves where f(x, y) = 0 (vertical tangents) and where g(x, y) = 0 (horizontal
tangents). Where such curves cross, we have equilibrium points. These are points where
x′(t) = y′(t) = 0; that is, the constant x- and y-values are constant solutions to the system
of equations.

For a linear system with constant coefficients, the basic shape of the direction field is
completely determined by the roots of the auxiliary equation for the second order equation
obtained from the elimination method. Complex roots give a spiral pattern around the
equilibrium values (and spiralling in or out depending upon whether or not the real part
of the roots are negative or not); real roots will make the direction field point towards the
equilibrium or away from it, depending on if they are negative or positive; if there is one
of each we have one direction pointing in and one pointing out. Details of this may be
found on the handout from class!

For a more general autonomous system, we can linearize the equation at each equilibrium
point (x0, y0), that is, replace our original equations with

x′ = [fx(x0, y0)]x + [fy(x0, y0)]y , y′ = [gx(x0, y0)]x + [gy(x0, y0)]y

The behavior of solution curves, near the equilibrium point, are well-represented by the
solutions to the linearized equation.
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