Math 221
Section 5

A review of partial fractions for Laplace transforms

In solving differential equations by the method of Laplace transforms, we will repeatedly
find ourselves needing to find the inverse Laplace transforms of rational functions, that is,
quotients of polynomials. Calculus provides us with a general method of expressing such
functions as sums of more basic ones, called partial fractions.

The basic idea is that we will work with a rational function
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by writing it as a sum of simpler functions.

The main fact that will make this (at least in theory, and often in practice) possible is that
any polynomial with real coefficients can (in principle) be expressed as the product of linear
and (irreducible) quadratic polynomials. By factoring the quotient polynomial ¢(x) in this
way, we can determine what the simpler functions will look like; a procedure very much
like undetermined coefficients will then allow us to determine exactly what the simpler
pieces are.

The basic procedure goes like this: starting with f(z) = M

q(x)
(0): Make sure that degree(p)<degree(q); do polynomial long division if it isn’t. L.e., write
p(z) = a(x)q(x) + b(x), with degree(b)<degree(q), and then
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and we can integrate a(x), since it is a polynomial.

(1): Factor ¢(z) into linear and irreducible quadratic factors. This is the only step where we
really have no general procedure (basically, because there is none). As with the auxiliary
equations for higher order DE’s, we can try to find roots of the polynomial to determine
linear factors, and there are procedures (like the rational roots theorem) for determining
good candidates. And a good computer algebra system can give us good approximations
to roots (and quadratic factors).

(2): Group common factors together as powers; if, e.g., 3 is a root of ¢(x) four times, then
we treat the four factors in what follows as giving one factor of (x — 3)%.

(3a): For each group (z — a)*, we add together:
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These are the simpler pieces that the factor (z — a)* will contribute to the final sum.
(3b): For each group (ax? + bz + ¢)¥, we add together:
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(4) Set f(x) = the sum of all of these sums; solve the resulting equation for the ‘undeter-
mined’ coefficients a;, ¢; , etc.



Note that we need to use different names for the coefficients, for each piece!

Showing why this procedure works (i.e., why a rational function can always be expressed as
such a sum) would take us too far afield (and isn’t even really about Laplace transforms!),
so we will content ourselves to just use this remarkable fact. There are two basic methods
for carrying out step (4), to solve for the undetermined coefficients:

In both, we put the entire sum over a common denomenator (which, it turns out, will
(almost: up to multiplication by a constant) be equal to ¢(x), if you put things over the
smallest common denomenator) and set the resulting numerator equal to (the appropriate
constant multiple of) p(z).

(a) (this always works): Multiply out the numerator to a single polynomial, and set the
coefts of the two polynomials equal to one another. (This works because two polynomials
are the same precisely when they have the same degree and their coefficients are equal to
one another.) This gives us a system of linear equations involving the unknown coefficients,
which we can solve.

Ex: x+3=a(z—1)+bx—2) = (a+b)x+ (—a—2b);solve l =a+b,3=—a—2b
(b) Don’t multiply out the numerator! Leave it as a sum of products of terms from the

denomenators. We can determine many of the unknown coefficients by plugging well-chosen
values in for x.

For each linear term (x — a)*, plug = a into both sides. Most of the terms of the sum
will have a factor of (z — a) and so will give zero, which will allow us to quickly solve for
one of the coefficients.

If £ > 2, take derivatives of both sides! Then by plugging in x=a, we will quickly solve for
another coefficient.

Ex: z? _ A L B L Cx+D
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so A(x —1)(z* + 1)+ B(z®> + 1) + (Cx + D)(x — 1)? = 2%
Set x =1, get 2B = 1, solve for B.
Take derivatives: A(z?+1) + A(z —1)(2z) + B(2x) + C(z — 1)2 +2(Cz + D)(z — 1) = 22
Set x =1, get 24+ 0+ 2B+ 0+ 0 = 2, solve for A (since we already know B)
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The end result of this process is a an expression for ﬁ as a sum of rational functions of
q(x
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These can then be dealt with one at a time; finding the inverse Laplace transform of pieces
of the second type can be simplified by writing
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At least for ¢ = 1 (i > 1 requires further techniques, e.g., convolution), the first term has

inverse Laplace transform a multiple of e** cos(3t); the second term has inverse Laplace
transform a multiple of e®* sin(/3t) .




