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Subobject Classifiers

Let C be a category with terminal object 1. A subobject classifier is an
object Ω and a morphism true : 1→ Ω such that for each
monomorphism m : A→ B, there exists a unique morphism
ω(m) : B → Ω such that the commutative diagram

A 1

B Ω

m true

ω(m)

is a pullback. Ω is called the object of truth values, and ω(m) is the
classifying morphism of m.
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Examples of Subobject Classifiers

In Set, 1 = {∗}, Ω = {t, f}, and true(∗) = t.

Let i : A→ B be an injective function. Then the classifying map
ω(i) : B → Ω is given by

ω(i)(b) =

{
t b ∈ i(A)

f b /∈ i(A)

A {∗}

B {t, f}

i true

ω(i)
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Examples of Subobject Classifiers

Denote by Sh(X) the category of sheaves of sets on a fixed topological
space X, whose arrows are morphisms of sheaves.

Sh(X) has a terminal object 1 which sends each open U ⊆ X to
the singleton {∗};
Sh(X) has object of truth values Ω satisfying Ω(U) = OpenX(U);

The subobject classifier true : 1→ Ω satisfies true(U)(∗) = U for
all U open in X.

Given a monomorphism of sheaves j : G → F , the classifying morphism
ω(j) : F → Ω is given by the family of maps ω(j)(U) : F(U)→ Ω(U)
where

ω(j)(U)(s) =
⋃

ρUV (s)∈j(V )(G(V ))

V.

Jake Kettinger (UNL) Topos Internal Language November 4, 2020 4 / 24



Examples of Subobject Classifiers

Denote by Sh(X) the category of sheaves of sets on a fixed topological
space X, whose arrows are morphisms of sheaves.

Sh(X) has a terminal object 1 which sends each open U ⊆ X to
the singleton {∗};
Sh(X) has object of truth values Ω satisfying Ω(U) = OpenX(U);

The subobject classifier true : 1→ Ω satisfies true(U)(∗) = U for
all U open in X.

Given a monomorphism of sheaves j : G → F , the classifying morphism
ω(j) : F → Ω is given by the family of maps ω(j)(U) : F(U)→ Ω(U)
where

ω(j)(U)(s) =
⋃

ρUV (s)∈j(V )(G(V ))

V.

Jake Kettinger (UNL) Topos Internal Language November 4, 2020 4 / 24



Classifying Subobjects

A subobject of X is an equivalence class of pairs of an object Y with a
monomorphism α : Y → X under the equivalence relation
(Y, α) ∼ (Z, β) if ω(α) = ω(β).

Subobjects (Y, α) of X can be uniquely classified by their classifying
morphism ω(α) : X → Ω. In fact,

SubC(X) ∼= HomC(X,Ω).
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Exponentials

Let X,Y be objects in C. An object XY together with a map
eval : XY × Y → X is an exponential if for any object Z and
morphism g : Z × Y → X there is a unique morphism λg : Z → XY

such that the diagram

Z × Y

XY × Y X

λg×idY
g

eval

commutes. Here, λg is called the transpose of g.

This transposition property gives us the isomorphism

HomC
(
Z,XY

) ∼= HomC(Z × Y,X).
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Toposes (Topoi)

A topos is a category E satisfying the following properties:

1 E has a terminal object 1;

2 Any two objects X and Y have a product X × Y in E ;

3 Any two objects X and Y have an exponential XY in E ;

4 E has finite limits;

5 E has a subobject classifier true : 1→ Ω.

A category satisfying the first three properties is said to be Cartesian
closed.

Example: The category Sh(X) of sheaves over a topological space X is
a topos.
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Heyting Algebra

A Heyting algebra is a poset H with minimal element 0 and maximal
element 1 and operations ∧ and ∨ defined as

x ∧ y = inf{x, y} x ∨ y = sup{x, y}

and an operation ⇒ satisfying the condition

z ≤ (x⇒ y) iff (z ∧ x) ≤ y.

We consequently define ¬x as x⇒ 0.
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Example of a Heyting Algebra

Let X be a topological space. Then OpenX(X) is a Heyting algebra
with

1 = X;

0 = ∅;

U ≤ V means U ⊆ V ;

U ∧ V = U ∩ V ;

U ∨ V = U ∪ V ;

(U ⇒ V ) = int(V ∪ (X \ U)).

In this case, ¬U = int(X \ U). (Note that ¬¬U 6= U in general.)
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Heyting Algebra of SubE(1)

Let E be a topos. Recall SubE(1) ∼= HomE(1,Ω) is the collection of
subobjects of 1. Given an object X whose unique map αX : X → 1 is a
monomorphism, we have ω(αX) : 1→ Ω is in SubE(1). We can realize
this collection as a Heyting algebra in the following sense:

true is the maximal object;

false = ω(α0) is the minimal object (0 is the initial object);

X ≤ Y means there is a monomorphism from X to Y ;

X ∧ Y = X × Y ;

X ∨ Y = X q Y ;

(X ⇒ Y ) = Y X .

In this case, ¬X = ω(α0X ).

Note by the transposition property, we fulfill the required condition

Z ⊆ Y X iff Z ×X ⊆ Y.
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The (very) Basics of Type Theory

A type system is a formal system in which every term has a “type”
which defines its meaning.

Ordinary mathematical statements and theorems can be formulated in
the symbolism of standard logic. This symbolism starts with constants
and variables (0, 1, x, ...). For example, x ∈ N means x is a variable of
type N.

These symbols combine with operations to give terms (x2, x+ y, ...) of
a given type. These terms can yield formulas (x < y, x+ y = z, ...).

Formulas can combine with propositional connectives (∧, ∨, ⇒, ...)
and quantifiers (∀, ∃, ...) to form more formulas.
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Mitchell-Bénabou Language

The Mitchell-Bénabou Language of a topos E is a formal language
wherein:

the types are the objects of E ;

the variables of type A are interpreted as identity morphisms
idA : A→ A in E ;

the terms of type B in variables xi of type Xi are interpreted as
morphisms from the product of the Xi to B;

the formulas are terms of type Ω.

The rules of inference appropriate to a general topos follow the
structure of the Heyting algebra and are precisely the standard rules for
intuitionism. Mac Lane and Moerdijk call this a “striking observation.”
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Intuitionism

Intuitionism is a logic system in which we forgo:

the axiom of choice,

the law of the excluded middle (x ∨ ¬x = 1),

and the law of double negation (¬¬x = x).

Without these laws, we cannot use contradiction to prove something is
true.
We also can only prove existence by construction: this is also called
constructive logic.

Example: In intuitionistic logic, one can prove that any inhabited
subset of N does not not possess a minimal element. Moreover, every
detachable inhabited subset of N possesses a minimal element.

Jake Kettinger (UNL) Topos Internal Language November 4, 2020 13 / 24



Topos Internal Language

The Mitchell-Bénabou Language allows us to “pretend” that objects in
a topos have variables that we can interact with. Then we can use
familiar proofs to conclude useful things about the objects of the topos
(as long as such proofs are valid in the internal language).

Blechschmidt: “Any (intuitionistically valid) theorem about modules
yields a corresponding theorem about sheaves of modules.”
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Kripke-Joyal Semantics

Let ϕ be a formula and let U be an open set. The meaning of

U � ϕ

is “ϕ holds on U .”

We also often write s : F as opposed to s ∈ F to denote variables s of
type F .
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The Kripke-Joyal Dictionary

U � s = t : F :⇐⇒s|U = t|U ∈ F(U).

U �
∧
j∈J

ϕj :⇐⇒for all j ∈ J, U � ϕj .

U �
∨
j∈J

ϕj :⇐⇒there is a covering U =
⋃
i∈I

Ui such that for all i,

Ui � ϕj for some j ∈ J.
U � ϕ⇒ ψ :⇐⇒for all open V ⊆ U, V � ϕ implies V � ψ.

U � ∀s : F .ϕ(s) :⇐⇒for all s ∈ F(V ) on open V ⊆ U, V � ϕ(s).

U � ∃s : F .ϕ(s) :⇐⇒there is a covering U =
⋃
i∈I

Ui such that for all i :

there is an si ∈ F(Ui) such that Ui � ϕ(si).
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Internal vs External Example

Let α : F → G be a morphism of sheaves on X. Then α is a
monomorphism of sheaves if and only if, from the internal perspective,
α is simply an injective map.

Proof (Blechschmidt).

X � _α is injective.^

⇐⇒X � ∀s : F .∀t : F .α(s) = α(t)⇒ s = t

⇐⇒for all open U ⊆ X, sections s ∈ F(U) :

for all open V ⊆ U , sections t ∈ F(V ) : V � α(s) = α(t)⇒ s = t

⇐⇒for all open W ⊆ V ⊆ U ⊆ X with s ∈ F(U), t ∈ F(V )

α(W )(ρUW (s)) = α(W )(ρVW (t))⇒ ρUW (s) = ρVW (t)

⇐⇒for all open U ⊆ X, s, t ∈ F(U) : α(U)(s) = α(U)(t)⇒ s = t

⇐⇒α is a monomorphism of sheaves.
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Finite Type Sheaves

For a locally ringed space (X,OX), recall that a sheaf F of
OX -modules is of finite type if there is an open covering X =

⋃
λ∈Λ Uλ

and natural numbers nλ such that

(OX |Uλ)nλ −→ F|Uλ

is a surjective morphism of sheaves.

From the internal perspective, F is of finite type if it, considered as an
ordinary module, is finitely generated. That is,

X �
∨
n≥0

∃x1, . . . , xn : F .∀x : F .∃a1, . . . , an : OX .x =
∑
i

aixi.

Jake Kettinger (UNL) Topos Internal Language November 4, 2020 18 / 24



Short Exact Sequence of Finite-Type Sheaves

Theorem: Let (X,OX) be a locally ringed space and let

0 −→ F −→ G −→ H −→ 0

be a short exact sequence of sheaves of OX -modules. If F and H are of
finite type, then G has finite type.
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External Method: But First a Lemma!

Lemma: A sheaf F of OX -modules has finite type if and only if for all
x ∈ X, the stalk Fx is a finitely-generated OX,x-module and rank(Fx)
has a local upper bound: for all x ∈ X there is a neighborhood Ux of x
and a natural number nx such that for all y ∈ Ux, rank(Fy) ≤ nx.

Proof of Lemma.

(⇒) We know there is a open cover {Uλ}λ∈Λ of X and naturals nλ such
that (OX |Uλ)nλ → F|Uλ is a surjective morphism of sheaves. Then for
all x ∈ Uλ, OnλX,x → Fx is a surjection of OX,x-modules. Thus
rank(Fx) ≤ nλ. This is an upper bound for all x ∈ Uλ.
(⇐) Suppose the rank of each stalk has a local upper bound, as defined
above. Then the {Ux}x∈X form an open cover of X wherein
(OX |Ux)nx → F|Ux is a surjective morphism of sheaves. Thus F is of
finite type.
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External Method

Proof of Theorem.

We know that on each stalk

0 −→ Fx −→ Gx −→ Hx −→ 0

is a short exact sequence of OX,x-modules. Then we know that
rank(Fx) + rank(Hx) = rank(Gx) from commutative algebra.

Since F and H are finite type, the ranks of their stalks have local
upper bounds by the lemma. Thus the rank of Gx has a local upper
bound for each x ∈ X. By the lemma, G is then of finite type.
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Internal Method

Proof (Blechschmidt).

From the internal perspective, we are given a short exact sequence of
modules with the outer two finitely generated and we have to show
that the middle one is finitely generated. It is well-known that this
follows; and since the usual proof of this fact is intuitionistically valid,
we are done.
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Picture
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