1. Let A be a 3×3 matrix, which determinant is 5 and let B be a 3×3, which determinant is 4.

 (a) What is the rank of A?
 (b) What is $\det(2A)$?
 (c) What is $\det(AB)$?
 (d) Can you compute $\det(A + B)$?

2. $\det(A) = 3$, where A be the following matrix

 $\begin{pmatrix}
 a & b & c & d & e \\
 f & g & h & i & l \\
 m & n & o & p & q \\
 r & s & t & u & v \\
 0 & 1 & 2 & 1 & 0
 \end{pmatrix}$.

 (a) Can the first row be $[0, 1, 2, 1, 0]$?
 (b) Compute the determinant of the matrix

 $\begin{pmatrix}
 a & b & c & d & e \\
 f & g & h & i & l \\
 m + 3r & n + 3s & o + 3t & p + 3u & q + 3v \\
 r & s & t & u & v \\
 0 & 1 & 2 & 1 & 0
 \end{pmatrix}$.

3. Find the value of k such that the following matrix is invertible

 $\begin{pmatrix}
 0 & k & 0 \\
 1 & 9 & k \\
 k & 4 & 3
 \end{pmatrix}$.

4. Let A be a 4×4 matrix such that $Av = 0$ where v is the column vector $[1, 2, 4, 1]^T$. What is the determinant of A?

5. Let A be an 4×4 matrix. Let $[1, 2, 1, 0], [1, 0, 1, 0]$ be eigenvectors with eigenvalue 3, and let $[0, 0, 2, 1], [0, 0, 1, 0]$ be eigenvectors with eigenvalue 5.

 (a) Explain why A is diagonalizable.
 (b) $A = P^{-1}DP$, where P is an invertible matrix and D is a diagonal matrix. Find P and D.

6. Compute

 $\begin{pmatrix}
 1 & 0 & 0 \\
 0 & 2 & 9 \\
 0 & 0 & 3
 \end{pmatrix}^{10}$.

7. The polynomial $p(\lambda) = \lambda(\lambda - 3)^2(\lambda - 4)$ is the characteristic polynomial of a square matrix A.

 (a) what is the size of the matrix?
(b) Assume that the eigenspace corresponding to the eigenvalue \(\lambda = 4 \) has dimension 2. Explain why \(A \) is diagonalizable.

8. Let \(A \) be similar to \(B \), \((P^{-1}AP = B)\). If \(x \) is an eigenvector for \(A \) then \(P^{-1}x \) is an eigenvector for \(B \).

9. Let \(A \) be a matrix such that \(A^3 = A \). What are the possible eigenvalues for \(A \)?

10. Find \(W^\perp \) where \(W = \{(x, y, z) \mid 3x + 4y + 8z = 0, 4x - 1y + z = 0\} \).

11. Let \(W = \text{span} < w_1 = [2, 1, 3, 4], w_2 = [0, 1, 2, 1] > \) and let \(v = [1, 0, 1, 0] \).

 (a) is \(\text{proj}_W v = \text{proj}_{w_1} v + \text{proj}_{w_2} v \) ?

 (b) Compute an orthogonal basis for \(W \) with the Gram-Schmidt algorithm.

 (c) Compute \(\text{proj}_W v \).

12. Number 16 page 404.

13. Say which of the following is a vector space over the real numbers:

 (a) \(S \) is the set of real valued functions continuos over \(R \) such that \(\lim_{x \to 0} f(x) = 0 \).

 (b) \(S \) is the set of real valued functions continuous over \(R \) such that \(\int_1^3 f(x)dx \) does exist.

 (c) \(S \) is the set of polynomials \(p(x) \) such that \(p(2) = 0 \).

14. Let \(\mathcal{F} \) be the vector space of real continuos functions. Are \(1, \cos(x), \sin(x) \in \mathcal{F} \) linearly independent?

15. Let \(\mathcal{F} \) be the vector space of real continuos functions. Are \(1, \cos^2(x), \sin^2(x) \in \mathcal{F} \) linearly independent?