1. Let \(\mathbf{v} = <1, 3, 2, 5, 6> \) and \(\mathbf{u} = <3, -2, -1, 0, 9> \), compute \(2\mathbf{u}, \mathbf{u} + \mathbf{v} \) and \(\mathbf{u} \cdot \mathbf{v} \).

2. Given \(\mathbf{v} = <x, 1, 9, 2> \). Find \(x \) such that \(\mathbf{v} \) is orthogonal to \(<x, 0, -1, 0> \).

3. Decide if the following statement is true or false, if false give a counterexample:
 \(\text{If } \mathbf{v} \cdot \mathbf{w} = \mathbf{v} \cdot \mathbf{u} \text{ then } \mathbf{u} = \mathbf{w} \).

4. Let \(P(0, 0, 1) \) and \(\mathbf{n} = [1, 2, 3] \) be a point of a vector.
 (a) Find the equation of the plane perpendicular to \(\mathbf{n} \) and passing through \(P \).

 (b) Find the parametric equations of the line perpendicular to the plane.