Review

Vector Fields:

1. Plot the vector field $\mathbf{F}(x, y) = < x, y >$.

2. Let f be a real function in three variables and $\mathbf{F} = < f_1(x, y, z), f_2(x, y, z), f_3(x, y, z) >$ a vector field in three variables. For the following, decide whether the formula makes sense, if it does express it in terms of partial derivatives, f, f_1, f_2 and f_3 and write carefully whether is a scalar or vector quantity.

(a) $\nabla \cdot (\nabla f)$.

(b) $\nabla (\nabla f)$.

(c) $\nabla (\nabla \mathbf{F})$.

(d) $\nabla \cdot \mathbf{F}$.

(e) $\nabla \times (\nabla f)$.

(f) $\nabla \times (\nabla \mathbf{F})$.

(g) $\nabla \cdot (\nabla \times \mathbf{F})$.

Line Integrals. In the following $f(x, y, z)$ is a continuous function everywhere.

1. Let C be an oriented curve in a three dimensional space. Assume that C is described parametrically by $< x(t), y(t), z(t) >$ for $a \leq t \leq b$, and $x(t), y(t), z(t)$ are continuous with continuous first derivatives. How do you compute the line integral of $f(x, y, z)$ with respect to the arc length $(\int_C f(x, y, z)ds)$? (i.e. State the evaluation Theorem I)

2. Let $g(x, y, z) = e^x$. Give an interpretation for $\int_C g(x, y, z)ds$, where C is the piece of the helix $< \cos(t), \sin(t), t >$, for $0 \leq t \leq 1$.

3. Is $\int_C f(x, y, z)ds = \int_C f(x, y, z)ds$?

4. If $f(x, y, z) = 1$, give the interpretation of $\int_C f(x, y, z)ds$.

5. Let C be an oriented curve in a three dimensional space. Assume that C is described parametrically by $< x(t), y(t), z(t) >$ for $a \leq t \leq b$, and $x(t), y(t), z(t)$ are continuous with continuous first derivatives. How do you compute the line integral of $f(x, y, z)$ with respect to x $(\int_C f(x, y, z)dx)$? (i.e. state the evaluation Theorem II) What about $\int_C f(x, y, z)dy$ and $\int_C f(x, y, z)dz$?

6. Is $\int_C f(x, y, z)dx = \int_C f(x, y, z)dx$?

7. What is it $\int_C \mathbf{F} \cdot d\mathbf{r}$ in terms of line integrals if $\mathbf{F} = < f_1(x, y, z), f_2(x, y, z), f_3(x, y, z) >$ is a vector field?

8. Give an interpretation of $\int_C \mathbf{F} \cdot d\mathbf{r}$ if $\mathbf{F} = mg$, where m is a mass and g is the gravity.
Conservative fields, for two dimensional vector fields: In the following let \(\mathbf{F}(x, y) = <M(x, y), N(x, y)> \) be a vector field with continuous partial derivatives over \(\mathbb{R}^2 \).

Mark as FALSE or TRUE. If the statement is false, write the correct version.

1. If \(\mathbf{F} \) is a conservative field then \(\int_C M(x, y) \, ds = 0 \) for all closed path \(C \).
2. If \(\mathbf{F} \) is a conservative field then \(\int_C \mathbf{F} \, d\mathbf{r} \) does not depend on the path \(C \) but just on the initial and final point.
3. If \(M_x(x, y) = N_y(x, y) = 0 \) then \(\mathbf{F} \) is conservative.
4. If \(\mathbf{F} \) is conservative then \(M_y(x, y) = N_x(x, y) = 0 \).
5. If \(\mathbf{F} \) is conservative then there exists a function in two variables such that \(\nabla \cdot f(x, y) = \mathbf{F} \).

Surface Integrals.

1. State the Evaluation Theorem for surface integrals with all the assumptions.
2. Find the surface area of the portion of the cone \(\sqrt{x^2 + y^2} \) under the plane \(z = 4 \).
3. Compute \(\iint_S z^2 \, dS \), where \(S \) is the portion of the cone \(z = \sqrt{x^2 + y^2} \) above the rectangle \(0 \leq x \leq 2, -1 \leq y \leq 2 \).

Green’s Theorem.

1. State Green’s Theorem, with all the assumptions.
2. What is the orientation of the curve in Green’s Theorem.
3. Let \(\mathbf{F}(x, y) = <\frac{x}{y}, y> \). Can you apply Green’s theorem to compute \(\int_C \mathbf{F} \, d\mathbf{r} \), where \(C \) is the circle with center the origin and radius 3? Explain your answer.
4. Let \(\mathbf{F} = <y + e^{\sqrt{y}}, 2x + \cos(y^2)> \). Compute \(\int_C \mathbf{F} \cdot \mathbf{r} \), where \(C \) is the triangle with vertices \((-1, 0), (1, 0), (0, 2)\).

The Divergence Theorem

1. State The Divergence Theorem with all the assumptions.
2. Compute the flux of the vector field \(\mathbf{F} = <x^3, y^3, z^3> \) through the sphere of radius 3.

Stokes’ Theorem.

1. State Stokes’ Theorem with all the assumptions. How it is different from Green’s Theorem?
2. Use Stoke’s Theorem to compute \(\int_C \mathbf{F} \cdot \mathbf{r} \) where \(\mathbf{F}(x, y, z) = <e^x, e^{-x}, e^z> \) and \(C \) is the boundary of the part of the plane \(2x + 2y + 2z = 2 \) that lies in the first octant.
3. Use Stoke’s Theorem to compute \(\int_C \mathbf{F} \cdot \mathbf{r} \) where \(\mathbf{F}(x, y, z) = <x + y^2, y + z^2, z + x^2> \) where \(C \) is the triangle with vertices \((1, 0, 0), (0, 1, 0), (0, 0, 1)\).