Classifying Stable Ideals of Nest Algebras

John L. Orr

jorr@math.unl.edu

University of Nebraska–Lincoln
Introduction

Lecture plan:

- Nest algebras and their ideals
- Stable ideals
- Examples
- Characterization
- Classification
- Applications
A nest, \mathcal{N}, is a complete, linearly ordered lattice of projections.

$$\text{Alg} \mathcal{N} = \{ X : N^\perp X N = 0 \}$$
A nest, \(\mathcal{N} \), is a complete, linearly ordered lattice of projections.

\[\text{Alg} \mathcal{N} = \{ X : N^\perp X N = 0 \} \]

Mostly, we use \textit{continuous} nests.
There is a very rich selection of norm-closed ideals.

- Weakly closed ideals
- Radicals
- Compact and compact-like
Weakly Closed Ideals

Theorem 1 (Erdos-Power, ’82). \(\mathcal{I} \) is a weakly closed ideal of \(\text{Alg}\,\mathcal{N} \) if and only if there is a increasing map \(\theta : \mathcal{N} \to \mathcal{N} \) satisfying \(\theta(N) \leq N \) such that

\[
\mathcal{I} = \{ X \in \text{Alg}\,\mathcal{N} : \theta(N)\downarrow XN = 0 \ \forall N \in \mathcal{N}\}
\]
Weakly Closed Ideals

Theorem 1 (Erdos-Power, ’82). \(I \) is a weakly closed ideal of \(\text{Alg} \mathcal{N} \) if and only if there is a increasing map \(\theta : \mathcal{N} \to \mathcal{N} \) satisfying \(\theta(N) \leq N \) such that

\[
I = \{ X \in \text{Alg} \mathcal{N} : \theta(N) \perp X N = 0 \quad \forall N \in \mathcal{N} \}.
\]
Definition 2. For $X \in \text{Alg}\mathcal{N}$, define

$$i^+_N(X) := \inf_{M > N} \| (M - N)X(M - N) \|$$

$$i^-_N(X) := \inf_{M < N} \| (N - M)X(N - M) \|$$
The Radical

Definition 2. For $X \in \text{Alg } \mathcal{N}$, define

$$i^+_N(X) := \inf_{M > N} \| (M - N)X(M - N) \|$$

$$i^-_N(X) := \inf_{M < N} \| (N - M)X(N - M) \|$$

Classifying Stable Ideals of Nest Algebras – p.6
The Radical

Definition 2. For \(X \in \text{Alg}\, \mathcal{N} \), define

\[
i^+_N(X) := \inf_{M > N} \| (M - N)X(M - N) \|
\]

\[
i^-_N(X) := \inf_{M < N} \| (N - M)X(N - M) \|
\]

Theorem 2 (Ringrose, ’65). The Jacobson Radical, \(\mathcal{R}_\mathcal{N} \), of \(\text{Alg}\, \mathcal{N} \) is equal to

\[
\{ X \in \text{Alg}\, \mathcal{N} : i^+_N(X) = i^-_N(X) = 0 \quad \forall N \in \mathcal{N} \}
\]
The Strong Radical

Let \mathcal{N} be a continuous nest.

Theorem 3 (O., '94). Used i^+_N seminorms to classify the lattice of ideals generated by maximal two-sided ideals. Showed that the strong radical is

$$ \{ X \in \text{Alg} \mathcal{N} : i^+_N(X) = 0 \text{ on a nowhere dense set} \} $$
Let \mathcal{N} be a continuous nest.

Theorem 4 (O., ’94). Used i^n_N seminorms to classify the lattice of ideals generated by maximal two-sided ideals. Showed that the strong radical is

$$\{ X \in \text{Alg} \mathcal{N} : i^n_N(X) = 0 \text{ on a nowhere dense set} \}$$

Remark 4. The strong radical for $\text{Alg} \mathbb{Z}^+$ is unknown.
The compact operators, \mathcal{K}, of $\text{Alg}.N$ are an ideal
Compact & Compact Character

- The compact operators, \mathcal{K}, of $\text{Alg}\, \mathcal{N}$ are an ideal.
- Call $X \in \text{Alg}\, \mathcal{N}$ compact character if
 $$(M - N)X(M - N)$$
is compact for all $0 < N < M < I$ in \mathcal{N}.
Compact Character

A *ideal* is of compact character if all its elements are.

Example:
Compact Character

A *ideal* is of compact character if all its elements are.

Example:

\[
\mathcal{K}^+ := \{ X \in \text{Alg} \mathcal{N} : N \perp X N \perp \in \mathcal{K} \quad \forall N > 0 \}\]
A *ideal* is of compact character if all its elements are.

Example:

\[
\mathcal{K}^- := \{ X \in \text{Alg} \mathcal{N} : \ R X N N \in \mathcal{K} \quad \forall N < I \}
\]
Compact Character

A *ideal* is of compact character if all its elements are. Example:

\[\mathcal{K}^- \cap \mathcal{K}^+ \]
Definition 5. A closed two-sided ideal, \(I \), is *stable* if \(\alpha(I) \subseteq I \) for all automorphisms \(\alpha \).
Stable Ideals

Definition 5. A closed two-sided ideal, \mathcal{I}, is *stable* if $\alpha(\mathcal{I}) \subseteq \mathcal{I}$ for all automorphisms α.

From here on, all nests are continuous
Stable Ideals

Definition 5. A closed two-sided ideal, \(I \), is stable if \(\alpha(I) \subseteq I \) for all automorphisms \(\alpha \).

Examples:

- The trivial ideals \(0 \) and \(\text{Alg} \mathcal{N} \)
- The compact operators
- The set of operators of compact character
- The Jacobson radical
- The strong radical
- Many more...
Stable Ideals

Definition 5. A closed two-sided ideal, I, is *stable* if $\alpha(I) \subseteq I$ for all automorphisms α.

Non-Examples:

- Weakly closed ideals
- Larson’s ideal, \mathcal{R}_N^∞
The lattice of 11 stable ideals of compact character
Automorphisms

Theorem 6 (Ringrose, ’66). Every isomorphism $\text{Alg } \mathcal{N}_1 \to \text{Alg } \mathcal{N}_2$ is of the form Ad_S, where S is an invertible operator.
Automorphisms

Theorem 8 (Ringrose, ’66). Every isomorphism $\text{Alg} \mathcal{N}_1 \to \text{Alg} \mathcal{N}_2$ is of the form Ad_S, where S is an invertible operator.

Theorem 8 (Davidson, ’84). If $\theta : \mathcal{N}_1 \to \mathcal{N}_2$ is an order-dimension isomorphism then there is an invertible operator S such that $\text{range}(SN S^{-1}) = \text{range}(\theta(N))$ for all $N \in \mathcal{N}_1$.
Automorphisms

Theorem 8 (Ringrose, ’66). Every isomorphism $\text{Alg} \mathcal{N}_1 \to \text{Alg} \mathcal{N}_2$ is of the form Ad_S, where S is an invertible operator.

Theorem 8 (Davidson, ’84). If $\theta : \mathcal{N}_1 \to \mathcal{N}_2$ is an order-dimension isomorphism then there is an invertible operator S such that $\text{range}(SNS^{-1}) = \text{range}(\theta(N))$ for all $N \in \mathcal{N}_1$.

Corollary 8. $\text{Out}(\text{Alg} \mathcal{N}) \leftrightarrow \text{Aut}([0, 1])$
Theorem 9 (O., ’01). The set $\mathcal{J} \subseteq \text{Alg} \mathcal{N}$ is a stable ideal if and only if:
Theorem 9 (O., ’01). The set $\mathcal{J} \subseteq \text{Alg} \, \mathcal{N}$ is a stable ideal if and only if:

- It is one of the eleven stable ideals of compact character, or
Theorem 9 (O., ’01). The set $\mathcal{J} \subseteq \text{Alg} \mathcal{N}$ is a stable ideal if and only if:

- It is one of the eleven stable ideals of compact character, or
- something horrid...
Main results:

- Simple, unified description of the stable ideals
- Classify the stable ideals
- Algebraic properties, quotient norms
Stable Nets

Let P_1, P_2 be two families of intervals of \mathcal{N}.
Stable Nets

Let P_1, P_2 be two families of intervals of \mathcal{N}.

Needn’t be pairwise orthogonal!
Let P_1, P_2 be two families of intervals of \mathcal{N}.

Needn’t even be countable!!
Let P_1, P_2 be two families of intervals of N.

Definition 11. Say that P_1 refines P_2 if whenever $E \in P_1$ there is an interval $F \in P_2$ such that $E \leq F$.
Let P_1, P_2 be two families of intervals of \mathcal{N}.

Definition 11. Say that P_1 refines P_2 if whenever $E \in P_1$ there is an interval $F \in P_2$ such that $E \leq F$.

Definition 11. A set, Ω, of families of intervals is a *net of intervals* if it is a directed set under this ordering. Ω is a *stable net* if

$$\theta(P) := \{\theta(E) : E \in P\} \in \Omega$$

for all $\theta \in \text{Aut}([0, 1])$.

Stable Nets
Theorem 12 (O., preprint ’05). The (non-zero) set $\mathcal{I} \subseteq \text{Alg} \mathcal{N}$ is a stable ideal if and only if there is a stable net $\mathcal{\Omega}$ such that \mathcal{I} is

$$\{X \in \text{Alg} \mathcal{N} : \lim_{P \in \mathcal{\Omega}} \sup_{E \in P} \|EXE\|_{\text{ess}} = 0\}$$
Theorem 12 (O., preprint ’05). The (non-zero) set $\mathcal{J} \subseteq \text{Alg} \mathcal{N}$ is a stable ideal if and only if there is a stable net Ω such that \mathcal{J} is

$$\{ X \in \text{Alg} \mathcal{N} : \limsup_{P \in \Omega, E \in P} \| EXE \|_{\text{ess}} = 0 \}$$

But what does it mean?!
Example 13. Let Ω be just the one family, $P = \{0\}$. Then

$$\lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}} = 0$$

for all X. This gives the ideal $J = \text{Alg} \mathcal{N}$.
Example 13. Let Ω be just the one family, $P = \{I\}$. Then

$$\lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}} = \|X\|_{\text{ess}} = 0 \iff X \in \mathcal{K}$$

This gives the ideal $\mathcal{J} = \mathcal{K}$.
Example 13. Let Ω consist of all singletons $\{N\}$ with $N > 0$. Then

$$\lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}} = \lim_{N \downarrow 0} \|NXN\|_{\text{ess}} = i_0^+(X)$$

This gives the kernel of i_0^+.
Example 13. Let \(\Omega \) consist of the single family \(\{N : N < I\} \). Then

\[
\lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}} = \sup_{N < I} \|NXN\|_{\text{ess}} = 0
\]

\[\iff\]

\[X \in \mathcal{K}^{-}\]
Example 13. Let Ω consist of all finite partitions of \mathcal{N}. Then

$$\lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}} = \lim_{\{E_i\}} \sum_{i=1}^{n} \|E_iXE_i\| = 0$$

\iff

$$X \in \mathcal{R}_{\mathcal{N}}$$
Classification

When do two stable nets give the same ideal?
Classification

When do two stable nets give the same ideal?

Recall \(P_1 \geq P_2 \) if \(\forall E \in P_1 \exists F \in P_2 \text{ s.t. } E \leq F \).
When do two stable nets give the same ideal?

Recall $P_1 \geq P_2$ if $\forall E \in P_1 \exists F \in P_2$ s.t. $E \leq F$. Thus, if $P_1 \geq P_2$ then

$$\sup_{E \in P_1} \|EXE\|_{ess} \leq \sup_{E \in P_2} \|EXE\|_{ess}$$
When do two stable nets give the same ideal?

Recall $P_1 \geq P_2$ if $\forall E \in P_1 \exists F \in P_2$ s.t. $E \leq F$. Thus, if $P_1 \geq P_2$ then

$$\sup_{E \in P_1} \|EXE\|_{ess} \leq \sup_{E \in P_2} \|EXE\|_{ess}$$

Say Ω_1 is cofinal in Ω_2 if $\forall P_2 \in \Omega_2 \exists P_1 \in \Omega_1$ s.t. $P_1 \geq P_2$.
Classification

When do two stable nets give the same ideal?

Recall $P_1 \geq P_2$ if $\forall E \in P_1 \exists F \in P_2$ s.t. $E \leq F$. Thus, if $P_1 \geq P_2$ then

$$\sup_{E \in P_1} \|EXE\|_{ess} \leq \sup_{E \in P_2} \|EXE\|_{ess}$$

Say Ω_1 is cofinal in Ω_2 if $\forall P_2 \in \Omega_2 \exists P_1 \in \Omega_1$ s.t. $P_1 \geq P_2$. Thus

$$\lim_{P \in \Omega_1} \sup_{E \in P} \|EXE\|_{ess} \leq \lim_{P \in \Omega_2} \sup_{E \in P} \|EXE\|_{ess}$$
When do two stable nets give the same ideal?

Recall $P_1 \geq P_2$ if $\forall E \in P_1 \exists F \in P_2$ s.t. $E \leq F$. Thus, if $P_1 \geq P_2$ then

$$\sup_{E \in P_1} \|EXE\|_{\text{ess}} \leq \sup_{E \in P_2} \|EXE\|_{\text{ess}}$$

Say Ω_1 is cofinal in Ω_2 if $\forall P_2 \in \Omega_2 \exists P_1 \in \Omega_1$ s.t. $P_1 \geq P_2$. Thus

$$\lim_{P \in \Omega_1} \sup_{E \in P} \|EXE\|_{\text{ess}} \leq \lim_{P \in \Omega_2} \sup_{E \in P} \|EXE\|_{\text{ess}}$$

and so $I_1 \supseteq I_2$.
Classification Theorem

Theorem 14. Let \mathcal{J}_1 and \mathcal{J}_2 be stable ideals associated with stable nets Ω_1 and Ω_2. Then $\mathcal{J}_1 \supseteq \mathcal{J}_2$ if and only if Ω_1 is cofinal in Ω_2.
Theorem 15. Let I_1 and I_2 be stable ideals associated with stable nets Ω_1 and Ω_2. Then $I_1 \supseteq I_2$ if and only if Ω_1 is cofinal in Ω_2.

Corollary 15. $I_1 = I_2$ if and only if I_1 and I_2 are mutually cofinal.
Assume $I_1 \supseteq I_2$
Sketch of Proof

Assume $J_1 \supseteq J_2$ and fix $Q_0 \in \Omega_2$.
Sketch of Proof

Assume $I_1 \supseteq I_2$ and fix $Q_0 \in \Omega_2$. Goal: Find $P \in \Omega_1$ that refines Q_0.
Sketch of Proof

Assume $I_1 \supseteq I_2$ and fix $Q_0 \in \Omega_2$. Goal: Find $P \in \Omega_1$ that refines Q_0.

Q_0
Assume $I_1 \supseteq I_2$ and fix $Q_0 \in \Omega_2$. Goal: Find $P \in \Omega_1$ that refines Q_0.
Sketch of Proof

Assume $J_1 \supseteq J_2$ and fix $Q_0 \in \Omega_2$. Goal: Find $P \in \Omega_1$ that refines Q_0.

P
Sketch of Proof

Assume $I_1 \supseteq I_2$ and fix $Q_0 \in \Omega_2$. Goal: Find $P \in \Omega_1$ that refines Q_0.
Assume \(I_1 \supseteq I_2 \) and fix \(Q_0 \in \Omega_2 \). Goal: Find \(P \in \Omega_1 \) that refines \(Q_0 \).

Match up the inner and outer covers...
Theorem 16. Let I be given by Ω and $X \in \text{Alg} \, \mathcal{N}$. Then

$$\|X + I\| = \lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}}$$
Quotient Norm

Theorem 16. Let J be given by Ω and $X \in \text{Alg}\mathcal{N}$. Then

$$\|X + J\| = \lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}}$$

$$P_{T,a} := \{E : \|ETE < a\|_{\text{ess}}\} \quad T \in J, a > 0$$

$$\Omega' := \{P_{T,a} : T \in J, a > 0\}$$
Theorem 16. Let \mathcal{I} be given by Ω and $X \in \text{Alg}\, \mathcal{N}$. Then

$$\|X + \mathcal{I}\| = \lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}}$$

$$P_{T,a} := \{E : \|ETE < a\|_{\text{ess}}\} \quad T \in \mathcal{I}, a > 0$$

$$\Omega' := \{P_{T,a} : T \in \mathcal{I}, a > 0\}$$

Thus Ω' specifies \mathcal{I}
Theorem 16. Let \(\mathcal{I} \) be given by \(\Omega \) and \(X \in \text{Alg}\, \mathcal{N} \). Then

\[
\|X + \mathcal{I}\| = \lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}}
\]

\[
P_{T,a} := \{E : \|ETE < a\|_{\text{ess}}\} \quad T \in \mathcal{I}, a > 0
\]

\[
\Omega' := \{P_{T,a} : T \in \mathcal{I}, a > 0\}
\]

Thus \(\Omega' \) specifies \(\mathcal{I} \)

\(\Rightarrow \) \(\Omega' \) and \(\Omega \) are mutually cofinal
Quotient Norm

Theorem 16. Let I be given by Ω and $X \in \text{Alg} \mathcal{N}$. Then

$$\|X + I\| = \lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}}$$

$$P_{T,a} := \{E : \|ETE < a\|_{\text{ess}}\} \quad T \in I, a > 0$$

$$\Omega' := \{P_{T,a} : T \in I, a > 0\}$$

Thus Ω' specifies I

$$\implies \Omega' \text{ and } \Omega \text{ are mutually cofinal}$$

$$\implies \lim_{P \in \Omega'} \sup_{E \in P} \|EXE\|_{\text{ess}} = \lim_{P \in \Omega} \sup_{E \in P} \|EXE\|_{\text{ess}}$$
Theorem 17. J_1, J_2 stable ideals $\implies J_1 + J_2$ stable ideals.
Theorem 17. \(J_1, J_2 \) stable ideals \(\Longrightarrow \) \(J_1 + J_2 \) stable ideals.

How is net for \(J_1 + J_2 \) related to \(J_1, J_2 \)?
Algebra of Ideals

Theorem 17. \(J_1, J_2 \) stable ideals \(\implies J_1 + J_2 \) stable ideals.

Let \(\Omega_1, \Omega_2 \) be stable nets. For \(P_1 \in \Omega_1 \) and \(P_2 \in \Omega_2 \) define

\[P_1 \cdot P_2 := \{ E_1 E_2 : E_1 \in P_1, E_2 \in P_2 \} \]

and then define

\[\Omega_1 \cdot \Omega_2 := \{ P_1 \cdot P_2 : P_1 \in \Omega_1, P_2 \in \Omega_2 \} \]
Theorem 17. \(I_1, I_2 \) stable ideals \(\implies I_1 + I_2 \) stable ideals.

Theorem 17. \(\Omega := \Omega_1 \cdot \Omega_2 \) is a stable net, and

\[
I_1 + I_2 = \{ X \in \text{Alg} \mathcal{N} : \lim_{P \in \Omega} \sup_{E \in P} \| E X E \|_{\text{ess}} = 0 \}
\]